
HTML5 (including next generation additions still
in development)
Draft Standard — 7 April 2010

You can take part in this work. Join the working group's discussion list.
Web designers! We have a FAQ, a forum, and a help mailing list for you!

Multiple-page version:
http://whatwg.org/html5

One-page version:
http://www.whatwg.org/specs/web-apps/current-work/

PDF print versions:
A4: http://www.whatwg.org/specs/web-apps/current-work/html5-a4.pdf
Letter: http://www.whatwg.org/specs/web-apps/current-work/html5-letter.pdf

Version history:
Twitter messages (non-editorial changes only): http://twitter.com/WHATWG
Commit-Watchers mailing list: http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org
Interactive Web interface: http://html5.org/tools/web-apps-tracker
Subversion interface: http://svn.whatwg.org/

Issues:
To send feedback: whatwg@whatwg.org
To view and vote on feedback: http://www.whatwg.org/issues/

Editor:
Ian Hickson, Google, ian@hixie.ch

© Copyright 2004-2010 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA.
You are granted a license to use, reproduce and create derivative works of this document.

Abstract

This specification evolves HTML and its related APIs to ease the authoring of Web-based applications. The most recent
additions include a devicep401 element to enable video conferencing, as well as all the features added as part of the
earlier HTML5 effort.

1

www.princexml.com
Prince - Personal Edition
This document was created with Prince, a great way of getting web content onto paper.

http://www.whatwg.org/
http://www.whatwg.org/mailing-list
http://blog.whatwg.org/faq/
http://forums.whatwg.org/
http://www.whatwg.org/mailing-list#help
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/html5-a4.pdf
http://www.whatwg.org/specs/web-apps/current-work/html5-letter.pdf
http://twitter.com/WHATWG
http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org
http://html5.org/tools/web-apps-tracker
http://svn.whatwg.org/
http://www.whatwg.org/mailing-list
http://www.whatwg.org/issues/

Status of this document

This is a work in progress! This document is changing on a daily if not hourly basis in response to comments and as
a general part of its development process. Comments are very welcome, please send them to whatwg@whatwg.org.
Thank you.

Outstanding feedback is tracked; all e-mails sent to the list above receive a reply. The level of outstanding feedback is
charted to allow progress to be evaluated.

Implementors should be aware that this specification is not stable. Implementors who are not taking part in the
discussions are likely to find the specification changing out from under them in incompatible ways.
Vendors interested in implementing this specification before it eventually reaches the call for implementations should
join the WHATWG mailing list and take part in the discussions.

This specification is intended to replace (be the new version of) what was previously the HTML5, HTML4, XHTML1, and
DOM2 HTML specifications.

2

mailto:whatwg@whatwg.org
http://www.whatwg.org/issues/
http://www.whatwg.org/issues/data.html
http://www.whatwg.org/mailing-list

Table of contents

1 Introduction .. 16
1.1 Is this HTML5?.. 16
1.2 Background.. 16
1.3 Audience.. 16
1.4 Scope... 17
1.5 History ... 17
1.6 Design notes.. 18

1.6.1 Serializability of script execution ..18
1.6.2 Compliance with other specifications..18

1.7 HTML vs XHTML ... 19
1.8 Structure of this specification .. 19

1.8.1 How to read this specification...20
1.8.2 Typographic conventions .. 20

1.9 A quick introduction to HTML... 20
1.10 Conformance requirements for authors...22

1.10.1 Presentational markup .. 23
1.10.2 Syntax errors .. 23
1.10.3 Restrictions on content models and on attribute values25

1.11 Recommended reading.. 27

2 Common infrastructure .. 28
2.1 Terminology ... 28

2.1.1 Resources ... 28
2.1.2 XML... 28
2.1.3 DOM trees ... 29
2.1.4 Scripting.. 29
2.1.5 Plugins .. 29
2.1.6 Character encodings ... 30

2.2 Conformance requirements ... 30
2.2.1 Dependencies ... 33
2.2.2 Extensibility .. 34

2.3 Case-sensitivity and string comparison ... 35
2.4 Common microsyntaxes .. 36

2.4.1 Common parser idioms... 36
2.4.2 Boolean attributes .. 37
2.4.3 Keywords and enumerated attributes ...37
2.4.4 Numbers ... 37

2.4.4.1 Non-negative integers..37
2.4.4.2 Signed integers .. 38
2.4.4.3 Real numbers ... 38
2.4.4.4 Percentages and lengths ..40
2.4.4.5 Lists of integers.. 41
2.4.4.6 Lists of dimensions...42

2.4.5 Dates and times.. 43
2.4.5.1 Months ... 43
2.4.5.2 Dates.. 44
2.4.5.3 Times ... 45
2.4.5.4 Local dates and times ..46
2.4.5.5 Global dates and times ..46
2.4.5.6 Weeks... 48
2.4.5.7 Vaguer moments in time ..49

2.4.6 Colors.. 50
2.4.7 Space-separated tokens.. 52
2.4.8 Comma-separated tokens ... 53
2.4.9 References .. 54
2.4.10 Media queries ... 54

2.5 URLs .. 54
2.5.1 Terminology .. 54
2.5.2 Dynamic changes to base URLs ..56
2.5.3 Interfaces for URL manipulation..56

2.6 Fetching resources... 58
2.6.1 Protocol concepts.. 60

3

2.6.2 Encrypted HTTP and related security concerns...60
2.6.3 Determining the type of a resource ..61

2.7 Common DOM interfaces... 61
2.7.1 Reflecting content attributes in IDL attributes ..61
2.7.2 Collections .. 63

2.7.2.1 HTMLCollection... 63
2.7.2.2 HTMLAllCollection...64
2.7.2.3 HTMLFormControlsCollection..65
2.7.2.4 HTMLOptionsCollection ..66
2.7.2.5 HTMLPropertiesCollection...68

2.7.3 DOMTokenList.. 69
2.7.4 DOMSettableTokenList .. 71
2.7.5 Safe passing of structured data ..71
2.7.6 DOMStringMap.. 72
2.7.7 DOM feature strings .. 73
2.7.8 Exceptions .. 74
2.7.9 Garbage collection .. 74

2.8 Namespaces .. 74

3 Semantics, structure, and APIs of HTML documents... 75
3.1 Documents .. 75

3.1.1 Documents in the DOM... 75
3.1.2 Security... 77
3.1.3 Resource metadata management...77
3.1.4 DOM tree accessors .. 80
3.1.5 Creating documents.. 83

3.2 Elements.. 84
3.2.1 Semantics ... 84
3.2.2 Elements in the DOM .. 85
3.2.3 Global attributes ... 87

3.2.3.1 The id attribute ...89
3.2.3.2 The title attribute..89
3.2.3.3 The lang and xml:lang attributes ...89
3.2.3.4 The xml:base attribute (XML only) ..90
3.2.3.5 The dir attribute..90
3.2.3.6 The class attribute..91
3.2.3.7 The style attribute..91
3.2.3.8 Embedding custom non-visible data ..92

3.2.4 Element definitions ... 94
3.2.5 Content models... 94

3.2.5.1 Kinds of content ...95
3.2.5.1.1 Metadata content ..95
3.2.5.1.2 Flow content..96
3.2.5.1.3 Sectioning content...96
3.2.5.1.4 Heading content ..96
3.2.5.1.5 Phrasing content ...96
3.2.5.1.6 Embedded content ..97
3.2.5.1.7 Interactive content ..97

3.2.5.2 Transparent content models...98
3.2.5.3 Paragraphs ... 98

3.2.6 Annotations for assistive technology products (ARIA)...100
3.3 APIs in HTML documents.. 103
3.4 Interactions with XPath and XSLT... 104
3.5 Dynamic markup insertion... 105

3.5.1 Opening the input stream ... 105
3.5.2 Closing the input stream... 106
3.5.3 document.write() ... 107
3.5.4 document.writeln() ... 108
3.5.5 innerHTML... 108
3.5.6 outerHTML... 109
3.5.7 insertAdjacentHTML().. 109

4 The elements of HTML.. 112
4.1 The root element ... 112

4.1.1 The html element ... 112

4

4.2 Document metadata.. 112
4.2.1 The head element ... 112
4.2.2 The title element ... 113
4.2.3 The base element ... 114
4.2.4 The link element ... 115
4.2.5 The meta element ... 119

4.2.5.1 Standard metadata names...120
4.2.5.2 Other metadata names ..121
4.2.5.3 Pragma directives ..122
4.2.5.4 Other pragma directives ..125
4.2.5.5 Specifying the document's character encoding125

4.2.6 The style element ... 126
4.2.7 Styling... 128

4.3 Scripting .. 129
4.3.1 The script element ... 129

4.3.1.1 Scripting languages..134
4.3.1.2 Restrictions for contents of script elements135
4.3.1.3 Inline documentation for external scripts...136

4.3.2 The noscript element.. 136
4.4 Sections ... 138

4.4.1 The body element ... 138
4.4.2 The section element ... 140
4.4.3 The nav element ... 142
4.4.4 The article element ... 144
4.4.5 The aside element ... 145
4.4.6 The h1, h2, h3, h4, h5, and h6 elements ...147
4.4.7 The hgroup element ... 148
4.4.8 The header element ... 148
4.4.9 The footer element ... 150
4.4.10 The address element ... 151
4.4.11 Headings and sections .. 152

4.4.11.1 Creating an outline...153
4.5 Grouping content... 157

4.5.1 The p element... 157
4.5.2 The hr element ... 158
4.5.3 The pre element ... 158
4.5.4 The blockquote element.. 159
4.5.5 The ol element ... 161
4.5.6 The ul element ... 162
4.5.7 The li element ... 163
4.5.8 The dl element ... 164
4.5.9 The dt element ... 166
4.5.10 The dd element ... 166
4.5.11 The figure element ... 167
4.5.12 The figcaption element..168
4.5.13 The div element ... 168

4.6 Text-level semantics .. 169
4.6.1 The a element... 169
4.6.2 The em element ... 171
4.6.3 The strong element ... 172
4.6.4 The small element ... 173
4.6.5 The cite element ... 174
4.6.6 The q element... 175
4.6.7 The dfn element ... 176
4.6.8 The abbr element ... 177
4.6.9 The time element ... 178
4.6.10 The code element ... 181
4.6.11 The var element ... 182
4.6.12 The samp element ... 182
4.6.13 The kbd element ... 183
4.6.14 The sub and sup elements..184
4.6.15 The i element... 184
4.6.16 The b element... 185
4.6.17 The mark element ... 186
4.6.18 The ruby element ... 188

5

4.6.19 The rt element ... 189
4.6.20 The rp element ... 189
4.6.21 The bdo element ... 190
4.6.22 The span element ... 191
4.6.23 The br element ... 191
4.6.24 The wbr element ... 192
4.6.25 Usage summary.. 192

4.7 Edits... 193
4.7.1 The ins element ... 193
4.7.2 The del element ... 194
4.7.3 Attributes common to ins and del elements ...195
4.7.4 Edits and paragraphs .. 195
4.7.5 Edits and lists.. 196

4.8 Embedded content .. 196
4.8.1 The img element ... 196

4.8.1.1 Requirements for providing text to act as an alternative for images .202
4.8.1.1.1 A link or button containing nothing but the image202
4.8.1.1.2 A phrase or paragraph with an alternative graphical
representation: charts, diagrams, graphs, maps, illustrations........202
4.8.1.1.3 A short phrase or label with an alternative graphical
representation: icons, logos ...203
4.8.1.1.4 Text that has been rendered to a graphic for typographical
effect .. 204
4.8.1.1.5 A graphical representation of some of the surrounding
text ... 205
4.8.1.1.6 A purely decorative image that doesn't add any
information ... 206
4.8.1.1.7 A group of images that form a single larger picture with no
links .. 206
4.8.1.1.8 A group of images that form a single larger picture with
links .. 206
4.8.1.1.9 A key part of the content...207
4.8.1.1.10 An image not intended for the user...............................209
4.8.1.1.11 An image in an e-mail or private document intended for a
specific person who is known to be able to view images209
4.8.1.1.12 General guidelines...210
4.8.1.1.13 Guidance for markup generators...................................210
4.8.1.1.14 Guidance for conformance checkers210

4.8.2 The iframe element ... 211
4.8.3 The embed element ... 217
4.8.4 The object element ... 220
4.8.5 The param element ... 224
4.8.6 The video element ... 225
4.8.7 The audio element ... 228
4.8.8 The source element ... 229
4.8.9 Media elements... 231

4.8.9.1 Error codes ... 232
4.8.9.2 Location of the media resource ..232
4.8.9.3 MIME types... 233
4.8.9.4 Network states ...234
4.8.9.5 Loading the media resource...234
4.8.9.6 Offsets into the media resource ...241
4.8.9.7 The ready states ..242
4.8.9.8 Playing the media resource..244
4.8.9.9 Seeking .. 247
4.8.9.10 User interface...248
4.8.9.11 Time ranges ... 249
4.8.9.12 Event summary ..249
4.8.9.13 Security and privacy considerations ..251

4.8.10 The canvas element ... 251
4.8.10.1 The 2D context...254

4.8.10.1.1 The canvas state ...256
4.8.10.1.2 Transformations...257
4.8.10.1.3 Compositing ..257
4.8.10.1.4 Colors and styles ...259

6

4.8.10.1.5 Line styles ...261
4.8.10.1.6 Shadows ..263
4.8.10.1.7 Simple shapes (rectangles) ...264
4.8.10.1.8 Complex shapes (paths) ..264
4.8.10.1.9 Focus management ...267
4.8.10.1.10 Text..269
4.8.10.1.11 Images...272
4.8.10.1.12 Pixel manipulation ...274
4.8.10.1.13 Drawing model ..277
4.8.10.1.14 Examples...278

4.8.10.2 Color spaces and color correction ..278
4.8.10.3 Security with canvas elements ..279

4.8.11 The map element ... 279
4.8.12 The area element ... 280
4.8.13 Image maps .. 282

4.8.13.1 Authoring ... 282
4.8.13.2 Processing model ...283

4.8.14 MathML ... 285
4.8.15 SVG... 285
4.8.16 Dimension attributes .. 286

4.9 Tabular data... 286
4.9.1 The table element ... 286
4.9.2 The caption element ... 292
4.9.3 The colgroup element.. 293
4.9.4 The col element ... 294
4.9.5 The tbody element ... 294
4.9.6 The thead element ... 295
4.9.7 The tfoot element ... 296
4.9.8 The tr element ... 296
4.9.9 The td element ... 298
4.9.10 The th element ... 298
4.9.11 Attributes common to td and th elements ...300
4.9.12 Processing model .. 301

4.9.12.1 Forming a table ..301
4.9.12.2 Forming relationships between data cells and header cells305

4.9.13 Examples .. 306
4.10 Forms... 309

4.10.1 Introduction... 309
4.10.1.1 Writing a form's user interface ...309
4.10.1.2 Implementing the server-side processing for a form........................311
4.10.1.3 Configuring a form to communicate with a server311
4.10.1.4 Client-side form validation ...312

4.10.2 Categories... 313
4.10.3 The form element ... 314
4.10.4 The fieldset element.. 317
4.10.5 The legend element ... 318
4.10.6 The label element ... 319
4.10.7 The input element ... 320

4.10.7.1 States of the type attribute ...324
4.10.7.1.1 Hidden state ..324
4.10.7.1.2 Text state and Search state ...325
4.10.7.1.3 Telephone state ...325
4.10.7.1.4 URL state...326
4.10.7.1.5 E-mail state ...327
4.10.7.1.6 Password state ..327
4.10.7.1.7 Date and Time state ..328
4.10.7.1.8 Date state..329
4.10.7.1.9 Month state ...330
4.10.7.1.10 Week state...330
4.10.7.1.11 Time state ...331
4.10.7.1.12 Local Date and Time state...332
4.10.7.1.13 Number state ..333
4.10.7.1.14 Range state ...334
4.10.7.1.15 Color state ...336
4.10.7.1.16 Checkbox state..336

7

4.10.7.1.17 Radio Button state...337
4.10.7.1.18 File Upload state..338
4.10.7.1.19 Submit Button state ..339
4.10.7.1.20 Image Button state..339
4.10.7.1.21 Reset Button state...341
4.10.7.1.22 Button state...341

