Inconsistent LLM outputs plague production AI applications.
The same prompt can return dramatically different formats, structures, and quality levels. Prompt templates solve
this by standardizing how you communicate with LLMs, ensuring consistent, predictable, and production-ready outputs
every time.
This guide covers battle-tested prompt template patterns
used in production systems processing millions of LLM requests. We’ll explore template design, variable injection,
validation, and real-world implementations.
Why Prompt Templates Matter
The Problem with Ad-Hoc Prompts
Without templates, teams face:
- Inconsistent outputs: Different engineers write different prompts for similar tasks
- Quality variance: No standardized quality checks or constraints
- Maintenance nightmare: Scattered prompts across codebase
- No version control: Can’t track what prompts produced what results
- Difficult testing: Hard to test prompts systematically
Template Benefits
- Consistency: Same structure every time
- Reusability: Write once, use everywhere
- Version control: Track changes to prompts
- Testability: Easy to unit test
- Collaboration: Team shares best practices
Pattern 1: Basic String Templates
Python with f-strings
# Simple but effective prompt templates
def create_summary_prompt(text: str, max_words: int = 100) -> str:
template = f"Summarize the following text in {max_words} words or less.\n"
template += "Focus on key points and maintain accuracy.\n\n"
template += f"Text:\n{text}\n\nSummary:"
return template
def create_classification_prompt(text: str, categories: list[str]) -> str:
categories_formatted = ", ".join(categories)
template = f"Classify the following text into one of these categories: {categories_formatted}\n\n"
template += f"Text: {text}\n\nCategory:"
return template
# Usage
text = "Long article about AI trends in 2025..."
prompt = create_summary_prompt(text, max_words=50)
response = llm.generate(prompt)
When to Use Basic Templates
- Simple, single-purpose prompts
- Low-complexity variable injection
- Rapid prototyping
- Small teams with simple needs
Pattern 2: LangChain PromptTemplate
Production-Grade Templates
from langchain.prompts import PromptTemplate, ChatPromptTemplate
from langchain.prompts.chat import SystemMessage, HumanMessage
# Simple text template
summary_template = PromptTemplate(
input_variables=["text", "max_words", "style"],
template="Create a {style} summary in {max_words} words.\n\nText: {text}\n\nSummary:"
)
# Chat template for conversational AI
chat_template = ChatPromptTemplate.from_messages([
SystemMessage(content="You are an expert {domain} assistant."),
HumanMessage(content="Context: {context}\n\nQuestion: {question}")
])
# Usage
prompt = summary_template.format(
text="Long article...",
max_words=100,
style="technical"
)
Advanced Features
- Variable validation: Ensures all variables are provided
- Partial formatting: Fill some variables now, others later
- Output parsers: Structured output validation
- Few-shot examples: Include examples in template
Pattern 3: Structured Output Templates
JSON-Formatted Responses
from langchain.prompts import PromptTemplate
from langchain.output_parsers import PydanticOutputParser
from pydantic import BaseModel, Field
# Define expected output structure
class ProductAnalysis(BaseModel):
sentiment: str = Field(description="Sentiment: positive, negative, or neutral")
key_features: list[str] = Field(description="List of key features")
pain_points: list[str] = Field(description="Customer pain points")
recommendation: str = Field(description="Purchase recommendation")
# Create parser
parser = PydanticOutputParser(pydantic_object=ProductAnalysis)
# Template with format instructions
analysis_template = PromptTemplate(
template="Analyze this product review.\n\nReview: {review}\n\n{format_instructions}",
input_variables=["review"],
partial_variables={"format_instructions": parser.get_format_instructions()}
)
# Usage
review = "Great laptop, but battery life could be better..."
prompt = analysis_template.format(review=review)
response = llm.generate(prompt)
# Parse structured output
try:
result = parser.parse(response)
print(f"Sentiment: {result.sentiment}")
print(f"Features: {result.key_features}")
except Exception as e:
print(f"Parsing failed: {e}")
Benefits of Structured Templates
- Type safety: Pydantic validates output structure
- API integration: Easy to integrate with downstream systems
- Error handling: Catch malformed responses early
- Documentation: Schema serves as documentation
Pattern 4: Few-Shot Templates
Learning from Examples
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
# Define examples
examples = [
{
"input": "Customer wants refund for damaged item",
"output": "Priority: High | Category: Refund | Action: Process immediately"
},
{
"input": "General inquiry about shipping times",
"output": "Priority: Low | Category: Info | Action: Standard response"
}
]
# Example template
example_template = PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}"
)
# Few-shot template
few_shot_template = FewShotPromptTemplate(
examples=examples,
example_prompt=example_template,
prefix="Classify customer support tickets into priority, category, and action.",
suffix="Input: {input}\nOutput:",
input_variables=["input"]
)
# Usage
new_ticket = "Charged twice for same order!"
