Prompt Debugging Techniques: Systematic Approaches to Fixing LLM Failures

Introduction: Prompt debugging is an essential skill for building reliable LLM applications. When prompts fail—producing incorrect outputs, hallucinations, or inconsistent results—systematic debugging techniques help identify and fix the root cause. Unlike traditional software debugging where you can step through code, prompt debugging requires understanding how language models interpret instructions and where they commonly fail. This […]

Read more →

Prompt Templates and Management: Building Maintainable LLM Applications

Introduction: As LLM applications grow in complexity, managing prompts becomes a significant engineering challenge. Hard-coded prompts scattered across your codebase make iteration difficult, A/B testing impossible, and debugging a nightmare. Prompt template management solves this by treating prompts as first-class configuration—versioned, validated, and dynamically rendered. A good template system separates prompt logic from application code, […]

Read more →

Knowledge Graph Integration: Structured Reasoning for LLM Applications

Introduction: Vector search finds semantically similar content, but it misses the structured relationships that make knowledge truly useful. Knowledge graphs capture entities and their relationships explicitly—who works where, what depends on what, how concepts connect. Combining knowledge graphs with LLMs creates systems that can reason over structured relationships while generating natural language responses. This guide […]

Read more →

Diving Deeper into Docker: Exploring Dockerfiles, Commands, and OCI Specifications

Docker is a popular platform for developing, packaging, and deploying applications. In the previous blog, we provided an introduction to Docker and containers, including their benefits and architecture. In this article, we’ll dive deeper into Docker, exploring Dockerfiles, Docker commands, and OCI specifications. Dockerfiles Dockerfiles are text files that contain instructions for building Docker images. […]

Read more →

Fine-Tuning LLMs: From Data Preparation to Production Deployment

Introduction: Fine-tuning transforms a general-purpose LLM into a specialized model tailored to your domain, style, or task. While prompt engineering can get you far, fine-tuning offers consistent behavior, reduced token usage, and capabilities that prompting alone cannot achieve. This guide covers the complete fine-tuning workflow—from data preparation to deployment—using both cloud APIs (OpenAI, Together AI) […]

Read more →

Inference Optimization Patterns: Maximizing LLM Throughput and Efficiency

Introduction: LLM inference is expensive—both in compute and latency. Every token generated requires a forward pass through billions of parameters, and users expect responses in seconds, not minutes. Inference optimization techniques reduce costs and improve responsiveness without sacrificing output quality. This guide covers practical optimization strategies: batching requests to maximize GPU utilization, managing KV caches […]

Read more →