4.10.7.2 Common input element attributes..342
4.10.7.2.1 The autocomplete attribute..342
4.10.7.2.2 The list attribute ...342
4.10.7.2.3 The readonly attribute ...344
4.10.7.2.4 The size attribute ...344
4.10.7.2.5 The required attribute ...344
4.10.7.2.6 The multiple attribute ...345
4.10.7.2.7 The maxlength attribute ...346
4.10.7.2.8 The pattern attribute ...346
4.10.7.2.9 The min and max attributes..346
4.10.7.2.10 The step attribute ...347
4.10.7.2.11 The placeholder attribute..348

4.10.7.3 Common input element APIs...348
4.10.7.4 Common event behaviors ..350

4.10.8 The button element ... 351
4.10.9 The select element ... 353
4.10.10 The datalist element.. 356
4.10.11 The optgroup element.. 357
4.10.12 The option element ... 358
4.10.13 The textarea element.. 360
4.10.14 The keygen element ... 363
4.10.15 The output element ... 366
4.10.16 The progress element.. 367
4.10.17 The meter element ... 369
4.10.18 Association of controls and forms ...373
4.10.19 Attributes common to form controls ...374

4.10.19.1 Naming form controls...374
4.10.19.2 Enabling and disabling form controls ...374
4.10.19.3 A form control's value ..374
4.10.19.4 Autofocusing a form control ...374
4.10.19.5 Limiting user input length ..375
4.10.19.6 Form submission ..375

4.10.20 Constraints.. 376
4.10.20.1 Definitions .. 376
4.10.20.2 Constraint validation ..377
4.10.20.3 The constraint validation API..378
4.10.20.4 Security .. 380

4.10.21 Form submission ... 380
4.10.21.1 Introduction..380
4.10.21.2 Implicit submission...381
4.10.21.3 Form submission algorithm ..381
4.10.21.4 URL-encoded form data..385
4.10.21.5 Multipart form data ..386
4.10.21.6 Plain text form data..386

4.10.22 Resetting a form ... 387
4.10.23 Event dispatch .. 387

4.11 Interactive elements.. 387
4.11.1 The details element ... 387
4.11.2 The summary element ... 390
4.11.3 The command element ... 391
4.11.4 The menu element ... 393

4.11.4.1 Introduction.. 393
4.11.4.2 Building menus and toolbars..394
4.11.4.3 Context menus...395
4.11.4.4 Toolbars.. 396

4.11.5 Commands.. 396
4.11.5.1 Using the a element to define a command398
4.11.5.2 Using the button element to define a command.............................398
4.11.5.3 Using the input element to define a command...............................398

8

4.11.5.4 Using the option element to define a command.............................399
4.11.5.5 Using the command element to define a command399
4.11.5.6 Using the accesskey attribute on a label element to define a
command ... 400
4.11.5.7 Using the accesskey attribute on a legend element to define a
command ... 400
4.11.5.8 Using the accesskey attribute to define a command on other
elements .. 401

4.11.6 The device element ... 401
4.11.6.1 Stream API ... 402
4.11.6.2 Peer-to-peer connections ...402

4.12 Links .. 404
4.12.1 Hyperlink elements ... 404
4.12.2 Following hyperlinks.. 405

4.12.2.1 Hyperlink auditing ..405
4.12.3 Link types ... 406

4.12.3.1 Link type "alternate" ...407
4.12.3.2 Link type "archives" ...408
4.12.3.3 Link type "author" ...408
4.12.3.4 Link type "bookmark" ...409
4.12.3.5 Link type "external" ...409
4.12.3.6 Link type "help" ...409
4.12.3.7 Link type "icon" ...409
4.12.3.8 Link type "license" ...410
4.12.3.9 Link type "nofollow" ...411
4.12.3.10 Link type "noreferrer"..411
4.12.3.11 Link type "pingback" ...411
4.12.3.12 Link type "prefetch" ...412
4.12.3.13 Link type "search" ...412
4.12.3.14 Link type "stylesheet"..412
4.12.3.15 Link type "sidebar" ...412
4.12.3.16 Link type "tag"...412
4.12.3.17 Hierarchical link types..412

4.12.3.17.1 Link type "index" ..413
4.12.3.17.2 Link type "up" ..413

4.12.3.18 Sequential link types..413
4.12.3.18.1 Link type "first" ..414
4.12.3.18.2 Link type "last" ..414
4.12.3.18.3 Link type "next" ..414
4.12.3.18.4 Link type "prev" ..414

4.12.3.19 Other link types..414
4.13 Common idioms without dedicated elements..415

4.13.1 Tag clouds ... 415
4.13.2 Conversations ... 416
4.13.3 Footnotes .. 417

4.14 Matching HTML elements using selectors..418
4.14.1 Case-sensitivity... 418
4.14.2 Pseudo-classes.. 419

5 Microdata ... 422
5.1 Introduction ... 422

5.1.1 Overview... 422
5.1.2 The basic syntax ... 422
5.1.3 Typed items... 424
5.1.4 Global identifiers for items..424
5.1.5 Selecting names when defining vocabularies ...425
5.1.6 Using the microdata DOM API ...425

5.2 Encoding microdata... 427
5.2.1 The microdata model .. 427
5.2.2 Items... 427
5.2.3 Names: the itemprop attribute...428
5.2.4 Values ... 429
5.2.5 Associating names with items...429

5.3 Microdata DOM API .. 431
5.4 Microdata vocabularies.. 432

9

5.4.1 vCard .. 432
5.4.1.1 Conversion to vCard...441
5.4.1.2 Examples.. 445

5.4.2 vEvent... 446
5.4.2.1 Conversion to iCalendar ...450
5.4.2.2 Examples.. 452

5.4.3 Licensing works... 453
5.4.3.1 Conversion to RDF..454
5.4.3.2 Examples.. 454

5.5 Converting HTML to other formats... 454
5.5.1 JSON.. 454
5.5.2 RDF ... 455

5.5.2.1 Examples.. 458
5.5.3 Atom ... 459

6 Loading Web pages .. 463
6.1 Browsing contexts ... 463

6.1.1 Nested browsing contexts... 463
6.1.1.1 Navigating nested browsing contexts in the DOM..............................464

6.1.2 Auxiliary browsing contexts ..465
6.1.2.1 Navigating auxiliary browsing contexts in the DOM...........................465

6.1.3 Secondary browsing contexts ...465
6.1.4 Security... 465
6.1.5 Groupings of browsing contexts..465
6.1.6 Browsing context names... 466

6.2 The Window object ... 467
6.2.1 Security... 469
6.2.2 APIs for creating and navigating browsing contexts by name...............................470
6.2.3 Accessing other browsing contexts...471
6.2.4 Named access on the Window object...471
6.2.5 Garbage collection and browsing contexts ...472
6.2.6 Browser interface elements ..472
6.2.7 The WindowProxy object ... 473

6.3 Origin... 474
6.3.1 Relaxing the same-origin restriction ...476

6.4 Session history and navigation .. 478
6.4.1 The session history of browsing contexts ...478
6.4.2 The History interface .. 478
6.4.3 The Location interface... 482

6.4.3.1 Security .. 483
6.4.4 Implementation notes for session history ...484

6.5 Browsing the Web.. 484
6.5.1 Navigating across documents ...484
6.5.2 Page load processing model for HTML files ...488
6.5.3 Page load processing model for XML files ...488
6.5.4 Page load processing model for text files..489
6.5.5 Page load processing model for images..489
6.5.6 Page load processing model for content that uses plugins489
6.5.7 Page load processing model for inline content that doesn't have a DOM490
6.5.8 Navigating to a fragment identifier...490
6.5.9 History traversal ... 491

6.5.9.1 Event definitions ..492
6.5.10 Unloading documents ... 494

6.5.10.1 Event definition ..495
6.5.11 Aborting a document load...495

6.6 Offline Web applications .. 495
6.6.1 Introduction... 495

6.6.1.1 Event summary ..496
6.6.2 Application caches .. 497
6.6.3 The cache manifest syntax ...498

6.6.3.1 A sample manifest ...498
6.6.3.2 Writing cache manifests...499
6.6.3.3 Parsing cache manifests...501

6.6.4 Downloading or updating an application cache ..503
6.6.5 The application cache selection algorithm..509

10

6.6.6 Changes to the networking model ..510
6.6.7 Expiring application caches ..510
6.6.8 Application cache API.. 510
6.6.9 Browser state.. 513

7 Web application APIs .. 514
7.1 Scripting .. 514

7.1.1 Introduction... 514
7.1.2 Enabling and disabling scripting ...514
7.1.3 Processing model .. 514

7.1.3.1 Definitions .. 514
7.1.3.2 Calling scripts... 515
7.1.3.3 Creating scripts ..515
7.1.3.4 Killing scripts .. 516

7.1.4 Event loops ... 516
7.1.4.1 Definitions .. 516
7.1.4.2 Processing model ...517
7.1.4.3 Generic task sources ..518

7.1.5 The javascript: protocol ..518
7.1.6 Events ... 519

7.1.6.1 Event handlers ...519
7.1.6.2 Event handlers on elements, Document objects, and Window objects.521
7.1.6.3 Event firing... 523
7.1.6.4 Events and the Window object ..523
7.1.6.5 Runtime script errors..524

7.2 Timers.. 524
7.3 User prompts ... 526

7.3.1 Simple dialogs... 526
7.3.2 Printing ... 527
7.3.3 Dialogs implemented using separate documents ...528

7.4 System state and capabilities.. 529
7.4.1 Client identification... 530
7.4.2 Custom scheme and content handlers..531

7.4.2.1 Security and privacy ..532
7.4.2.2 Sample user interface ..533

7.4.3 Manually releasing the storage mutex..534

8 User interaction.. 536
8.1 The hidden attribute ... 536
8.2 Activation... 536
8.3 Scrolling elements into view.. 537
8.4 Focus ... 537

8.4.1 Sequential focus navigation..537
8.4.2 Focus management... 538
8.4.3 Document-level focus APIs..539
8.4.4 Element-level focus APIs ... 540

8.5 The accesskey attribute.. 541
8.6 The text selection APIs .. 542

8.6.1 APIs for the browsing context selection ..543
8.6.2 APIs for the text field selections..545

8.7 The contenteditable attribute .. 546
8.7.1 User editing actions .. 547
8.7.2 Making entire documents editable..549

8.8 Spelling and grammar checking .. 549
8.9 Drag and drop.. 551

8.9.1 Introduction... 551
8.9.2 The DragEvent and DataTransfer interfaces ..553
8.9.3 Events fired during a drag-and-drop action ..555
8.9.4 Drag-and-drop processing model..556

8.9.4.1 When the drag-and-drop operation starts or ends in another
document ... 560
8.9.4.2 When the drag-and-drop operation starts or ends in another
application ... 560

8.9.5 The draggable attribute ... 560
8.9.6 Security risks in the drag-and-drop model ..561

11

8.10 Undo history .. 561
8.10.1 Definitions... 561
8.10.2 The UndoManager interface...561
8.10.3 Undo: moving back in the undo transaction history..563
8.10.4 Redo: moving forward in the undo transaction history563
8.10.5 The UndoManagerEvent interface and the undo and redo events.......................564
8.10.6 Implementation notes... 564

8.11 Editing APIs.. 564

9 Communication .. 570
9.1 Event definitions.. 570
9.2 Cross-document messaging... 571

9.2.1 Introduction... 571
9.2.2 Security... 571

9.2.2.1 Authors... 571
9.2.2.2 User agents .. 571

9.2.3 Posting messages ... 572
9.2.4 Posting messages with message ports ...572

9.3 Channel messaging ... 573
9.3.1 Introduction... 573
9.3.2 Message channels... 574
9.3.3 Message ports... 574

9.3.3.1 Ports and garbage collection..576

10 The HTML syntax.. 577
10.1 Writing HTML documents... 577

10.1.1 The DOCTYPE.. 577
10.1.2 Elements ... 578

10.1.2.1 Start tags ... 579
10.1.2.2 End tags ... 580
10.1.2.3 Attributes ... 580
10.1.2.4 Optional tags..581
10.1.2.5 Restrictions on content models ..582
10.1.2.6 Restrictions on the contents of raw text and RCDATA elements.......583

10.1.3 Text ... 583
10.1.3.1 Newlines... 583

10.1.4 Character references .. 583
10.1.5 CDATA sections ... 584
10.1.6 Comments... 584

10.2 Parsing HTML documents... 584
10.2.1 Overview of the parsing model ...585
10.2.2 The input stream... 586

10.2.2.1 Determining the character encoding..587
10.2.2.2 Character encodings ..591
10.2.2.3 Preprocessing the input stream..592
10.2.2.4 Changing the encoding while parsing ..592

10.2.3 Parse state .. 593
10.2.3.1 The insertion mode ..593
10.2.3.2 The stack of open elements ...594
10.2.3.3 The list of active formatting elements..595
10.2.3.4 The element pointers ...596
10.2.3.5 Other parsing state flags..597

10.2.4 Tokenization .. 597
10.2.4.1 Data state .. 597
10.2.4.2 Character reference in data state ..598
10.2.4.3 RCDATA state..598
10.2.4.4 Character reference in RCDATA state ...598
10.2.4.5 RAWTEXT state...598
10.2.4.6 Script data state...598
10.2.4.7 PLAINTEXT state...598
10.2.4.8 Tag open state..599
10.2.4.9 End tag open state...599
10.2.4.10 Tag name state...599
10.2.4.11 RCDATA less-than sign state...600
10.2.4.12 RCDATA end tag open state..600

12

10.2.4.13 RCDATA end tag name state...600
10.2.4.14 RAWTEXT less-than sign state ..601
10.2.4.15 RAWTEXT end tag open state...601
10.2.4.16 RAWTEXT end tag name state..601
10.2.4.17 Script data less-than sign state..602
10.2.4.18 Script data end tag open state...602
10.2.4.19 Script data end tag name state..602
10.2.4.20 Script data escape start state ..603
10.2.4.21 Script data escape start dash state..603
10.2.4.22 Script data escaped state ..603
10.2.4.23 Script data escaped dash state ..603
10.2.4.24 Script data escaped dash dash state ...604
10.2.4.25 Script data escaped less-than sign state..604
10.2.4.26 Script data escaped end tag open state...604
10.2.4.27 Script data escaped end tag name state605
10.2.4.28 Script data double escape start state ..605
10.2.4.29 Script data double escaped state...605
10.2.4.30 Script data double escaped dash state ..606
10.2.4.31 Script data double escaped dash dash state..................................606
10.2.4.32 Script data double escaped less-than sign state606
10.2.4.33 Script data double escape end state..606
10.2.4.34 Before attribute name state ...607
10.2.4.35 Attribute name state ..607
10.2.4.36 After attribute name state..608
10.2.4.37 Before attribute value state ...609
10.2.4.38 Attribute value (double-quoted) state ..609
10.2.4.39 Attribute value (single-quoted) state ...609
10.2.4.40 Attribute value (unquoted) state..610
10.2.4.41 Character reference in attribute value state610
10.2.4.42 After attribute value (quoted) state ...610
10.2.4.43 Self-closing start tag state ...611
10.2.4.44 Bogus comment state ..611
10.2.4.45 Markup declaration open state...611
10.2.4.46 Comment start state ..611
10.2.4.47 Comment start dash state..612
10.2.4.48 Comment state ..612
10.2.4.49 Comment end dash state ...612
10.2.4.50 Comment end state..612
10.2.4.51 Comment end bang state...613
10.2.4.52 Comment end space state ...613
10.2.4.53 DOCTYPE state ...613
10.2.4.54 Before DOCTYPE name state..614
10.2.4.55 DOCTYPE name state ...614
10.2.4.56 After DOCTYPE name state...614
10.2.4.57 After DOCTYPE public keyword state..615
10.2.4.58 Before DOCTYPE public identifier state ..615
10.2.4.59 DOCTYPE public identifier (double-quoted) state616
10.2.4.60 DOCTYPE public identifier (single-quoted) state616
10.2.4.61 After DOCTYPE public identifier state ...616
10.2.4.62 Between DOCTYPE public and system identifiers state..................617
10.2.4.63 After DOCTYPE system keyword state..617
10.2.4.64 Before DOCTYPE system identifier state ..618
10.2.4.65 DOCTYPE system identifier (double-quoted) state618
10.2.4.66 DOCTYPE system identifier (single-quoted) state...........................618
10.2.4.67 After DOCTYPE system identifier state ...619
10.2.4.68 Bogus DOCTYPE state ..619
10.2.4.69 CDATA section state ...619
10.2.4.70 Tokenizing character references...619