prompt = few_shot_template.format(input=new_ticket)
response = llm.generate(prompt)
When to Use Few-Shot Templates
- Complex classification tasks
- Domain-specific formatting
- Specialized reasoning patterns
- Improving output quality
Best Practices
1. Version Control Your Templates
# templates/v1/summary.py
SUMMARY_TEMPLATE_V1 = "Summarize in {max_words} words: {text}"
# templates/v2/summary.py
SUMMARY_TEMPLATE_V2 = "Create a {style} summary of {max_words} words.\n\nText: {text}"
# Track which version produced which results
class TemplateVersion:
def __init__(self, version: str, template: str):
self.version = version
self.template = template
self.created_at = datetime.now()
def generate(self, **kwargs):
result = llm.generate(self.template.format(**kwargs))
# Log version used
log_usage(version=self.version, result=result)
return result
2. Add Input Validation
from pydantic import BaseModel, validator
class SummaryInput(BaseModel):
text: str
max_words: int = 100
style: str = "technical"
@validator('text')
def text_not_empty(cls, v):
if not v or len(v.strip()) < 10:
raise ValueError('Text must be at least 10 characters')
return v
@validator('max_words')
def valid_word_count(cls, v):
if v < 10 or v > 500:
raise ValueError('max_words must be between 10 and 500')
return v
# Usage with validation
try:
inputs = SummaryInput(text="Short text...", max_words=50)
prompt = create_summary_prompt(**inputs.dict())
except ValueError as e:
print(f"Validation error: {e}")
3. Implement Template Testing
import pytest
def test_summary_template():
template = create_summary_prompt(
text="AI is transforming industries",
max_words=20
)
assert "Summarize" in template
assert "20 words" in template
assert "AI is transforming industries" in template
def test_template_with_mock_llm(mocker):
mocker.patch('llm.generate', return_value="Mocked summary")
result = generate_with_template(text="Test text", max_words=50)
assert result == "Mocked summary"
llm.generate.assert_called_once()
Real-World Example: Customer Support
class CustomerSupportTemplates:
@staticmethod
def ticket_classification(ticket: str) -> str:
return f"Classify this support ticket.\n\nTicket: {ticket}\n\nProvide JSON:\n{{\n \"priority\": \"low|medium|high\",\n \"category\": \"billing|technical|account\",\n \"requires_human\": boolean\n}}"
@staticmethod
def response_draft(ticket: str, context: str) -> str:
return f"Draft professional response.\n\nTicket: {ticket}\n\nContext: {context}\n\nResponse:"
# Usage in production
def process_ticket(ticket_text: str):
# Step 1: Classify
classification_prompt = CustomerSupportTemplates.ticket_classification(ticket_text)
classification = llm.generate(classification_prompt)
classification_data = json.loads(classification)
# Step 2: Route based on classification
if classification_data['requires_human']:
escalate_to_human(ticket_text)
else:
response_prompt = CustomerSupportTemplates.response_draft(
ticket=ticket_text,
context=get_customer_context()
)
response = llm.generate(response_prompt)
send_response(response)
Common Pitfalls
- Over-engineering: Don’t create templates for one-off prompts
- Rigid templates: Allow flexibility where needed
- Poor naming: Use descriptive template names
- No validation: Always validate inputs and outputs
- Ignoring costs: Template complexity impacts token usage
Key Takeaways
- Start with simple templates, add complexity as needed
- Use LangChain for production systems
- Implement structured outputs for reliability
- Version control your templates
- Add validation and testing
- Few-shot templates improve quality significantly
Prompt templates transform LLM applications from unpredictable experiments into reliable production systems. By
standardizing prompts, you gain consistency, testability, and maintainability—essential for any production AI
application.
Discover more from C4: Container, Code, Cloud & Context
Subscribe to get the latest posts sent to your email.