LLM Application Monitoring: Metrics, Tracing, and Alerting for Production AI Systems

Introduction: LLM applications fail in ways traditional software doesn’t. A model might return syntactically correct but factually wrong responses. Latency can spike unpredictably. Costs can explode without warning. Token usage varies wildly based on input. Traditional APM tools miss these LLM-specific failure modes. This guide covers comprehensive monitoring for LLM applications: tracking latency, tokens, and […]

Read more →

LLM Model Selection: Choosing the Right Model for Every Task

Introduction: Choosing the right LLM for your task is one of the most impactful decisions you’ll make. Use a model that’s too small and you’ll get poor quality. Use one that’s too large and you’ll burn through budget while waiting for slow responses. The landscape changes constantly—new models launch monthly, pricing shifts, and capabilities evolve. […]

Read more →

Error Handling in LLM Applications: Retry, Fallback, and Circuit Breakers

Introduction: LLM APIs fail in ways traditional APIs don’t—rate limits, content filters, malformed outputs, timeouts on long generations, and model-specific quirks. Building resilient LLM applications requires comprehensive error handling: retry logic with exponential backoff, fallback strategies when primary models fail, circuit breakers to prevent cascade failures, and graceful degradation for user-facing applications. This guide covers […]

Read more →

Structured Generation Techniques: Getting Reliable JSON from LLMs

Introduction: Getting LLMs to output valid JSON, XML, or other structured formats is surprisingly difficult. Models hallucinate extra fields, forget closing brackets, and produce malformed output that breaks downstream systems. Prompt engineering helps but doesn’t guarantee valid output. This guide covers techniques for reliable structured generation: using native JSON mode and structured outputs, constrained decoding […]

Read more →

DevSecOps: Integrating Security into DevOps – Part 5

Continuing from my previous blog, let’s explore some more advanced topics related to DevSecOps implementation. Identity and Access Management Identity and Access Management (IAM) is a critical aspect of DevSecOps. It involves managing user identities and controlling their access to resources based on their roles and responsibilities. IAM includes the following activities: Infrastructure as Code […]

Read more →

Security as Code: Why DevSecOps Is No Longer Optional in 2025

The traditional approach to security—treating it as a final checkpoint before deployment—has become a liability in modern software delivery. After two decades of building enterprise systems, I’ve witnessed the painful evolution from “security as an afterthought” to “security as code.” In 2025, DevSecOps isn’t just a best practice; it’s a survival requirement for any organization […]

Read more →