10.2.5 Tree construction .. 621
10.2.5.1 Creating and inserting elements ..622
10.2.5.2 Closing elements that have implied end tags625
10.2.5.3 Foster parenting ...625
10.2.5.4 The "initial" insertion mode..625
10.2.5.5 The "before html" insertion mode ..627
10.2.5.6 The "before head" insertion mode ...628

13

10.2.5.7 The "in head" insertion mode...628
10.2.5.8 The "in head noscript" insertion mode ...630
10.2.5.9 The "after head" insertion mode ..630
10.2.5.10 The "in body" insertion mode...631
10.2.5.11 The "text" insertion mode ..640
10.2.5.12 The "in table" insertion mode...641
10.2.5.13 The "in table text" insertion mode ...643
10.2.5.14 The "in caption" insertion mode...643
10.2.5.15 The "in column group" insertion mode...644
10.2.5.16 The "in table body" insertion mode..644
10.2.5.17 The "in row" insertion mode...645
10.2.5.18 The "in cell" insertion mode ...646
10.2.5.19 The "in select" insertion mode ...647
10.2.5.20 The "in select in table" insertion mode ..648
10.2.5.21 The "in foreign content" insertion mode ..648
10.2.5.22 The "after body" insertion mode ..651
10.2.5.23 The "in frameset" insertion mode ..651
10.2.5.24 The "after frameset" insertion mode..652
10.2.5.25 The "after after body" insertion mode..652
10.2.5.26 The "after after frameset" insertion mode653

10.2.6 The end... 653
10.2.7 Coercing an HTML DOM into an infoset...654
10.2.8 An introduction to error handling and strange cases in the parser655

10.2.8.1 Misnested tags: <i></i> ..655
10.2.8.2 Misnested tags: <p></p>..655
10.2.8.3 Unexpected markup in tables ..657
10.2.8.4 Scripts that modify the page as it is being parsed658

10.3 Serializing HTML fragments ... 659
10.4 Parsing HTML fragments.. 661
10.5 Named character references ... 662

11 The XHTML syntax.. 669
11.1 Writing XHTML documents... 669
11.2 Parsing XHTML documents .. 669
11.3 Serializing XHTML fragments ... 670
11.4 Parsing XHTML fragments.. 671

12 Rendering ... 672
12.1 Introduction ... 672
12.2 The CSS user agent style sheet and presentational hints..672

12.2.1 Introduction... 672
12.2.2 Display types .. 673
12.2.3 Margins and padding .. 673
12.2.4 Alignment ... 675
12.2.5 Fonts and colors.. 677
12.2.6 Punctuation and decorations ..679
12.2.7 Resetting rules for inherited properties ..681
12.2.8 The hr element ... 682
12.2.9 The fieldset element.. 682

12.3 Replaced elements .. 683
12.3.1 Embedded content.. 683
12.3.2 Images .. 683
12.3.3 Attributes for embedded content and images ..684
12.3.4 Image maps .. 685
12.3.5 Toolbars... 685

12.4 Bindings... 686
12.4.1 Introduction... 686
12.4.2 The button element ... 686
12.4.3 The details element ... 686
12.4.4 The input element as a text entry widget..686
12.4.5 The input element as domain-specific widgets..687
12.4.6 The input element as a range control..687
12.4.7 The input element as a color well..688
12.4.8 The input element as a check box and radio button widgets688
12.4.9 The input element as a file upload control ..688

14

12.4.10 The input element as a button ..688
12.4.11 The marquee element ... 688
12.4.12 The meter element ... 690
12.4.13 The progress element.. 690
12.4.14 The select element ... 690
12.4.15 The textarea element.. 691
12.4.16 The keygen element ... 692
12.4.17 The time element ... 692

12.5 Frames and framesets ... 692
12.6 Interactive media... 694

12.6.1 Links, forms, and navigation ...694
12.6.2 The title attribute... 694
12.6.3 Editing hosts ... 694

12.7 Print media .. 695

13 Obsolete features ... 696
13.1 Obsolete but conforming features ... 696

13.1.1 Warnings for obsolete but conforming features ..696
13.2 Non-conforming features ... 696
13.3 Requirements for implementations.. 701

13.3.1 The applet element ... 701
13.3.2 The marquee element ... 702
13.3.3 Frames .. 704
13.3.4 Other elements, attributes and APIs ...706

14 IANA considerations ... 715
14.1 text/html ... 715
14.2 text/html-sandboxed .. 716
14.3 application/xhtml+xml... 717
14.4 text/cache-manifest .. 718
14.5 text/ping ... 719
14.6 application/microdata+json ... 720
14.7 Ping-From ... 720
14.8 Ping-To ... 721

Index ... 722
Elements.. 722
Element content categories... 727
Attributes... 728
Interfaces... 735
Events.. 736

References... 738

Acknowledgements ... 744

15

1 Introduction

1.1 Is this HTML5?

This section is non-normative.

In short: Yes.

In more length: "HTML5" has at various times been used to refer to a wide variety of technologies, some of which
originated in this document, and some of which have only ever been tangentially related.

This specification actually now defines the next generation of HTML after HTML5. HTML5 reached Last Call at the
WHATWG in October 2009, and shortly after we started working on some experimental new features that are not as
stable as the rest of the specification. The stability of sections is annotated in the margin.

The W3C has also been working on HTML in conjunction with the WHATWG; at the W3C, this document has been split
into several parts, and the occasional informative paragraph or example has been removed for technical reasons. For
all intents and purposes, however, the W3C HTML specifications and this specification are equivalent (and they are in
fact all generated from the same source document).

Features that are considered part of the next generation of HTML beyond HTML5 currently consist of only:

• The devicep401 element.
• The pingp404 attribute and related hyperlink auditingp405 features.

Features that are part of HTML5 (and this specification) but that are either currently, or have been in the past,
published as separate specifications:

• Canvas 2D Graphics Contextp254

• Microdatap422

• Microdata vocabulariesp432

• Cross-document messagingp571 (also known as Communications)
• Channel messagingp573 (also known as Communications)
• Formsp309 (previously known as Web Forms 2)

Features that are not currently in this document that were in the past considered part of HTML5, or that were never
part of HTML5 but have been referred to as part of HTML5 in the media, include:

• Web Workers
• Web Storage
• WebSocket API
• WebSocket protocol
• Server-sent Events
• Web SQL Database
• Geolocation API
• SVG
• MathML
• XMLHttpRequest

1.2 Background

This section is non-normative.

The World Wide Web's markup language has always been HTML. HTML was primarily designed as a language for
semantically describing scientific documents, although its general design and adaptations over the years have
enabled it to be used to describe a number of other types of documents.

The main area that has not been adequately addressed by HTML is a vague subject referred to as Web Applications.
This specification attempts to rectify this, while at the same time updating the HTML specifications to address issues
raised in the past few years.

1.3 Audience

This section is non-normative.

This specification is intended for authors of documents and scripts that use the features defined in this specification,
implementors of tools that operate on pages that use the features defined in this specification, and individuals wishing
to establish the correctness of documents or implementations with respect to the requirements of this specification.

16

http://www.whatwg.org/specs/web-workers/current-work/
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/websockets/
http://www.whatwg.org/specs/web-socket-protocol/
http://dev.w3.org/html5/eventsource/
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/geo/api/spec-source.html
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/MathML/
http://dev.w3.org/2006/webapi/XMLHttpRequest-2/

This document is probably not suited to readers who do not already have at least a passing familiarity with Web
technologies, as in places it sacrifices clarity for precision, and brevity for completeness. More approachable tutorials
and authoring guides can provide a gentler introduction to the topic.

In particular, familiarity with the basics of DOM Core and DOM Events is necessary for a complete understanding of
some of the more technical parts of this specification. An understanding of Web IDL, HTTP, XML, Unicode, character
encodings, JavaScript, and CSS will also be helpful in places but is not essential.

1.4 Scope

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated semantic-level scripting
APIs for authoring accessible pages on the Web ranging from static documents to dynamic applications.

The scope of this specification does not include providing mechanisms for media-specific customization of
presentation (although default rendering rules for Web browsers are included at the end of this specification, and
several mechanisms for hooking into CSS are provided as part of the language).

The scope of this specification is not to describe an entire operating system. In particular, hardware configuration
software, image manipulation tools, and applications that users would be expected to use with high-end workstations
on a daily basis are out of scope. In terms of applications, this specification is targeted specifically at applications that
would be expected to be used by users on an occasional basis, or regularly but from disparate locations, with low CPU
requirements. For instance online purchasing systems, searching systems, games (especially multiplayer online
games), public telephone books or address books, communications software (e-mail clients, instant messaging clients,
discussion software), document editing software, etc.

1.5 History

This section is non-normative.

For its first five years (1990-1995), HTML went through a number of revisions and experienced a number of extensions,
primarily hosted first at CERN, and then at the IETF.

With the creation of the W3C, HTML's development changed venue again. A first abortive attempt at extending HTML
in 1995 known as HTML 3.0 then made way to a more pragmatic approach known as HTML 3.2, which was completed
in 1997. HTML4 followed, reaching completion in 1998.

At this time, the W3C membership decided to stop evolving HTML and instead begin work on an XML-based
equivalent, called XHTML. This effort started with a reformulation of HTML4 in XML, known as XHTML 1.0, which added
no new features except the new serialization, and which was completed in 2000. After XHTML 1.0, the W3C's focus
turned to making it easier for other working groups to extend XHTML, under the banner of XHTML Modularization. In
parallel with this, the W3C also worked on a new language that was not compatible with the earlier HTML and XHTML
languages, calling it XHTML2.

Around the time that HTML's evolution was stopped in 1998, parts of the API for HTML developed by browser vendors
were specified and published under the name DOM Level 1 (in 1998) and DOM Level 2 Core and DOM Level 2 HTML
(starting in 2000 and culminating in 2003). These efforts then petered out, with some DOM Level 3 specifications
published in 2004 but the working group being closed before all the Level 3 drafts were completed.

In 2003, the publication of XForms, a technology which was positioned as the next generation of Web forms, sparked a
renewed interest in evolving HTML itself, rather than finding replacements for it. This interest was borne from the
realization that XML's deployment as a Web technology was limited to entirely new technologies (like RSS and later
Atom), rather than as a replacement for existing deployed technologies (like HTML).

A proof of concept to show that it was possible to extend HTML4's forms to provide many of the features that XForms
1.0 introduced, without requiring browsers to implement rendering engines that were incompatible with existing HTML
Web pages, was the first result of this renewed interest. At this early stage, while the draft was already publicly
available, and input was already being solicited from all sources, the specification was only under Opera Software's
copyright.

The idea that HTML's evolution should be reopened was tested at a W3C workshop in 2004, where some of the
principles that underlie the HTML5 work (described below), as well as the aforementioned early draft proposal covering
just forms-related features, were presented to the W3C jointly by Mozilla and Opera. The proposal was rejected on the
grounds that the proposal conflicted with the previously chosen direction for the Web's evolution; the W3C staff and
membership voted to continue developing XML-based replacements instead.

17

Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue working on the effort under the
umbrella of a new venue called the WHATWG. A public mailing list was created, and the draft was moved to the
WHATWG site. The copyright was subsequently amended to be jointly owned by all three vendors, and to allow reuse
of the specification.

The WHATWG was based on several core principles, in particular that technologies need to be backwards compatible,
that specifications and implementations need to match even if this means changing the specification rather than the
implementations, and that specifications need to be detailed enough that implementations can achieve complete
interoperability without reverse-engineering each other.

The latter requirement in particular required that the scope of the HTML5 specification include what had previously
been specified in three separate documents: HTML4, XHTML1, and DOM2 HTML. It also meant including significantly
more detail than had previously been considered the norm.

In 2006, the W3C indicated an interest to participate in the development of HTML5 after all, and in 2007 formed a
working group chartered to work with the WHATWG on the development of the HTML5 specification. Apple, Mozilla,
and Opera allowed the W3C to publish the specification under the W3C copyright, while keeping a version with the less
restrictive license on the WHATWG site.

Since then, both groups have been working together.

A separate document has been published by the W3C HTML working group to document the differences between this
specification and the language described in the HTML4 specification. [HTMLDIFF]p739

1.6 Design notes

This section is non-normative.

It must be admitted that many aspects of HTML appear at first glance to be nonsensical and inconsistent.

HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been developed over a period of
several decades by a wide array of people with different priorities who, in many cases, did not know of each other's
existence.

Features have thus arisen from many sources, and have not always been designed in especially consistent ways.
Furthermore, because of the unique characteristics of the Web, implementation bugs have often become de-facto, and
now de-jure, standards, as content is often unintentionally written in ways that rely on them before they can be fixed.

Despite all this, efforts have been made to adhere to certain design goals. These are described in the next few
subsections.

This section is non-normative.

To avoid exposing Web authors to the complexities of multithreading, the HTML and DOM APIs are designed such that
no script can ever detect the simultaneous execution of other scripts. Even with workers, the intent is that the
behavior of implementations can be thought of as completely serializing the execution of all scripts in all browsing
contextsp463.

Note: The navigator.yieldForStorageUpdates()p535 method, in this model, is equivalent to allowing
other scripts to run while the calling script is blocked.

This section is non-normative.

This specification interacts with and relies on a wide variety of other specifications. In certain circumstances,
unfortunately, conflicting needs have led to this specification violating the requirements of these other specifications.
Whenever this has occurred, the transgressions have each been noted as a "willful violation", and the reason for the
violation has been noted.

1.6.1 Serializability of script execution

1.6.2 Compliance with other specifications

18

1.7 HTML vs XHTML

This section is non-normative.

This specification defines an abstract language for describing documents and applications, and some APIs for
interacting with in-memory representations of resources that use this language.

The in-memory representation is known as "DOM HTML", or "the DOM" for short. This specification defines version 5 of
DOM HTML, known as "DOM5 HTML".

There are various concrete syntaxes that can be used to transmit resources that use this abstract language, two of
which are defined in this specification.

The first such concrete syntax is the HTML syntax. This is the format suggested for most authors. It is compatible with
most legacy Web browsers. If a document is transmitted with an HTML MIME typep28, such as text/htmlp715, then it will
be processed as an HTML document by Web browsers. This specification defines the latest HTML syntax, known simply
as "HTML".

The second concrete syntax is the XHTML syntax, which is an application of XML. When a document is transmitted with
an XML MIME typep29, such as application/xhtml+xmlp717, then it is treated as an XML document by Web browsers, to
be parsed by an XML processor. Authors are reminded that the processing for XML and HTML differs; in particular,
even minor syntax errors will prevent a document labeled as XML from being rendered fully, whereas they would be
ignored in the HTML syntax. This specification defines the latest XHTML syntax, known simply as "XHTML".

The DOM, the HTML syntax, and XML cannot all represent the same content. For example, namespaces cannot be
represented using the HTML syntax, but they are supported in the DOM and in XML. Similarly, documents that use the
noscriptp136 feature can be represented using the HTML syntax, but cannot be represented with the DOM or in XML.
Comments that contain the string "-->" can be represented in the DOM but not in the HTML syntax or in XML.

1.8 Structure of this specification

This section is non-normative.

This specification is divided into the following major sections:

Common infrastructurep28

The conformance classes, algorithms, definitions, and the common underpinnings of the rest of the specification.

Semantics, structure, and APIs of HTML documentsp75

Documents are built from elements. These elements form a tree using the DOM. This section defines the features
of this DOM, as well as introducing the features common to all elements, and the concepts used in defining
elements.

The elements of HTMLp112

Each element has a predefined meaning, which is explained in this section. Rules for authors on how to use the
element, along with user agent requirements for how to handle each element, are also given.

Microdatap422

This specification introduces a mechanism for adding machine-readable annotations to documents, so that tools
can extract trees of name/value pairs from the document. This section describes this mechanism and some
algorithms that can be used to convert HTML documents into other formats. This section also defines some
Microdata vocabularies for contact information, calendar events, and licensing works.

