Fine-Tuning vs RAG: A Comprehensive Decision Framework

Last year, I faced a critical decision: fine-tune our LLM or implement RAG? We chose fine-tuning. It was expensive, time-consuming, and didn’t solve our core problem. After building 20+ LLM applications, I’ve learned when to use each approach. Here’s the comprehensive decision framework that will save you months of work. Figure 1: Fine-Tuning vs RAG […]

Read more →

Vector Database Comparison: Pinecone vs Weaviate vs Qdrant vs Chroma – Choosing the Right One for Your RAG Application

Last March, a 3AM alert changed everything. Our Pinecone bill had tripled overnight, and I spent the next three months migrating between vector databases, learning hard lessons about what actually matters. Let me share what I discovered—and what I wish someone had told me. Figure 1: Comprehensive comparison of vector database options The Night Everything […]

Read more →

Semantic Caching for LLM Applications: Cut Costs and Latency by 50%

Introduction: LLM API calls are expensive and slow. A single GPT-4 request can cost cents and take seconds—multiply that by thousands of users asking similar questions, and costs spiral quickly. Semantic caching solves this by recognizing that “What’s the weather in NYC?” and “Tell me NYC weather” are essentially the same query. Instead of exact […]

Read more →

Embedding Search and Similarity: Building Semantic Search Systems

Introduction: Semantic search using embeddings has transformed how we find information. Unlike keyword search, embeddings capture meaning—finding documents about “machine learning” when you search for “AI training.” This guide covers building production embedding search systems: choosing embedding models, computing and storing vectors efficiently, implementing similarity search with various distance metrics, and optimizing for speed and […]

Read more →

LLM Caching Strategies: From Exact Match to Semantic Similarity

Introduction: LLM API calls are expensive and slow. Caching is your first line of defense against runaway costs and latency. But caching LLM responses isn’t straightforward—the same question phrased differently should return the same cached answer. This guide covers caching strategies for LLM applications: exact match caching for deterministic queries, semantic caching using embeddings for […]

Read more →