Mastering AWS, EKS, Python, Kubernetes, and Terraform for Monitoring and Observability for SRE: Unveiling the Secrets of Cloud Infrastructure Optimization

As the world of software development continues to evolve, the need for robust infrastructures and efficient monitoring systems cannot be overemphasized. Whether you are an engineer, a site reliability engineer (SRE), or an IT manager, the need to harness the power of tools like Amazon Web Services (AWS), Elastic Kubernetes Service (EKS), Kubernetes, Terraform, and […]

Read more →

Introduction to Site Reliability Engineering (SRE) in Azure: Achieving Higher Reliability with AKS and Essential Tools

In the fast-paced world of technology, ensuring the reliability of services is paramount for businesses to thrive. Site Reliability Engineering (SRE) has emerged as a discipline that combines software engineering and systems administration to create scalable and highly reliable software systems. In the Azure cloud environment, Azure Kubernetes Service (AKS) plays a pivotal role in […]

Read more →

LLM Evaluation: Metrics, Benchmarks, and A/B Testing

Introduction: Evaluating LLM outputs is challenging because there’s often no single “correct” answer. Traditional metrics like BLEU and ROUGE fall short for open-ended generation. This guide covers modern evaluation approaches: automated metrics for specific tasks, LLM-as-judge for quality assessment, human evaluation frameworks, A/B testing in production, and building comprehensive evaluation pipelines. These techniques help you […]

Read more →

LLM Observability: Cost Tracking and Quality Monitoring (Part 2 of 2)

Introduction: You can’t improve what you can’t measure. LLM applications are notoriously difficult to debug—prompts are opaque, responses are non-deterministic, and failures often manifest as subtle quality degradation rather than crashes. Observability gives you visibility into every LLM call: what prompts were sent, what responses came back, how long it took, how much it cost, […]

Read more →

LLM Application Logging and Tracing: Building Observable AI Systems

Introduction: Production LLM applications require comprehensive logging and tracing to debug issues, monitor performance, and understand user interactions. Unlike traditional applications, LLM systems have unique logging needs: capturing prompts and responses, tracking token usage, measuring latency across chains, and correlating requests through multi-step workflows. This guide covers practical logging patterns: structured request/response logging, distributed tracing […]

Read more →