Loading Web pagesp463

HTML documents do not exist in a vacuum — this section defines many of the features that affect environments
that deal with multiple pages.

Web application APIsp514

This section introduces basic features for scripting of applications in HTML.

User interactionp536

HTML documents can provide a number of mechanisms for users to interact with and modify content, which are
described in this section.

The communication APIsp570

This section describes some mechanisms that applications written in HTML can use to communicate with other
applications from different domains running on the same client.

19

The HTML syntaxp577

The XHTML syntaxp669

All of these features would be for naught if they couldn't be represented in a serialized form and sent to other
people, and so these sections define the syntaxes of HTML, along with rules for how to parse content using those
syntaxes.

There are also some appendices, defining rendering rulesp672 for Web browsers and listing obsolete featuresp696 and
IANA considerationsp715.

This specification should be read like all other specifications. First, it should be read cover-to-cover, multiple times.
Then, it should be read backwards at least once. Then it should be read by picking random sections from the contents
list and following all the cross-references.

This is a definition, requirement, or explanation.

Note: This is a note.

This is an example.

This is an open issue.

⚠Warning! This is a warning.

interface Example {
// this is an IDL definition

};

This box is non-normative. Implementation requirements are given below this box.

variable = object . method([optionalArgument])
This is a note to authors describing the usage of an interface.

/* this is a CSS fragment */

The defining instance of a term is marked up like this. Uses of that term are marked up like thisp20 or like thisp20.

The defining instance of an element, attribute, or API is marked up like this. References to that element, attribute, or
API are marked up like thisp20.

Other code fragments are marked up like this.

Variables are marked up like this.

This is an implementation requirement.

1.9 A quick introduction to HTML

This section is non-normative.

A basic HTML document looks like this:

<!DOCTYPE html>
<html>
<head>
<title>Sample page</title>

</head>
<body>

1.8.1 How to read this specification

1.8.2 Typographic conventions

20

<h1>Sample page</h1>
<p>This is a simple sample.</p>
<!-- this is a comment -->

</body>
</html>

HTML documents consist of a tree of elements and text. Each element is denoted in the source by a start tagp579, such
as "<body>", and an end tagp580, such as "</body>". (Certain start tags and end tags can in certain cases be
omittedp581 and are implied by other tags.)

Tags have to be nested such that elements are all completely within each other, without overlapping:

<p>This is very wrong!</p>
<p>This is correct.</p>

This specification defines a set of elements that can be used in HTML, along with rules about the ways in which the
elements can be nested.

Elements can have attributes, which control how the elements work. In the example below, there is a hyperlinkp404,
formed using the ap169 element and its hrefp404 attribute:

simple

Attributesp580 are placed inside the start tag, and consist of a namep580 and a valuep580, separated by an "=" character.
The attribute value can remain unquotedp580 if it doesn't contain spaces or any of " ' ` = < or >. Otherwise, it has to be
quoted using either single or double quotes. The value, along with the "=" character, can be omitted altogether if the
value is the empty string.

<!-- empty attributes -->
<input name=address disabled>
<input name=address disabled="">

<!-- attributes with a value -->
<input name=address maxlength=200>
<input name=address maxlength='200'>
<input name=address maxlength="200">

HTML user agents (e.g. Web browsers) then parse this markup, turning it into a DOM (Document Object Model) tree. A
DOM tree is an in-memory representation of a document.

DOM trees contain several kinds of nodes, in particular a DOCTYPE node, elements, text nodes, and comment nodes.

The markup snippet at the top of this sectionp20 would be turned into the following DOM tree:

The root elementp29 of this tree is the htmlp112 element, which is the element always found at the root of HTML
documents. It contains two elements, headp112 and bodyp138, as well as a text node between them.

DOCTYPE: htmlp112

htmlp112

headp112

#text: ???
titlep113

#text: Sample page
#text: ??

#text: ??
bodyp138

#text: ???
h1p147

#text: Sample page
#text: ???
pp157

#text: This is a
ap169 href="demo.html"
#text: simple

#text: sample.
#text: ???
#comment: this is a comment
#text: ???

21

There are many more text nodes in the DOM tree than one would initially expect, because the source contains a
number of spaces (represented here by "␣") and line breaks ("⏎") that all end up as text nodes in the DOM.

The headp112 element contains a titlep113 element, which itself contains a text node with the text "Sample page".
Similarly, the bodyp138 element contains an h1p147 element, a pp157 element, and a comment.

This DOM tree can be manipulated from scripts in the page. Scripts (typically in JavaScript) are small programs that
can be embedded using the scriptp129 element or using event handler content attributesp520. For example, here is a
form with a script that sets the value of the form's outputp366 element to say "Hello World":

<form name="main">
Result: <output name="result"></output>
<script>
document.forms.main.elements.result.value = 'Hello World';

</script>
</form>

Each element in the DOM tree is represented by an object, and these objects have APIs so that they can be
manipulated. For instance, a link (e.g. the ap169 element in the tree above) can have its "hrefp404" attribute changed in
several ways:

var a = document.links[0]; // obtain the first link in the document
a.href = 'sample.html'; // change the destination URL of the link
a.protocol = 'https'; // change just the scheme part of the URL
a.setAttribute('href', 'http://example.com/'); // change the content attribute directly

Since DOM trees are used as the way to represent HTML documents when they are processed and presented by
implementations (especially interactive implementations like Web browsers), this specification is mostly phrased in
terms of DOM trees, instead of the markup described above.

HTML documents represent a media-independent description of interactive content. HTML documents might be
rendered to a screen, or through a speech synthesizer, or on a braille display. To influence exactly how such rendering
takes place, authors can use a styling language such as CSS.

In the following example, the page has been made yellow-on-blue using CSS.

<!DOCTYPE html>
<html>
<head>
<title>Sample styled page</title>
<style>
body { background: navy; color: yellow; }

</style>
</head>
<body>
<h1>Sample styled page</h1>
<p>This page is just a demo.</p>

</body>
</html>

For more details on how to use HTML, authors are encouraged to consult tutorials and guides. Some of the examples
included in this specification might also be of use, but the novice author is cautioned that this specification, by
necessity, defines the language with a level of detail that might be difficult to understand at first.

1.10 Conformance requirements for authors

This section is non-normative.

Unlike previous versions of the HTML specification, this specification defines in some detail the required processing for
invalid documents as well as valid documents.

However, even though the processing of invalid content is in most cases well-defined, conformance requirements for
documents are still important: in practice, interoperability (the situation in which all implementations process
particular content in a reliable and identical or equivalent way) is not the only goal of document conformance

22

requirements. This section details some of the more common reasons for still distinguishing between a conforming
document and one with errors.

This section is non-normative.

The majority of presentational features from previous versions of HTML are no longer allowed. Presentational markup
in general has been found to have a number of problems:

The use of presentational elements leads to poorer accessibility
While it is possible to use presentational markup in a way that provides users of assistive technologies (ATs) with
an acceptable experience (e.g. using ARIA), doing so is significantly more difficult than doing so when using
semantically-appropriate markup. Furthermore, even using such techniques doesn't help make pages accessible
for non-AT non-graphical users, such as users of text-mode browsers.

Using media-independent markup, on the other hand, provides an easy way for documents to be authored in
such a way that they work for more users (e.g. text browsers).

Higher cost of maintenance
It is significantly easier to maintain a site written in such a way that the markup is style-independent. For
example, changing the color of a site that uses throughout requires changes across the entire
site, whereas a similar change to a site based on CSS can be done by changing a single file.

Higher document sizes
Presentational markup tends to be much more redundant, and thus results in larger document sizes.

For those reasons, presentational markup has been removed from HTML in this version. This change should not come
as a surprise; HTML4 deprecated presentational markup many years ago and provided a mode (HTML4 Transitional) to
help authors move away from presentational markup; later, XHTML 1.1 went further and obsoleted those features
altogether.

The only remaining presentational markup features in HTML are the stylep91 attribute and the stylep126 element. Use
of the stylep91 attribute is somewhat discouraged in production environments, but it can be useful for rapid
prototyping (where its rules can be directly moved into a separate style sheet later) and for providing specific styles in
unusual cases where a separate style sheet would be inconvenient. Similarly, the stylep126 element can be useful in
syndication or for page-specific styles, but in general an external style sheet is likely to be more convenient when the
styles apply to multiple pages.

It is also worth noting that four elements that were previously presentational have been redefined in this specification
to be media-independent: bp185, ip184, hrp158, and smallp173.

This section is non-normative.

The syntax of HTML is constrained to avoid a wide variety of problems.

Unintuitive error-handling behavior
Certain invalid syntax constructs, when parsed, result in DOM trees that are highly unintuitive.

For example, the following markup fragment results in a DOM with an hrp158 element that is an earlier
sibling of the corresponding tablep286 element:

<table><hr>...

Errors with optional error recovery
To allow user agents to be used in controlled environments without having to implement the more bizarre and
convoluted error handling rules, user agents are permitted to fail whenever encountering a parse errorp585.

Errors where the error-handling behavior is not compatible with streaming user agents
Some error-handling behavior, such as the behavior for the <table><hr>... example mentioned above, are
incompatible with streaming user agents. To avoid interoperability problems with such user agents, any syntax
resulting in such behavior is considered invalid.

1.10.1 Presentational markup

1.10.2 Syntax errors

23

Errors that can result in infoset coercion
When a user agent based on XML is connected to an HTML parser, it is possible that certain invariants that XML
enforces, such as comments never containing two consecutive hyphens, will be violated by an HTML file.
Handling this can require that the parser coerce the HTML DOM into an XML-compatible infoset. Most syntax
constructs that require such handling are considered invalid.

Errors that result in disproportionally poor performance
Certain syntax constructs can result in disproportionally poor performance. To discourage the use of such
constructs, they are typically made non-conforming.

For example, the following markup results in poor performance when hitting the highlighted end tag, since
all the open elements are examined first to see if they match the close tag:

<p>...

Errors that help authors avoid fragile syntax constructs
There are syntax constructs that, for historical reasons, are relatively fragile. To help reduce the number of users
who accidentally run into such problems, they are made non-conforming.

For example, the parsing of certain named character references in attributes happens even with the
closing semicolon being omitted. It is safe to include an ampersand followed by letters that do not form a
named character reference, but if the letters are changed to a string that does form a named character
reference, they will be interpreted as that character instead.

In this fragment, the attribute's value is "?hello=1&world=2":

Demo
In the following fragment, however, the attribute's value is actually "?original=1©=2", not the intended
"?original=1©=2":

Compare
To avoid this problem, all named character references are required to end with a semicolon, and uses of
named character references without a semicolon are flagged as errors.

Thus, the correct way to express the above cases is as follows:

Demo <!-- &world is ok, since it's not a named
character reference -->
Compare <!-- the & has to be escaped, since
© is a named character reference -->

Errors that flag known interoperability problems in legacy user agents
Certain syntax constructs are known to cause especially subtle or serious problems in legacy user agents, and
are therefore marked as non-conforming to help authors avoid them.

For example, this is why the U+0060 GRAVE ACCENT character (`) is not allowed in unquoted attributes. In
certain legacy user agents, it is sometimes treated as a quote character.

Another example of this is the DOCTYPE, which is required to trigger no-quirks modep79, because the
behavior of legacy user agents in quirks modep79 is often largely undocumented.

Errors that protect authors from security attacks
Certain restrictions exist purely to avoid known security problems.

For example, the restriction on using UTF-7 exists purely to avoid authors falling prey to a known cross-
site-scripting attack using UTF-7.

Cases where the author's intent is unclear
Some errors merely flag cases where the author's intent is most unclear. Correcting these errors early makes
later maintenance easier.

For example, it is unclear whether the author intended the following to be an h1p147 heading or an h2p147

heading:

<h1>Contact details</h2>

24

Cases that are likely to be typos
When a user makes a simple typo, it is helpful if the error can be caught early, as this can save the author a lot
of debugging time. This specification therefore usually considers it an error to use element names, attribute
names, and so forth, that do not match the names defined in this specification.

For example, if the author typed <capton> instead of <caption>, this would be flagged as an error and the
author could correct the typo immediately.

Errors that allow for new syntax in future
In order to allow us to extend the language syntax in the future, certain otherwise harmless features are
disallowed.

For example, "attributes" in end tags are ignored currently, but they are invalid, in case a future change to
the language makes use of that syntax feature without conflicting with already-deployed (and valid!)
content.

Some authors find it helpful to be in the practice of always quoting all attributes and always including all optional tags,
preferring the consistency derived from such custom over the minor benefits of terseness afforded by making use of
the flexibility of the HTML syntax. To aid such authors, conformance checkers can provide modes of operation wherein
such conventions are enforced.

This section is non-normative.

Beyond the syntax of the language, this specification also places restrictions on how elements and attributes can be
specified. These restrictions are present for similar reasons:

Errors that flag content with dubious semantics
To avoid misuse of elements with defined meanings, content models are defined that restrict how elements can
be nested when such nestings would be of dubious value.

For example, this specification disallows nesting a sectionp140 element inside a kbdp183 element, since it is
highly unlikely for an author to indicate that an entire section should be keyed in.

Errors that indicate a conflict in expressed semantics
Similarly, to draw the author's attention to mistakes in the use of elements, clear contradictions in the semantics
expressed are also considered conformance errors.

In the fragments below, for example, the semantics are nonsensical: a row cannot simultaneously be a
cell, nor can a radio button be a progress bar.

<tr role="cell">
<input type=radio role=progressbar>

Another example is the restrictions on the content models of the ulp162 element, which only allows lip163

element children. Lists by definition consist just of zero or more list items, so if a ulp162 element contains
something other than an lip163 element, it's not clear what was meant.

Errors that catch cases where the default styles are likely to lead to confusion
Certain elements have default styles or behaviors that make certain combinations likely to lead to confusion.
Where these have equivalent alternatives without this problem, the confusing combinations are disallowed.

For example, divp168 elements are rendered as block boxes, and spanp191 elements as inline boxes. Putting
a block box in an inline box is unnecessarily confusing; since either nesting just divp168 elements, or
nesting just spanp191 elements, or nesting spanp191 elements inside divp168 elements all serve the same
purpose as nesting a divp168 element in a spanp191 element, but only the latter involves a block box in an
inline box, the latter combination is disallowed.

Another example would be the way interactive contentp97 cannot be nested. For example, a buttonp351

element cannot contain a textareap360 element. This is because the default behavior of such nesting
interactive elements would be highly confusing to users. Instead of nesting these elements, they can be
placed side by side.

Errors that encourage a correct understanding of the spec
Sometimes, something is disallowed because allowing it would likely cause author confusion.

1.10.3 Restrictions on content models and on attribute values

25

For example, setting the disabledp374 attribute to the value "false" is disallowed, because despite the
appearance of meaning that the element is enabled, it in fact means that the element is disabled (what
matters for implementations is the presence of the attribute, not its value).

Errors that are intended merely to simplify the language
Some conformance errors simplify the language that authors need to learn.

For example, the areap280 element's shapep281 attribute, despite accepting both circp281 and circlep281

values in practice as synonyms, disallows the use of the circp281 value, so as to simplify tutorials and
other learning aids. There would be no benefit to allowing both, but it would cause extra confusion when
teaching the language.

Errors that avoid peculiarities of the parser
Certain elements are parsed in someone eccentric ways (typically for historical reasons), and their content model
restrictions are intended to avoid exposing the author to these issues.

For example, a formp314 element isn't allowed inside phrasing contentp96, because when parsed as HTML, a
formp314 element's start tag will imply a pp157 element's end tag. Thus, the following markup results in two
paragraphsp98, not one:

<p>Welcome. <form><label>Name:</label> <input></form>
It is parsed exactly like the following:

<p>Welcome. </p><form><label>Name:</label> <input></form>

Errors that would likely result in scripts failing in hard-to-debug ways
Some errors are intended to help prevent script problems that would be hard to debug.

This is why, for instance, it is non-conforming to have two idp89 attributes with the same value. Duplicate
IDs lead to the wrong element being selected, with sometimes disastrous effects whose cause is hard to
determine.

