Introduction: Retrieval Augmented Fine-Tuning (RAFT) represents a powerful approach to improving LLM performance on domain-specific tasks by combining the benefits of fine-tuning with retrieval-augmented generation. Traditional RAG systems retrieve relevant documents at inference time and include them in the prompt, but the base model wasn’t trained to effectively use retrieved context. RAFT addresses this by […]
Read more →Tag: Fine-tuning
Embedding Fine-Tuning: Training Custom Embeddings for Domain-Specific Retrieval
Introduction: Off-the-shelf embedding models work well for general text, but domain-specific applications often need better performance. Fine-tuning embeddings on your data can dramatically improve retrieval quality—turning a 70% recall into 90%+ for your specific use case. The key is creating high-quality training data that teaches the model what “similar” means in your domain. This guide […]
Read more →Fine-Tuning LLMs: From Data Preparation to Production Deployment
Introduction: Fine-tuning transforms a general-purpose LLM into a specialized model tailored to your domain, style, or task. While prompt engineering can get you far, fine-tuning offers consistent behavior, reduced token usage, and capabilities that prompting alone cannot achieve. This guide covers the complete fine-tuning workflow—from data preparation to deployment—using both cloud APIs (OpenAI, Together AI) […]
Read more →Advanced LoRA Techniques: Multi-LoRA, LoRA+, and Beyond
Last year, I fine-tuned a 7B parameter model with standard LoRA. It worked, but accuracy was 5% lower than full fine-tuning. After experimenting with Multi-LoRA, LoRA+, and advanced techniques, I’ve achieved 98% of full fine-tuning performance with 1% of the parameters. Here’s everything you need to know about advanced LoRA techniques. Figure 1: LoRA Techniques […]
Read more →LLM Fine-Tuning Techniques: From LoRA to Full Parameter Training
Introduction: Fine-tuning transforms general-purpose LLMs into specialized models that excel at your specific tasks. While prompting can get you far, fine-tuning unlocks capabilities that prompting alone cannot achieve: consistent output formats, domain-specific knowledge, reduced latency from shorter prompts, and behavior that would require extensive few-shot examples. This guide covers the practical aspects of LLM fine-tuning: […]
Read more →Fine-Tuning vs RAG: A Comprehensive Decision Framework
Last year, I faced a critical decision: fine-tune our LLM or implement RAG? We chose fine-tuning. It was expensive, time-consuming, and didn’t solve our core problem. After building 20+ LLM applications, I’ve learned when to use each approach. Here’s the comprehensive decision framework that will save you months of work. Figure 1: Fine-Tuning vs RAG […]
Read more →