Harnessing AWS CDK for Python: Streamlining Infrastructure as Code

After two decades of managing cloud infrastructure across enterprises of all sizes, I’ve witnessed the evolution of Infrastructure as Code from simple shell scripts to sophisticated declarative frameworks. AWS Cloud Development Kit (CDK) represents a paradigm shift that fundamentally changes how we think about infrastructure provisioning. Rather than wrestling with YAML or JSON templates, CDK […]

Read more →

Streaming LLM Responses: SSE, WebSockets, and Real-Time Token Delivery (Part 1 of 2)

Introduction: Streaming responses dramatically improve perceived latency in LLM applications. Instead of waiting seconds for a complete response, users see tokens appear in real-time, creating a more engaging experience. Implementing streaming correctly requires understanding Server-Sent Events (SSE), handling partial tokens, managing connection lifecycle, and gracefully handling errors mid-stream. This guide covers practical streaming patterns: basic […]

Read more →

AWS Bedrock: Building Enterprise AI Applications with Multi-Model Foundation Models

Introduction: Amazon Bedrock is AWS’s fully managed service for building generative AI applications with foundation models. Launched at AWS re:Invent 2023, Bedrock provides a unified API to access models from Anthropic, Meta, Mistral, Cohere, and Amazon’s own Titan family. What sets Bedrock apart is its deep integration with the AWS ecosystem, including built-in RAG with […]

Read more →

Conversation History Management: Building Memory for Multi-Turn AI Applications

Introduction: Chatbots and conversational AI need memory. Without conversation history, every message exists in isolation—the model can’t reference what was said before, follow up on previous topics, or maintain coherent multi-turn dialogues. But history management is tricky: context windows are limited, old messages may be irrelevant, and naive approaches quickly hit token limits. This guide […]

Read more →

Conversation Design Patterns: Building Natural Chatbot Experiences

Introduction: Effective conversational AI requires more than just calling an LLM—it needs thoughtful conversation design. This includes managing multi-turn context, handling user intent, graceful error recovery, and maintaining consistent personality. This guide covers essential conversation patterns: intent classification and routing, slot filling for structured data collection, conversation state machines, context window management, and building chatbots […]

Read more →

Embedding Search and Similarity: Building Semantic Search Systems

Introduction: Semantic search using embeddings has transformed how we find information. Unlike keyword search, embeddings capture meaning—finding documents about “machine learning” when you search for “AI training.” This guide covers building production embedding search systems: choosing embedding models, computing and storing vectors efficiently, implementing similarity search with various distance metrics, and optimizing for speed and […]

Read more →