Errors that are intended to save the author time
Some constructs are disallowed because historically they have been the cause of a lot of wasted authoring time.

For example, a scriptp129 element's srcp130 attribute causes the element's contents to be ignored.
However, this isn't obvious, especially if the element's contents appear to be executable script — which
can lead to authors spending a lot of time trying to debug the inline script without realising that it is not
executing. To reduce this problem, this specification makes it non-conforming to have executable script in
a scriptp129 element when the srcp130 attribute is present. This means that authors who are validating
their documents are less likely to waste time with this kind of mistake.

Errors that are intended to help authors migrating to and from XHTML
Some authors like to write files that can be interpreted as both XML and HTML with similar results. Though this
practice is discouraged in general due to the myriad of subtle complications involved (especially when involving
scripting, styling, or any kind of automated serialization), this specification has a few restrictions intended to at
least somewhat mitigate the difficulties. This makes it easier for authors to use this as a transitionary step when
migrating between HTML and XHTML.

For example, there are somewhat complicated rules surrounding the langp89 and xml:langp89 attributes
intended to keep the two synchronized.

Another example would be the restrictions on the values of xmlns attributes in the HTML serialization,
which are intended to ensure that elements in conforming documents end up in the same namespaces
whether processed as HTML or XML.

Errors that reserve space for future expansion
As with the restrictions on the syntax intended to allow for new syntax in future revisions of the language, some
restrictions on the content models of elements and values of attributes are intended to allow for future expansion
of the HTML vocabulary.

For example, limiting the values of the targetp404 attribute that start with an U+005F LOW LINE character
(_) to only specific predefined values allows new predefined values to be introduced at a future time
without conflicting with author-defined values.

Errors that indicate a mis-use of other specifications
Certain restrictions are intended to support the restrictions made by other specifications.

26

For example, requiring that attributes that take media queries use only valid media queries reinforces the
importance of following the conformance rules of that specification.

1.11 Recommended reading

This section is non-normative.

The following documents might be of interest to readers of this specification.

Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]p738

This Architectural Specification provides authors of specifications, software developers, and content
developers with a common reference for interoperable text manipulation on the World Wide Web, building on
the Universal Character Set, defined jointly by the Unicode Standard and ISO/IEC 10646. Topics addressed
include use of the terms 'character', 'encoding' and 'string', a reference processing model, choice and
identification of character encodings, character escaping, and string indexing.

Unicode Security Considerations [UTR36]p742

Because Unicode contains such a large number of characters and incorporates the varied writing systems of
the world, incorrect usage can expose programs or systems to possible security attacks. This is especially
important as more and more products are internationalized. This document describes some of the security
considerations that programmers, system analysts, standards developers, and users should take into
account, and provides specific recommendations to reduce the risk of problems.

Web Content Accessibility Guidelines (WCAG) 2.0 [WCAG]p742

Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of recommendations for making Web
content more accessible. Following these guidelines will make content accessible to a wider range of people
with disabilities, including blindness and low vision, deafness and hearing loss, learning disabilities, cognitive
limitations, limited movement, speech disabilities, photosensitivity and combinations of these. Following
these guidelines will also often make your Web content more usable to users in general.

Authoring Tool Accessibility Guidelines (ATAG) 2.0 [ATAG]p738

This specification provides guidelines for designing Web content authoring tools that are more accessible for
people with disabilities. An authoring tool that conforms to these guidelines will promote accessibility by
providing an accessible user interface to authors with disabilities as well as by enabling, supporting, and
promoting the production of accessible Web content by all authors.

User Agent Accessibility Guidelines (UAAG) 2.0 [UAAG]p742

This document provides guidelines for designing user agents that lower barriers to Web accessibility for
people with disabilities. User agents include browsers and other types of software that retrieve and render
Web content. A user agent that conforms to these guidelines will promote accessibility through its own user
interface and through other internal facilities, including its ability to communicate with other technologies
(especially assistive technologies). Furthermore, all users, not just users with disabilities, should find
conforming user agents to be more usable.

27

2 Common infrastructure

2.1 Terminology

This specification refers to both HTML and XML attributes and IDL attributes, often in the same context. When it is not
clear which is being referred to, they are referred to as content attributes for HTML and XML attributes, and IDL
attributes for those defined on IDL interfaces. Similarly, the term "properties" is used for both JavaScript object
properties and CSS properties. When these are ambiguous they are qualified as object properties and CSS
properties respectively.

Generally, when the specification states that a feature applies to the HTML syntaxp577 or the XHTML syntaxp669, it also
includes the other. When a feature specifically only applies to one of the two languages, it is called out by explicitly
stating that it does not apply to the other format, as in "for HTML, ... (this does not apply to XHTML)".

This specification uses the term document to refer to any use of HTML, ranging from short static documents to long
essays or reports with rich multimedia, as well as to fully-fledged interactive applications.

For simplicity, terms such as shown, displayed, and visible might sometimes be used when referring to the way a
document is rendered to the user. These terms are not meant to imply a visual medium; they must be considered to
apply to other media in equivalent ways.

When an algorithm B says to return to another algorithm A, it implies that A called B. Upon returning to A, the
implementation must continue from where it left off in calling B.

The specification uses the term supported when referring to whether a user agent has an implementation capable of
decoding the semantics of an external resource. A format or type is said to be supported if the implementation can
process an external resource of that format or type without critical aspects of the resource being ignored. Whether a
specific resource is supported can depend on what features of the resource's format are in use.

For example, a PNG image would be considered to be in a supported format if its pixel data could be decoded
and rendered, even if, unbeknownst to the implementation, the image also contained animation data.

A MPEG4 video file would not be considered to be in a supported format if the compression format used was not
supported, even if the implementation could determine the dimensions of the movie from the file's metadata.

The term MIME type is used to refer to what is sometimes called an Internet media type in protocol literature. The
term media type in this specification is used to refer to the type of media intended for presentation, as used by the
CSS specifications. [RFC2046]p741 [MQ]p740

A string is a valid MIME type if it matches the media-type rule defined in section 3.7 "Media Types" of RFC 2616. In
particular, a valid MIME typep28 may include MIME type parameters. [HTTP]p739

A string is a valid MIME type with no parameters if it matches the media-type rule defined in section 3.7 "Media
Types" of RFC 2616, but does not contain any U+003B SEMICOLON characters (;). In other words, if it consists only of a
type and subtype, with no MIME Type parameters. [HTTP]p739

The term HTML MIME type is used to refer to the MIME typesp28 text/htmlp715 and text/html-sandboxedp716.

A resource's critical subresources are those that the resource needs to have available to be correctly processed.
Which resources are considered critical or not is defined by the specification that defines the resource's format. For
CSS resources, only @import rules introduce critical subresourcesp28; other resources, e.g. fonts or backgrounds, are
not.

To ease migration from HTML to XHTML, UAs conforming to this specification will place elements in HTML in the
http://www.w3.org/1999/xhtml namespace, at least for the purposes of the DOM and CSS. The term "HTML
elements", when used in this specification, refers to any element in that namespace, and thus refers to both HTML
and XHTML elements.

Except where otherwise stated, all elements defined or mentioned in this specification are in the http://www.w3.org/
1999/xhtml namespace, and all attributes defined or mentioned in this specification have no namespace.

2.1.1 Resources

2.1.2 XML

28

Attribute names are said to be XML-compatible if they match the Name production defined in XML, they contain no
U+003A COLON characters (:), and their first three characters are not an ASCII case-insensitivep35 match for the string
"xml". [XML]p743

The term XML MIME type is used to refer to the MIME typesp28 text/xml, application/xml, and any MIME typep28

whose subtype ends with the four characters "+xml". [RFC3023]p741

The term root element, when not explicitly qualified as referring to the document's root element, means the furthest
ancestor element node of whatever node is being discussed, or the node itself if it has no ancestors. When the node is
a part of the document, then the node's root elementp29 is indeed the document's root element; however, if the node
is not currently part of the document tree, the root element will be an orphaned node.

When an element's root elementp29 is the root element of a Documentp33, it is said to be in a Document. An element is
said to have been inserted into a document when its root elementp29 changes and is now the document's root
elementp29. Analogously, an element is said to have been removed from a document when its root elementp29

changes from being the document's root elementp29 to being another element.

A node's home subtree is the subtree rooted at that node's root elementp29. When a node is in a Documentp29, its
home subtreep29 is that Documentp33 's tree.

The Documentp33 of a Nodep33 (such as an element) is the Documentp33 that the Nodep33 's ownerDocument IDL attribute
returns. When a Nodep33 is in a Documentp29 then that Documentp33 is always the Nodep33 's Documentp33, and the
Nodep33 's ownerDocument IDL attribute thus always returns that Documentp33.

The term tree order means a pre-order, depth-first traversal of DOM nodes involved (through the
parentNodep33/childNodesp33 relationship).

When it is stated that some element or attribute is ignored, or treated as some other value, or handled as if it was
something else, this refers only to the processing of the node after it is in the DOM. A user agent must not mutate the
DOM in such situations.

The term text node refers to any Textp33 node, including CDATASectionp33 nodes; specifically, any Nodep33 with node
type TEXT_NODE (3) or CDATA_SECTION_NODE (4). [DOMCORE]p739

A content attribute is said to change value only if its new value is different than its previous value; setting an attribute
to a value it already has does not change it.

The construction "a Foo object", where Foo is actually an interface, is sometimes used instead of the more accurate
"an object implementing the interface Foo".

An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting
when a new value is assigned to it.

If a DOM object is said to be live, then the attributes and methods on that object must operate on the actual
underlying data, not a snapshot of the data.

The terms fire and dispatch are used interchangeably in the context of events, as in the DOM Events specifications.
The term trusted event is used as defined by the DOM Events specification. [DOMEVENTS]p739

The term plugin is used to mean any content handler that supports displaying content as part of the user agent's
rendering of a Documentp33 object, but that neither acts as a child browsing contextp463 of the Documentp33 nor
introduces any Nodep33 objects to the Documentp33 's DOM.

Typically such content handlers are provided by third parties, though a user agent can designate content handlers to
be plugins.

One example of a plugin would be a PDF viewer that is instantiated in a browsing contextp463 when the user
navigates to a PDF file. This would count as a plugin regardless of whether the party that implemented the PDF
viewer component was the same as that which implemented the user agent itself. However, a PDF viewer

2.1.3 DOM trees

2.1.4 Scripting

2.1.5 Plugins

29

http://www.w3.org/TR/REC-xml/#NT-Name

application that launches separate from the user agent (as opposed to using the same interface) is not a plugin
by this definition.

Note: This specification does not define a mechanism for interacting with plugins, as it is
expected to be user-agent- and platform-specific. Some UAs might opt to support a plugin
mechanism such as the Netscape Plugin API; others might use remote content converters or have
built-in support for certain types. [NPAPI]p740

⚠Warning! Browsers should take extreme care when interacting with external content intended for
pluginsp29. When third-party software is run with the same privileges as the user agent itself,
vulnerabilities in the third-party software become as dangerous as those in the user agent.

The preferred MIME name of a character encoding is the name or alias labeled as "preferred MIME name" in the
IANA Character Sets registry, if there is one, or the encoding's name, if none of the aliases are so labeled.
[IANACHARSET]p739

An ASCII-compatible character encoding is a single-byte or variable-length encoding in which the bytes 0x09,
0x0A, 0x0C, 0x0D, 0x20 - 0x22, 0x26, 0x27, 0x2C - 0x3F, 0x41 - 0x5A, and 0x61 - 0x7A, ignoring bytes that are the
second and later bytes of multibyte sequences, all correspond to single-byte sequences that map to the same Unicode
characters as those bytes in ANSI_X3.4-1968 (US-ASCII). [RFC1345]p740

Note: This includes such encodings as Shift_JIS, HZ-GB-2312, and variants of ISO-2022, even
though it is possible in these encodings for bytes like 0x70 to be part of longer sequences that
are unrelated to their interpretation as ASCII. It excludes such encodings as UTF-7, UTF-16,
GSM03.38, and EBCDIC variants.

The term Unicode character is used to mean a Unicode scalar value (i.e. any Unicode code point that is not a
surrogate code point). [UNICODE]p742

2.2 Conformance requirements

All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-
normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in the normative parts of this document are to be interpreted as described in RFC2119. For readability,
these words do not appear in all uppercase letters in this specification. [RFC2119]p741

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space characters" or "return
false and abort these steps") are to be interpreted with the meaning of the key word ("must", "should", "may", etc)
used in introducing the algorithm.

This specification describes the conformance criteria for user agents (relevant to implementors) and documents
(relevant to authors and authoring tool implementors).

Conforming documents are those that comply with all the conformance criteria for documents. For readability, some
of these conformance requirements are phrased as conformance requirements on authors; such requirements are
implicitly requirements on documents: by definition, all documents are assumed to have had an author. (In some
cases, that author may itself be a user agent — such user agents are subject to additional rules, as explained below.)

For example, if a requirement states that "authors must not use the foobar element", it would imply that
documents are not allowed to contain elements named foobar.

User agents fall into several (overlapping) categories with different conformance requirements.

Web browsers and other interactive user agents
Web browsers that support the XHTML syntaxp669 must process elements and attributes from the HTML
namespacep74 found in XML documents as described in this specification, so that users can interact with them,
unless the semantics of those elements have been overridden by other specifications.

A conforming XHTML processor would, upon finding an XHTML scriptp129 element in an XML document,
execute the script contained in that element. However, if the element is found within a transformation

2.1.6 Character encodings

30

expressed in XSLT (assuming the user agent also supports XSLT), then the processor would instead treat
the scriptp129 element as an opaque element that forms part of the transform.

Web browsers that support the HTML syntaxp577 must process documents labeled with an HTML MIME typep28 as
described in this specification, so that users can interact with them.

User agents that support scripting must also be conforming implementations of the IDL fragments in this
specification, as described in the Web IDL specification. [WEBIDL]p742

Note: Unless explicitly stated, specifications that override the semantics of HTML elements
do not override the requirements on DOM objects representing those elements. For example,
the scriptp129 element in the example above would still implement the HTMLScriptElementp130

interface.

Non-interactive presentation user agents
User agents that process HTML and XHTML documents purely to render non-interactive versions of them must
comply to the same conformance criteria as Web browsers, except that they are exempt from requirements
regarding user interaction.

Note: Typical examples of non-interactive presentation user agents are printers (static UAs)
and overhead displays (dynamic UAs). It is expected that most static non-interactive
presentation user agents will also opt to lack scripting supportp31.

A non-interactive but dynamic presentation UA would still execute scripts, allowing forms to be
dynamically submitted, and so forth. However, since the concept of "focus" is irrelevant when the user
cannot interact with the document, the UA would not need to support any of the focus-related DOM APIs.

User agents with no scripting support
Implementations that do not support scripting (or which have their scripting features disabled entirely) are
exempt from supporting the events and DOM interfaces mentioned in this specification. For the parts of this
specification that are defined in terms of an events model or in terms of the DOM, such user agents must still act
as if events and the DOM were supported.

Note: Scripting can form an integral part of an application. Web browsers that do not support
scripting, or that have scripting disabled, might be unable to fully convey the author's intent.

Conformance checkers
Conformance checkers must verify that a document conforms to the applicable conformance criteria described in
this specification. Automated conformance checkers are exempt from detecting errors that require interpretation
of the author's intent (for example, while a document is non-conforming if the content of a blockquotep159

element is not a quote, conformance checkers running without the input of human judgement do not have to
check that blockquotep159 elements only contain quoted material).

Conformance checkers must check that the input document conforms when parsed without a browsing
contextp463 (meaning that no scripts are run, and that the parser's scripting flagp597 is disabled), and should also
check that the input document conforms when parsed with a browsing contextp463 in which scripts execute, and
that the scripts never cause non-conforming states to occur other than transiently during script execution itself.
(This is only a "SHOULD" and not a "MUST" requirement because it has been proven to be impossible.
[COMPUTABLE]p738)

The term "HTML validator" can be used to refer to a conformance checker that itself conforms to the applicable
requirements of this specification.

XML DTDs cannot express all the conformance requirements of this specification. Therefore,
a validating XML processor and a DTD cannot constitute a conformance checker. Also, since
neither of the two authoring formats defined in this specification are applications of SGML, a
validating SGML system cannot constitute a conformance checker either.

