Structured Output Generation: Reliable JSON from Language Models

Introduction: LLMs generate text, but applications need structured data—JSON objects, database records, API payloads. Getting reliable structured output from language models requires more than asking nicely in the prompt. This guide covers practical techniques for structured generation: defining schemas with Pydantic or JSON Schema, using constrained decoding to guarantee valid output, implementing retry logic with […]

Read more →

Prompt Optimization: From Few-Shot to Automated Tuning

Introduction: Prompt engineering is both art and science—small changes in wording can dramatically affect LLM output quality. Systematic prompt optimization goes beyond trial and error to find prompts that consistently perform well. This guide covers proven optimization techniques: few-shot learning with carefully selected examples, chain-of-thought prompting for complex reasoning, structured output formatting, prompt compression for […]

Read more →

LLM Cost Optimization: Model Routing, Token Reduction, and Budget Management (Part 2 of 2)

Introduction: LLM API costs can escalate quickly—a single GPT-4 call costs 100x more than GPT-4o-mini for the same tokens. Effective cost optimization requires a multi-pronged approach: intelligent model routing based on task complexity, aggressive caching for repeated queries, prompt optimization to reduce token usage, and batching to maximize throughput. This guide covers practical cost optimization […]

Read more →

Prompt Versioning and A/B Testing: Engineering Discipline for Prompt Management

Introduction: Prompts are code—they define your application’s behavior and should be managed with the same rigor as source code. Yet many teams treat prompts as ad-hoc strings scattered throughout their codebase, making it impossible to track changes, compare versions, or systematically improve performance. This guide covers practical prompt management: version control systems for prompts, A/B […]

Read more →