To put it another way, there are three types of conformance criteria:

1. Criteria that can be expressed in a DTD.

2. Criteria that cannot be expressed by a DTD, but can still be checked by a machine.

3. Criteria that can only be checked by a human.

31

A conformance checker must check for the first two. A simple DTD-based validator only
checks for the first class of errors and is therefore not a conforming conformance checker
according to this specification.

Data mining tools
Applications and tools that process HTML and XHTML documents for reasons other than to either render the
documents or check them for conformance should act in accordance with the semantics of the documents that
they process.

A tool that generates document outlinesp153 but increases the nesting level for each paragraph and does
not increase the nesting level for each section would not be conforming.

Authoring tools and markup generators
Authoring tools and markup generators must generate conforming documentsp30. Conformance criteria that
apply to authors also apply to authoring tools, where appropriate.

Authoring tools are exempt from the strict requirements of using elements only for their specified purpose, but
only to the extent that authoring tools are not yet able to determine author intent. However, authoring tools
must not automatically misuse elements or encourage their users to do so.

For example, it is not conforming to use an addressp151 element for arbitrary contact information; that
element can only be used for marking up contact information for the author of the document or section.
However, since an authoring tool is likely unable to determine the difference, an authoring tool is exempt
from that requirement. This does not mean, though, that authoring tools can use addressp151 elements for
any block of italics text (for instance); it just means that the authoring tool doesn't have to verify that
when the user uses a tool for inserting contact information for a section, that the user really is doing that
and not inserting something else instead.

Note: In terms of conformance checking, an editor has to output documents that conform to
the same extent that a conformance checker will verify.

When an authoring tool is used to edit a non-conforming document, it may preserve the conformance errors in
sections of the document that were not edited during the editing session (i.e. an editing tool is allowed to round-
trip erroneous content). However, an authoring tool must not claim that the output is conformant if errors have
been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from structure or semantic data,
and tools that work on a What-You-See-Is-What-You-Get media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the structure in the source information
can be used to make informed choices regarding which HTML elements and attributes are most appropriate.

However, WYSIWYG tools are legitimate. WYSIWYG tools should use elements they know are appropriate, and
should not use elements that they do not know to be appropriate. This might in certain extreme cases mean
limiting the use of flow elements to just a few elements, like divp168, bp185, ip184, and spanp191 and making liberal
use of the stylep91 attribute.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling users to create well-
structured, semantically rich, media-independent content.

Some conformance requirements are phrased as requirements on elements, attributes, methods or objects. Such
requirements fall into two categories: those describing content model restrictions, and those describing
implementation behavior. Those in the former category are requirements on documents and authoring tools. Those in
the second category are requirements on user agents. Similarly, some conformance requirements are phrased as
requirements on authors; such requirements are to be interpreted as conformance requirements on the documents
that authors produce. (In other words, this specification does not distinguish between conformance criteria on authors
and conformance criteria on documents.)

Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the
end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow,
and not intended to be performant.)

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of
service attacks, to guard against running out of memory, or to work around platform-specific limitations.

Note: There is no implied relationship between document conformance requirements and
implementation conformance requirements. User agents are not free to handle non-conformant

32

documents as they please; the processing model described in this specification applies to
implementations regardless of the conformity of the input documents.

For compatibility with existing content and prior specifications, this specification describes two authoring formats: one
based on XML (referred to as the XHTML syntaxp669), and one using a custom formatp577 inspired by SGML (referred to
as the HTML syntaxp577). Implementations may support only one of these two formats, although supporting both is
encouraged.

The language in this specification assumes that the user agent expands all entity references, and therefore does not
include entity reference nodes in the DOM. If user agents do include entity reference nodes in the DOM, then user
agents must handle them as if they were fully expanded when implementing this specification. For example, if a
requirement talks about an element's child text nodes, then any text nodes that are children of an entity reference
that is a child of that element would be used as well. Entity references to unknown entities must be treated as if they
contained just an empty text node for the purposes of the algorithms defined in this specification.

This specification relies on several other underlying specifications.

XML
Implementations that support the XHTML syntaxp669 must support some version of XML, as well as its
corresponding namespaces specification, because that syntax uses an XML serialization with namespaces.
[XML]p743 [XMLNS]p743

DOM
The Document Object Model (DOM) is a representation — a model — of a document and its content. The DOM is
not just an API; the conformance criteria of HTML implementations are defined, in this specification, in terms of
operations on the DOM. [DOMCORE]p739

Implementations must support some version of DOM Core and DOM Events, because this specification is defined
in terms of the DOM, and some of the features are defined as extensions to the DOM Core interfaces.
[DOMCORE]p739 [DOMEVENTS]p739

In particular, the following features are defined in the DOM Core specification: [DOMCORE]p739

• Attr interface
• CDATASection interface
• Comment interface
• DOMImplementation interface
• Document interface
• DocumentFragment interface
• DocumentType interface
• DOMException interface
• Element interface
• Node interface
• NodeList interface
• ProcessingInstruction interface
• Text interface
• createDocument() method
• getElementById() method
• insertBefore() method
• childNodes attribute
• localName attribute
• parentNode attribute
• tagName attribute
• textContent attribute

The following features are defined in the DOM Events specification: [DOMEVENTS]p739

• Event interface
• EventTarget interface
• UIEvent interface
• click event
• DOMActivate event
• target attribute

Web IDL
The IDL fragments in this specification must be interpreted as required for conforming IDL fragments, as
described in the Web IDL specification. [WEBIDL]p742

2.2.1 Dependencies

33

Except where otherwise specified, if an IDL attribute that is a floating point number type (float) is assigned an
Infinity or Not-a-Number (NaN) value, a NOT_SUPPORTED_ERRp74 exception must be raised.

Except where otherwise specified, if a method with an argument that is a floating point number type (float) is
passed an Infinity or Not-a-Number (NaN) value, a NOT_SUPPORTED_ERRp74 exception must be raised.

JavaScript
Some parts of the language described by this specification only support JavaScript as the underlying scripting
language. [ECMA262]p739

Note: The term "JavaScript" is used to refer to ECMA262, rather than the official term
ECMAScript, since the term JavaScript is more widely known. Similarly, the MIME typep28

used to refer to JavaScript in this specification is text/javascript, since that is the most
commonly used type, despite it being an officially obsoleted typep18 according to RFC 4329.
[RFC4329]p741

Media Queries
Implementations must support some version of the Media Queries language. [MQ]p740

URIs, IRIs, IDNA
Implementations must support the semantics of URLsp54 defined in the URI and IRI specifications, as well as the
semantics of IDNA domain names defined in the Internationalizing Domain Names in Applications (IDNA)
specification. [RFC3986]p741 [RFC3987]p741 [RFC3490]p741

This specification does not require support of any particular network protocol, style sheet language, scripting
language, or any of the DOM specifications beyond those described above. However, the language described by this
specification is biased towards CSS as the styling language, JavaScript as the scripting language, and HTTP as the
network protocol, and several features assume that those languages and protocols are in use.

Note: This specification might have certain additional requirements on character encodings,
image formats, audio formats, and video formats in the respective sections.

HTML has a wide number of extensibility mechanisms that can be used for adding semantics in a safe manner:

• Authors can use the classp91 attribute to extend elements, effectively creating their own elements, while
using the most applicable existing "real" HTML element, so that browsers and other tools that don't know of
the extension can still support it somewhat well. This is the tack used by Microformats, for example.

• Authors can include data for inline client-side scripts or server-side site-wide scripts to process using the
data-*=""p92 attributes. These are guaranteed to never be touched by browsers, and allow scripts to include
data on HTML elements that scripts can then look for and process.

• Authors can use the <meta name="" content="">p119 mechanism to include page-wide metadata by
registering extensions to the predefined set of metadata namesp121.

• Authors can use the rel=""p404 mechanism to annotate links with specific meanings by registering
extensions to the predefined set of link typesp414. This is also used by Microformats.

• Authors can embed raw data using the <script type="">p129 mechanism with a custom type, for further
handling by a inline or server-side scripts.

• Authors can create pluginsp29 and invoke them using the embedp217 element. This is how Flash works.

• Authors can extend APIs using the JavaScript prototyping mechanism. This is widely used by script libraries,
for instance.

• Authors can use the microdata feature (the item="" and itemprop=""p428 attributes) to embed nested
name-value pairs of data to be shared with other applications and sites.

Vendor-specific proprietary user agent extensions to this specification are strongly discouraged. Documents must not
use such extensions, as doing so reduces interoperability and fragments the user base, allowing only users of specific
user agents to access the content in question.

2.2.2 Extensibility

34

If such extensions are nonetheless needed, e.g. for experimental purposes, then vendors are strongly urged to use one
of the following extension mechanisms:

For markup-level features that can be limited to the XML serialization and need not be supported in the HTML
serialization, vendors should use the namespace mechanism to define custom namespaces in which the non-standard
elements and attributes are supported.

For markup-level features that are intended for use with the HTML syntaxp577, extensions should be limited to new
attributes of the form "_vendor-feature", where vendor is a short string that identifies the vendor responsible for the
extension, and feature is the name of the feature. New element names should not be created. Using attributes for
such extensions exclusively allows extensions from multiple vendors to co-exist on the same element, which would not
be possible with elements. Using the "_vendor-feature" form allows extensions to be made without risk of conflicting
with future additions to the specification.

For instance, a browser named "FerretBrowser" could use "ferret" as a vendor prefix, while a browser named
"Mellblom Browser" could use "mb". If both of these browsers invented extensions that turned elements into
scratch-and-sniff areas, an author experimenting with these features could write:

<p>This smells of lemons!
<span _ferret-smellovision _fetter-smellcode="LEM01"

_mb-outputsmell _mb-smell="lemon juice"></p>

Attribute names starting with a U+005F LOW LINE character (_) are reserved for user agent use and are guaranteed to
never be formally added to the HTML language.

Note: Pages that use such attributes are by definition non-conforming.

For DOM extensions, e.g. new methods and IDL attributes, the new members should be prefixed by vendor-specific
strings to prevent clashes with future versions of this specification.

All extensions must be defined so that the use of extensions neither contradicts nor causes the non-conformance of
functionality defined in the specification.

For example, while strongly discouraged from doing so, an implementation "Foo Browser" could add a new IDL
attribute "fooTypeTime" to a control's DOM interface that returned the time it took the user to select the current
value of a control (say). On the other hand, defining a new control that appears in a form's elementsp316 array
would be in violation of the above requirement, as it would violate the definition of elementsp316 given in this
specification.

When vendor-neutral extensions to this specification are needed, either this specification can be updated accordingly,
or an extension specification can be written that overrides the requirements in this specification. When someone
applying this specification to their activities decides that they will recognize the requirements of such an extension
specification, it becomes an applicable specification for the purposes of conformance requirements in this
specification.

User agents must treat elements and attributes that they do not understand as semantically neutral; leaving them in
the DOM (for DOM processors), and styling them according to CSS (for CSS processors), but not inferring any meaning
from them.

When support for a feature is disabled (e.g. as an emergency measure to mitigate a security problem, or to aid in
development, or for performance reasons), user agents must act as if they had no support for the feature whatsoever,
and as if the feature was not mentioned in this specification. For example, if a particular feature is accessed via an
attribute in a Web IDL interface, the attribute itself would be omitted from the objects that implement that interface —
leaving the attribute on the object but making it return null or throw an exception is insufficient.

2.3 Case-sensitivity and string comparison

Comparing two strings in a case-sensitive manner means comparing them exactly, code point for code point.

Comparing two strings in an ASCII case-insensitive manner means comparing them exactly, code point for code
point, except that the characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL
LETTER Z) and the corresponding characters in the range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN
SMALL LETTER Z) are considered to also match.

35

Comparing two strings in a compatibility caseless manner means using the Unicode compatibility caseless match
operation to compare the two strings. [UNICODE]p742

Converting a string to ASCII uppercase means replacing all characters in the range U+0061 to U+007A (i.e. LATIN
SMALL LETTER A to LATIN SMALL LETTER Z) with the corresponding characters in the range U+0041 to U+005A (i.e.
LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z).

Converting a string to ASCII lowercase means replacing all characters in the range U+0041 to U+005A (i.e. LATIN
CAPITAL LETTER A to LATIN CAPITAL LETTER Z) with the corresponding characters in the range U+0061 to U+007A (i.e.
LATIN SMALL LETTER A to LATIN SMALL LETTER Z).

A string pattern is a prefix match for a string s when pattern is not longer than s and truncating s to pattern's length
leaves the two strings as matches of each other.

2.4 Common microsyntaxes

There are various places in HTML that accept particular data types, such as dates or numbers. This section describes
what the conformance criteria for content in those formats is, and how to parse them.

Note: Implementors are strongly urged to carefully examine any third-party libraries they might
consider using to implement the parsing of syntaxes described below. For example, date libraries
are likely to implement error handling behavior that differs from what is required in this
specification, since error-handling behavior is often not defined in specifications that describe
date syntaxes similar to those used in this specification, and thus implementations tend to vary
greatly in how they handle errors.

The space characters, for the purposes of this specification, are U+0020 SPACE, U+0009 CHARACTER TABULATION
(tab), U+000A LINE FEED (LF), U+000C FORM FEED (FF), and U+000D CARRIAGE RETURN (CR).

The White_Space characters are those that have the Unicode property "White_Space" in the Unicode PropList.txt
data file. [UNICODE]p742

Note: This should not be confused with the "White_Space" value (abbreviated "WS") of the
"Bidi_Class" property in the Unicode.txt data file.

The alphanumeric ASCII characters are those in the ranges U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
U+0041 LATIN CAPITAL LETTER A to U+005A LATIN CAPITAL LETTER Z, U+0061 LATIN SMALL LETTER A to U+007A
LATIN SMALL LETTER Z.

Some of the micro-parsers described below follow the pattern of having an input variable that holds the string being
parsed, and having a position variable pointing at the next character to parse in input.

For parsers based on this pattern, a step that requires the user agent to collect a sequence of characters means
that the following algorithm must be run, with characters being the set of characters that can be collected:

1. Let input and position be the same variables as those of the same name in the algorithm that invoked these
steps.

2. Let result be the empty string.

3. While position doesn't point past the end of input and the character at position is one of the characters,
append that character to the end of result and advance position to the next character in input.

4. Return result.

The step skip whitespace means that the user agent must collect a sequence of charactersp36 that are space
charactersp36. The step skip White_Space characters means that the user agent must collect a sequence of
charactersp36 that are White_Spacep36 characters. In both cases, the collected characters are not used. [UNICODE]p742

When a user agent is to strip line breaks from a string, the user agent must remove any U+000A LINE FEED (LF) and
U+000D CARRIAGE RETURN (CR) characters from that string.

When a user agent is to strip leading and trailing whitespace from a string, the user agent must remove all space
charactersp36 that are at the start or end of the string.

2.4.1 Common parser idioms

36

The code-point length of a string is the number of Unicode code points in that string.

A number of attributes are boolean attributes. The presence of a boolean attribute on an element represents the
true value, and the absence of the attribute represents the false value.

If the attribute is present, its value must either be the empty string or a value that is an ASCII case-insensitivep35

match for the attribute's canonical name, with no leading or trailing whitespace.

Note: The values "true" and "false" are not allowed on boolean attributes. To represent a false
value, the attribute has to be omitted altogether.

Some attributes are defined as taking one of a finite set of keywords. Such attributes are called enumerated
attributes. The keywords are each defined to map to a particular state (several keywords might map to the same
state, in which case some of the keywords are synonyms of each other; additionally, some of the keywords can be said
to be non-conforming, and are only in the specification for historical reasons). In addition, two default states can be
given. The first is the invalid value default, the second is the missing value default.

If an enumerated attribute is specified, the attribute's value must be an ASCII case-insensitivep35 match for one of the
given keywords that are not said to be non-conforming, with no leading or trailing whitespace.

When the attribute is specified, if its value is an ASCII case-insensitivep35 match for one of the given keywords then
that keyword's state is the state that the attribute represents. If the attribute value matches none of the given
keywords, but the attribute has an invalid value default, then the attribute represents that state. Otherwise, if the
attribute value matches none of the keywords but there is a missing value default state defined, then that is the state
represented by the attribute. Otherwise, there is no default, and invalid values must be ignored.

When the attribute is not specified, if there is a missing value default state defined, then that is the state represented
by the (missing) attribute. Otherwise, the absence of the attribute means that there is no state represented.

Note: The empty string can be a valid keyword.

2.4.4.1 Non-negative integers

A string is a valid non-negative integer if it consists of one or more characters in the range U+0030 DIGIT ZERO (0)
to U+0039 DIGIT NINE (9).

A valid non-negative integerp37 represents the number that is represented in base ten by that string of digits.

The rules for parsing non-negative integers are as given in the following algorithm. When invoked, the steps must
be followed in the order given, aborting at the first step that returns a value. This algorithm will return either zero, a
positive integer, or an error. Leading spaces are ignored. Trailing spaces and any trailing garbage characters are
ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip whitespacep36.

4. If position is past the end of input, return an error.

5. If the character indicated by position is a U+002B PLUS SIGN character (+), advance position to the next
character. (The "+" is ignored, but it is not conforming.)

6. If position is past the end of input, return an error.

7. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then
return an error.

2.4.2 Boolean attributes

2.4.3 Keywords and enumerated attributes

2.4.4 Numbers

37

8. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and
interpret the resulting sequence as a base-ten integer. Let value be that integer.

9. Return value.

2.4.4.2 Signed integers

A string is a valid integer if it consists of one or more characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9), optionally prefixed with a U+002D HYPHEN-MINUS character (-).

A valid integerp38 without a U+002D HYPHEN-MINUS (-) prefix represents the number that is represented in base ten
by that string of digits. A valid integerp38 with a U+002D HYPHEN-MINUS (-) prefix represents the number represented
in base ten by the string of digits that follows the U+002D HYPHEN-MINUS, subtracted from zero.

The rules for parsing integers are similar to the rules for non-negative integersp37, and are as given in the following
algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value.
This algorithm will return either an integer or an error. Leading spaces are ignored. Trailing spaces and trailing garbage
characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let sign have the value "positive".

4. Skip whitespacep36.

5. If position is past the end of input, return an error.

6. If the character indicated by position (the first character) is a U+002D HYPHEN-MINUS character (-):

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

Otherwise, if the character indicated by position (the first character) is a U+002B PLUS SIGN character (+):

1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)

2. If position is past the end of input, return an error.

7. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then
return an error.

8. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and
interpret the resulting sequence as a base-ten integer. Let value be that integer.

9. If sign is "positive", return value, otherwise return the result of subtracting value from zero.

2.4.4.3 Real numbers

A string is a valid floating point number if it consists of:

1. Optionally, a U+002D HYPHEN-MINUS character (-).
2. A series of one or more characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).
3. Optionally:

1. A single U+002E FULL STOP character (.).
2. A series of one or more characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

4. Optionally:
1. Either a U+0065 LATIN SMALL LETTER E character (e) or a U+0045 LATIN CAPITAL LETTER E

character (E).
2. Optionally, a U+002D HYPHEN-MINUS character (-) or U+002B PLUS SIGN character (+).
3. A series of one or more characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

A valid floating point numberp38 represents the number obtained by multiplying the significand by ten raised to the
power of the exponent, where the significand is the first number, interpreted as base ten (including the decimal point
and the number after the decimal point, if any, and interpreting the significand as a negative number if the whole
string starts with a U+002D HYPHEN-MINUS character (-) and the number is not zero), and where the exponent is the
number after the E, if any (interpreted as a negative number if there is a U+002D HYPHEN-MINUS character (-)

38

between the E and the number and the number is not zero, or else ignoring a U+002B PLUS SIGN character (+)
between the E and the number if there is one). If there is no E, then the exponent is treated as zero.

Note: The Infinity and Not-a-Number (NaN) values are not valid floating point numbersp38.

The best representation of the number n as a floating point number is the string obtained from applying the
JavaScript operator ToString to n. The JavaScript operator ToString is not uniquely determined. When there are multiple
possible strings that could be obtained from the JavaScript operator ToString for a particular value, the user agent
must always return the same string for that value (though it may differ from the value used by other user agents).

The rules for parsing floating point number values are as given in the following algorithm. This algorithm must
be aborted at the first step that returns something. This algorithm will return either a number or an error. Leading
spaces are ignored. Trailing spaces and garbage characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 1.

4. Let divisor have the value 1.

5. Let exponent have the value 1.

6. Skip whitespacep36.

7. If position is past the end of input, return an error.

8. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

1. Change value and divisor to −1.

2. Advance position to the next character.

3. If position is past the end of input, return an error.

9. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then
return an error.

10. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and
interpret the resulting sequence as a base-ten integer. Multiply value by that integer.

11. If position is past the end of input, jump to the step labeled conversion.

12. If the character indicated by position is a U+002E FULL STOP (.), run these substeps:

1. Advance position to the next character.

2. If position is past the end of input, or if the character indicated by position is not one of U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then jump to the step labeled conversion.

3. Fraction loop: Multiply divisor by ten.

4. Add the value of the character indicated by position, interpreted as a base-ten digit (0..9) and
divided by divisor, to value.

5. Advance position to the next character.

6. If position is past the end of input, then jump to the step labeled conversion.

7. If the character indicated by position is one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
jump back to the step labeled fraction loop in these substeps.

13. If the character indicated by position is a U+0065 LATIN SMALL LETTER E character (e) or a U+0045 LATIN
CAPITAL LETTER E character (E), run these substeps:

1. Advance position to the next character.

2. If position is past the end of input, then jump to the step labeled conversion.

3. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

39

1. Change exponent to −1.

2. Advance position to the next character.

3. If position is past the end of input, then jump to the step labeled conversion.

Otherwise, if the character indicated by position is a U+002B PLUS SIGN character (+):

1. Advance position to the next character.

2. If position is past the end of input, then jump to the step labeled conversion.

4. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE
(9), then jump to the step labeled conversion.

5. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE
(9), and interpret the resulting sequence as a base-ten integer. Multiply exponent by that integer.

6. Multiply value by ten raised to the exponentth power.

14. Conversion: Let S be the set of finite IEEE 754 single-precision floating point values except −0, but with two
special values added: 2128 and −2128.

15. Let rounded-value be the number in S that is closest to value, selecting the number with an even significand
if there are two equally close values. (The two special values 2128 and −2128 are considered to have even
significands for this purpose.)

16. If rounded-value is 2128 or −2128, return an error.

17. Return rounded-value.

2.4.4.4 Percentages and lengths

The rules for parsing dimension values are as given in the following algorithm. When invoked, the steps must be
followed in the order given, aborting at the first step that returns a value. This algorithm will return either a number
greater than or equal to 1.0, or an error; if a number is returned, then it is further categorized as either a percentage
or a length.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip whitespacep36.

4. If position is past the end of input, return an error.

5. If the character indicated by position is a U+002B PLUS SIGN character (+), advance position to the next
character.

6. Collect a sequence of charactersp36 that are U+0030 DIGIT ZERO (0) characters, and discard them.

7. If position is past the end of input, return an error.

8. If the character indicated by position is not one of U+0031 DIGIT ONE (1) to U+0039 DIGIT NINE (9), then
return an error.

9. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and
interpret the resulting sequence as a base-ten integer. Let value be that number.

10. If position is past the end of input, return value as a length.

11. If the character indicated by position is a U+002E FULL STOP character (.):

1. Advance position to the next character.

2. If position is past the end of input, or if the character indicated by position is not one of U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then return value as a length.

3. Let divisor have the value 1.

4. Fraction loop: Multiply divisor by ten.

40

5. Add the value of the character indicated by position, interpreted as a base-ten digit (0..9) and
divided by divisor, to value.

6. Advance position to the next character.

7. If position is past the end of input, then return value as a length.

8. If the character indicated by position is one of U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
return to the step labeled fraction loop in these substeps.

12. If position is past the end of input, return value as a length.

13. If the character indicated by position is a U+0025 PERCENT SIGN character (%), return value as a
percentage.

14. Return value as a length.

2.4.4.5 Lists of integers

A valid list of integers is a number of valid integersp38 separated by U+002C COMMA characters, with no other
characters (e.g. no space charactersp36). In addition, there might be restrictions on the number of integers that can be
given, or on the range of values allowed.

The rules for parsing a list of integers are as follows:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let numbers be an initially empty list of integers. This list will be the result of this algorithm.

4. If there is a character in the string input at position position, and it is either a U+0020 SPACE, U+002C
COMMA, or U+003B SEMICOLON character, then advance position to the next character in input, or to
beyond the end of the string if there are no more characters.

5. If position points to beyond the end of input, return numbers and abort.

6. If the character in the string input at position position is a U+0020 SPACE, U+002C COMMA, or U+003B
SEMICOLON character, then return to step 4.

7. Let negated be false.

8. Let value be 0.

9. Let started be false. This variable is set to true when the parser sees a number or a U+002D HYPHEN-MINUS
character (-).

10. Let got number be false. This variable is set to true when the parser sees a number.

11. Let finished be false. This variable is set to true to switch parser into a mode where it ignores characters
until the next separator.

12. Let bogus be false.

13. Parser: If the character in the string input at position position is:

↪ A U+002D HYPHEN-MINUS character
Follow these substeps:

1. If got number is true, let finished be true.

2. If finished is true, skip to the next step in the overall set of steps.

3. If started is true, let negated be false.

4. Otherwise, if started is false and if bogus is false, let negated be true.

5. Let started be true.

↪ A character in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9)
Follow these substeps:

41

1. If finished is true, skip to the next step in the overall set of steps.

2. Multiply value by ten.

3. Add the value of the digit, interpreted in base ten, to value.

4. Let started be true.

5. Let got number be true.

↪ A U+0020 SPACE character
↪ A U+002C COMMA character
↪ A U+003B SEMICOLON character

Follow these substeps:

1. If got number is false, return the numbers list and abort. This happens if an entry in the
list has no digits, as in "1,2,x,4".

2. If negated is true, then negate value.

3. Append value to the numbers list.

4. Jump to step 4 in the overall set of steps.

↪ A character in the range U+0001 to U+001F, U+0021 to U+002B, U+002D to U+002F,
U+003A, U+003C to U+0040, U+005B to U+0060, U+007b to U+007F (i.e. any other non-
alphabetic ASCII character)

Follow these substeps:

1. If got number is true, let finished be true.

2. If finished is true, skip to the next step in the overall set of steps.

3. Let negated be false.

↪ Any other character
Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. Let negated be false.

3. Let bogus be true.

4. If started is true, then return the numbers list, and abort. (The value in value is not
appended to the list first; it is dropped.)

14. Advance position to the next character in input, or to beyond the end of the string if there are no more
characters.

15. If position points to a character (and not to beyond the end of input), jump to the big Parser step above.

16. If negated is true, then negate value.

17. If got number is true, then append value to the numbers list.

18. Return the numbers list and abort.

2.4.4.6 Lists of dimensions

The rules for parsing a list of dimensions are as follows. These rules return a list of zero or more pairs consisting
of a number and a unit, the unit being one of percentage, relative, and absolute.

1. Let raw input be the string being parsed.

2. If the last character in raw input is a U+002C COMMA character (,), then remove that character from raw
input.

3. Split the string raw input on commasp53. Let raw tokens be the resulting list of tokens.

4. Let result be an empty list of number/unit pairs.

42

5. For each token in raw tokens, run the following substeps:

1. Let input be the token.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value be the number 0.

4. Let unit be absolute.

5. If position is past the end of input, set unit to relative and jump to the last substep.

6. If the character at position is a character in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9), collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9), interpret the resulting sequence as an integer in base ten, and increment value by
that integer.

7. If the character at position is a U+002E FULL STOP character (.), run these substeps:

1. Collect a sequence of charactersp36 consisting of space charactersp36 and characters in
the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). Let s be the resulting
sequence.

2. Remove all space charactersp36 in s.

3. If s is not the empty string, run these subsubsteps:

1. Let length be the number of characters in s (after the spaces were removed).

2. Let fraction be the result of interpreting s as a base-ten integer, and then
dividing that number by 10length.

3. Increment value by fraction.

8. Skip whitespacep36.

9. If the character at position is a U+0025 PERCENT SIGN character (%), then set unit to percentage.

Otherwise, if the character at position is a U+002A ASTERISK character (*), then set unit to
relative.

10. Add an entry to result consisting of the number given by value and the unit given by unit.

6. Return the list result.

In the algorithms below, the number of days in month month of year year is: 31 if month is 1, 3, 5, 7, 8, 10, or
12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or if year is a number divisible
by 4 but not by 100; and 28 otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]p739

The digits in the date and time syntaxes defined in this section must be characters in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9), used to express numbers in base ten.

Note: While the formats described here are intended to be subsets of the corresponding ISO8601
formats, this specification defines parsing rules in much more detail than ISO8601. Implementors
are therefore encouraged to carefully examine any date parsing libraries before using them to
implement the parsing rules described below; ISO8601 libraries might not parse dates and times
in exactly the same manner. [ISO8601]p739

2.4.5.1 Months

A month consists of a specific proleptic Gregorian date with no time-zone information and no date information beyond
a year and a month. [GREGORIAN]p739

A string is a valid month string representing a year year and month month if it consists of the following components
in the given order:

1. Four or more digitsp43, representing year, where year > 0

2.4.5 Dates and times

43

2. A U+002D HYPHEN-MINUS character (-)

3. Two digitsp43, representing the month month, in the range 1 ≤ month ≤ 12

The rules to parse a month string are as follows. This will return either a year and month, or nothing. If at any point
the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a month componentp44 to obtain year and month. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Return year and month.

The rules to parse a month component, given an input string and a position, are as follows. This will return either a
year and a month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that
point and returns nothing.

1. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not at least four characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the year.

2. If year is not a number greater than zero, then fail.

3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS
character, then fail. Otherwise, move position forwards one character.

4. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the month.

5. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

6. Return year and month.

2.4.5.2 Dates

A date consists of a specific proleptic Gregorian date with no time-zone information, consisting of a year, a month,
and a day. [GREGORIAN]p739

A string is a valid date string representing a year year, month month, and day day if it consists of the following
components in the given order:

1. A valid month stringp43, representing year and month

2. A U+002D HYPHEN-MINUS character (-)

3. Two digitsp43, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of days in the
month month and year yearp43

The rules to parse a date string are as follows. This will return either a date, or nothing. If at any point the algorithm
says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp44 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Let date be the date with year year, month month, and day day.

6. Return date.

The rules to parse a date component, given an input string and a position, are as follows. This will return either a
year, a month, and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at
that point and returns nothing.

44

1. Parse a month componentp44 to obtain year and month. If this returns nothing, then fail.

2. Let maxday be the number of days in month month of year yearp43.

3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS
character, then fail. Otherwise, move position forwards one character.

4. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the day.

5. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

6. Return year, month, and day.

2.4.5.3 Times

A time consists of a specific time with no time-zone information, consisting of an hour, a minute, a second, and a
fraction of a second.

A string is a valid time string representing an hour hour, a minute minute, and a second second if it consists of the
following components in the given order:

1. Two digitsp43, representing hour, in the range 0 ≤ hour ≤ 23

2. A U+003A COLON character (:)

3. Two digitsp43, representing minute, in the range 0 ≤ minute ≤ 59

4. Optionally (required if second is non-zero):
1. A U+003A COLON character (:)
2. Two digitsp43, representing the integer part of second, in the range 0 ≤ s ≤ 59
3. Optionally (required if second is not an integer):

1. A 002E FULL STOP character (.)
2. One or more digitsp43, representing the fractional part of second

Note: The second component cannot be 60 or 61; leap seconds cannot be represented.

The rules to parse a time string are as follows. This will return either a time, or nothing. If at any point the algorithm
says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a time componentp45 to obtain hour, minute, and second. If this returns nothing, then fail.

4. If position is not beyond the end of input, then fail.

5. Let time be the time with hour hour, minute minute, and second second.

6. Return time.

The rules to parse a time component, given an input string and a position, are as follows. This will return either an
hour, a minute, and a second, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted
at that point and returns nothing.

1. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the hour.

2. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

3. If position is beyond the end of input or if the character at position is not a U+003A COLON character, then
fail. Otherwise, move position forwards one character.

4. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the minute.

45

5. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

6. Let second be a string with the value "0".

7. If position is not beyond the end of input and the character at position is a U+003A COLON, then run these
substeps:

1. Advance position to the next character in input.

2. If position is beyond the end of input, or at the last character in input, or if the next two characters
in input starting at position are not two characters both in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9), then fail.

3. Collect a sequence of charactersp36 that are either characters in the range U+0030 DIGIT ZERO (0)
to U+0039 DIGIT NINE (9) or U+002E FULL STOP characters. If the collected sequence has more
than one U+002E FULL STOP characters, or if the last character in the sequence is a U+002E FULL
STOP character, then fail. Otherwise, let the collected string be second instead of its previous
value.

8. Interpret second as a base-ten number (possibly with a fractional part). Let second be that number instead
of the string version.

9. If second is not a number in the range 0 ≤ second < 60, then fail.

10. Return hour, minute, and second.

2.4.5.4 Local dates and times

A local date and time consists of a specific proleptic Gregorian date, consisting of a year, a month, and a day, and a
time, consisting of an hour, a minute, a second, and a fraction of a second, but expressed without a time zone.
[GREGORIAN]p739

A string is a valid local date and time string representing a date and time if it consists of the following components
in the given order:

1. A valid date stringp44 representing the date.

2. A U+0054 LATIN CAPITAL LETTER T character (T).

3. A valid time stringp45 representing the time.

The rules to parse a local date and time string are as follows. This will return either a date and time, or nothing. If
at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp44 to obtain year, month, and day. If this returns nothing, then fail.

4. If position is beyond the end of input or if the character at position is not a U+0054 LATIN CAPITAL LETTER T
character (T) then fail. Otherwise, move position forwards one character.

5. Parse a time componentp45 to obtain hour, minute, and second. If this returns nothing, then fail.

6. If position is not beyond the end of input, then fail.

7. Let date be the date with year year, month month, and day day.

8. Let time be the time with hour hour, minute minute, and second second.

9. Return date and time.

2.4.5.5 Global dates and times

A global date and time consists of a specific proleptic Gregorian date, consisting of a year, a month, and a day, and
a time, consisting of an hour, a minute, a second, and a fraction of a second, expressed with a time-zone offset,
consisting of a signed number of hours and minutes. [GREGORIAN]p739

46

A string is a valid global date and time string representing a date, time, and a time-zone offset if it consists of the
following components in the given order:

1. A valid date stringp44 representing the date

2. A U+0054 LATIN CAPITAL LETTER T character (T)

3. A valid time stringp45 representing the time

4. Either:
• A U+005A LATIN CAPITAL LETTER Z character (Z), allowed only if the time zone is UTC
• Or:

1. Either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-),
representing the sign of the time-zone offset

2. Two digitsp43, representing the hours component hour of the time-zone offset, in the
range 0 ≤ hour ≤ 23

3. A U+003A COLON character (:)
4. Two digitsp43, representing the minutes component minute of the time-zone offset, in the

range 0 ≤ minute ≤ 59

Note: This format allows for time-zone offsets from -23:59 to +23:59. In practice, however, the
range of offsets of actual time zones is -12:00 to +14:00, and the minutes component of offsets of
actual time zones is always either 00, 30, or 45.

The following are some examples of dates written as valid global date and time stringsp47.

"0037-12-13T00:00Z"
Midnight UTC on the birthday of Nero (the Roman Emperor). See below for further discussion on which date
this actually corresponds to.

"1979-10-14T12:00:00.001-04:00"
One millisecond after noon on October 14th 1979, in the time zone in use on the east coast of the USA
during daylight saving time.

"8592-01-01T02:09+02:09"
Midnight UTC on the 1st of January, 8592. The time zone associated with that time is two hours and nine
minutes ahead of UTC, which is not currently a real time zone, but is nonetheless allowed.

Several things are notable about these dates:

• Years with fewer than four digits have to be zero-padded. The date "37-12-13" would not be a valid
date.

• To unambiguously identify a moment in time prior to the introduction of the Gregorian calendar, the
date has to be first converted to the Gregorian calendar from the calendar in use at the time (e.g.
from the Julian calendar). The date of Nero's birth is the 15th of December 37, in the Julian Calendar,
which is the 13th of December 37 in the proleptic Gregorian Calendar.

• The time and time-zone offset components are not optional.

• Dates before the year one can't be represented as a datetime in this version of HTML.

• Time-zone offsets differ based on daylight savings time.

The best representation of the global date and time string datetime is the valid global date and time stringp47

representing datetime with the last character of the string not being a U+005A LATIN CAPITAL LETTER Z character (Z),
even if the time zone is UTC, and with a U+002D HYPHEN-MINUS character (-) representing the sign of the time-zone
offset when the time zone is UTC.

The rules to parse a global date and time string are as follows. This will return either a time in UTC, with
associated time-zone offset information for round tripping or display purposes, or nothing. If at any point the algorithm
says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date componentp44 to obtain year, month, and day. If this returns nothing, then fail.

47

4. If position is beyond the end of input or if the character at position is not a U+0054 LATIN CAPITAL LETTER T
character (T) then fail. Otherwise, move position forwards one character.

5. Parse a time componentp45 to obtain hour, minute, and second. If this returns nothing, then fail.

6. If position is beyond the end of input, then fail.

7. Parse a time-zone offset componentp48 to obtain timezonehours and timezoneminutes. If this returns nothing,
then fail.

8. If position is not beyond the end of input, then fail.

9. Let time be the moment in time at year year, month month, day day, hours hour, minute minute, second
second, subtracting timezonehours hours and timezoneminutes minutes. That moment in time is a moment in
the UTC time zone.

10. Let timezone be timezonehours hours and timezoneminutes minutes from UTC.

11. Return time and timezone.

The rules to parse a time-zone offset component, given an input string and a position, are as follows. This will
return either time-zone hours and time-zone minutes, or nothing. If at any point the algorithm says that it "fails", this
means that it is aborted at that point and returns nothing.

1. If the character at position is a U+005A LATIN CAPITAL LETTER Z character (Z), then:

1. Let timezonehours be 0.

2. Let timezoneminutes be 0.

3. Advance position to the next character in input.

Otherwise, if the character at position is either a U+002B PLUS SIGN (+) or a U+002D HYPHEN-MINUS (-),
then:

1. If the character at position is a U+002B PLUS SIGN (+), let sign be "positive". Otherwise, it's a
U+002D HYPHEN-MINUS (-); let sign be "negative".

2. Advance position to the next character in input.

3. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE
(9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
resulting sequence as a base-ten integer. Let that number be the timezonehours.

4. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then fail.

5. If sign is "negative", then negate timezonehours.

6. If position is beyond the end of input or if the character at position is not a U+003A COLON
character, then fail. Otherwise, move position forwards one character.

7. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE
(9). If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
resulting sequence as a base-ten integer. Let that number be the timezoneminutes.

8. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59, then fail.

9. If sign is "negative", then negate timezoneminutes.

Otherwise, fail.

2. Return timezonehours and timezoneminutes.

2.4.5.6 Weeks

A week consists of a week-year number and a week number representing a seven-day period starting on a Monday.
Each week-year in this calendaring system has either 52 or 53 such seven-day periods, as defined below. The seven-
day period starting on the Gregorian date Monday December 29th 1969 (1969-12-29) is defined as week number 1 in
week-year 1970. Consecutive weeks are numbered sequentially. The week before the number 1 week in a week-year
is the last week in the previous week-year, and vice versa. [GREGORIAN]p739

48

A week-year with a number year has 53 weeks if it corresponds to either a year year in the proleptic Gregorian
calendar that has a Thursday as its first day (January 1st), or a year year in the proleptic Gregorian calendar that has a
Wednesday as its first day (January 1st) and where year is a number divisible by 400, or a number divisible by 4 but
not by 100. All other week-years have 52 weeks.

The week number of the last day of a week-year with 53 weeks is 53; the week number of the last day of a week-
year with 52 weeks is 52.

Note: The week-year number of a particular day can be different than the number of the year that
contains that day in the proleptic Gregorian calendar. The first week in a week-year y is the week
that contains the first Thursday of the Gregorian year y.

A string is a valid week string representing a week-year year and week week if it consists of the following
components in the given order:

1. Four or more digitsp43, representing year, where year > 0

2. A U+002D HYPHEN-MINUS character (-)

3. A U+0057 LATIN CAPITAL LETTER W character (W)

4. Two digitsp43, representing the week week, in the range 1 ≤ week ≤ maxweek, where maxweek is the week
number of the last dayp49 of week-year year

The rules to parse a week string are as follows. This will return either a week-year number and week number, or
nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not at least four characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the year.

4. If year is not a number greater than zero, then fail.

5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS
character, then fail. Otherwise, move position forwards one character.

6. If position is beyond the end of input or if the character at position is not a U+0057 LATIN CAPITAL LETTER W
character (W), then fail. Otherwise, move position forwards one character.

7. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9). If the
collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence
as a base-ten integer. Let that number be the week.

8. Let maxweek be the week number of the last dayp49 of year year.

9. If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.

10. If position is not beyond the end of input, then fail.

11. Return the week-year number year and the week number week.

2.4.5.7 Vaguer moments in time

A string is a valid date or time string if it is also one of the following:

• A valid date stringp44.

• A valid time stringp45.

• A valid global date and time stringp47.

A string is a valid date or time string in content if it consists of zero or more White_Spacep36 characters, followed
by a valid date or time stringp49, followed by zero or more further White_Spacep36 characters.

A string is a valid date string with optional time if it is also one of the following:

49

• A valid date stringp44.

• A valid global date and time stringp47.

A string is a valid date string in content with optional time if it consists of zero or more White_Spacep36

characters, followed by a valid date string with optional timep49, followed by zero or more further White_Spacep36

characters.

The rules to parse a date or time string are as follows. The algorithm is invoked with a flag indicating if the in
attribute variant or the in content variant is to be used. The algorithm will return either a datep44, a timep45, a global
date and timep46, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point
and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. For the in content variant: skip White_Space charactersp36.

4. Set start position to the same position as position.

5. Set the date present and time present flags to true.

6. Parse a date componentp44 to obtain year, month, and day. If this fails, then set the date present flag to
false.

7. If date present is true, and position is not beyond the end of input, and the character at position is a U+0054
LATIN CAPITAL LETTER T character (T), then advance position to the next character in input.

Otherwise, if date present is true, and either position is beyond the end of input or the character at position
is not a U+0054 LATIN CAPITAL LETTER T character (T), then set time present to false.

Otherwise, if date present is false, set position back to the same position as start position.

8. If the time present flag is true, then parse a time componentp45 to obtain hour, minute, and second. If this
returns nothing, then fail.

9. If the date present and time present flags are both true, but position is beyond the end of input, then fail.

10. If the date present and time present flags are both true, parse a time-zone offset componentp48 to obtain
timezonehours and timezoneminutes. If this returns nothing, then fail.

11. For the in content variant: skip White_Space charactersp36.

12. If position is not beyond the end of input, then fail.

13. If the date present flag is true and the time present flag is false, then let date be the date with year year,
month month, and day day, and return date.

Otherwise, if the time present flag is true and the date present flag is false, then let time be the time with
hour hour, minute minute, and second second, and return time.

Otherwise, let time be the moment in time at year year, month month, day day, hours hour, minute minute,
second second, subtracting timezonehours hours and timezoneminutes minutes, that moment in time being a
moment in the UTC time zone; let timezone be timezonehours hours and timezoneminutes minutes from UTC;
and return time and timezone.

A simple color consists of three 8-bit numbers in the range 0..255, representing the red, green, and blue components
of the color respectively, in the sRGB color space. [SRGB]p742

A string is a valid simple color if it is exactly seven characters long, and the first character is a U+0023 NUMBER
SIGN character (#), and the remaining six characters are all in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9), U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F, U+0061 LATIN SMALL LETTER A to
U+0066 LATIN SMALL LETTER F, with the first two digits representing the red component, the middle two digits
representing the green component, and the last two digits representing the blue component, in hexadecimal.

2.4.6 Colors

50

A string is a valid lowercase simple color if it is a valid simple colorp50 and doesn't use any characters in the range
U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F.

The rules for parsing simple color values are as given in the following algorithm. When invoked, the steps must be
followed in the order given, aborting at the first step that returns a value. This algorithm will return either a simple
colorp50 or an error.

1. Let input be the string being parsed.

2. If input is not exactly seven characters long, then return an error.

3. If the first character in input is not a U+0023 NUMBER SIGN character (#), then return an error.

4. If the last six characters of input are not all in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F, U+0061 LATIN SMALL LETTER A to
U+0066 LATIN SMALL LETTER F, then return an error.

5. Let result be a simple colorp50.

6. Interpret the second and third characters as a hexadecimal number and let the result be the red component
of result.

7. Interpret the fourth and fifth characters as a hexadecimal number and let the result be the green component
of result.

8. Interpret the sixth and seventh characters as a hexadecimal number and let the result be the blue
component of result.

9. Return result.

The rules for serializing simple color values given a simple colorp50 are as given in the following algorithm:

1. Let result be a string consisting of a single U+0023 NUMBER SIGN character (#).

2. Convert the red, green, and blue components in turn to two-digit hexadecimal numbers using the digits
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) and U+0061 LATIN SMALL LETTER A to U+0066 LATIN
SMALL LETTER F, zero-padding if necessary, and append these numbers to result, in the order red, green,
blue.

3. Return result, which will be a valid lowercase simple colorp51.

Some obsolete legacy attributes parse colors in a more complicated manner, using the rules for parsing a legacy
color value, which are given in the following algorithm. When invoked, the steps must be followed in the order given,
aborting at the first step that returns a value. This algorithm will return either a simple colorp50 or an error.

1. Let input be the string being parsed.

2. If input is the empty string, then return an error.

3. If input is an ASCII case-insensitivep35 match for the string "transparent", then return an error.

4. If input is an ASCII case-insensitivep35 match for one of the keywords listed in the SVG color keywords or
CSS2 System Colors sections of the CSS3 Color specification, then return the simple colorp50 corresponding
to that keyword. [CSSCOLOR]p738

5. If input is four characters long, and the first character in input is a U+0023 NUMBER SIGN character (#), and
the last three characters of input are all in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F, and U+0061 LATIN SMALL LETTER A
to U+0066 LATIN SMALL LETTER F, then run these substeps:

1. Let result be a simple colorp50.

2. Interpret the second character of input as a hexadecimal digit; let the red component of result be
the resulting number multiplied by 17.

3. Interpret the third character of input as a hexadecimal digit; let the green component of result be
the resulting number multiplied by 17.

4. Interpret the fourth character of input as a hexadecimal digit; let the blue component of result be
the resulting number multiplied by 17.

51

http://www.w3.org/TR/css3-color/#svg-color
http://www.w3.org/TR/css3-color/#css2-system

5. Return result.

6. Replace any characters in input that have a Unicode code point greater than U+FFFF (i.e. any characters
that are not in the basic multilingual plane) with the two-character string "00".

7. If input is longer than 128 characters, truncate input, leaving only the first 128 characters.

8. If the first character in input is a U+0023 NUMBER SIGN character (#), remove it.

9. Replace any character in input that is not in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F, and U+0061 LATIN SMALL LETTER A
to U+0066 LATIN SMALL LETTER F with the character U+0030 DIGIT ZERO (0).

10. While input's length is zero or not a multiple of three, append a U+0030 DIGIT ZERO (0) character to input.

11. Split input into three strings of equal length, to obtain three components. Let length be the length of those
components (one third the length of input).

12. If length is greater than 8, then remove the leading length-8 characters in each component, and let length
be 8.

13. While length is greater than two and the first character in each component is a U+0030 DIGIT ZERO (0)
character, remove that character and reduce length by one.

14. If length is still greater than two, truncate each component, leaving only the first two characters in each.

15. Let result be a simple colorp50.

16. Interpret the first component as a hexadecimal number; let the red component of result be the resulting
number.

17. Interpret the second component as a hexadecimal number; let the green component of result be the
resulting number.

18. Interpret the third component as a hexadecimal number; let the blue component of result be the resulting
number.

19. Return result.

Note: The 2D graphics contextp254 has a separate color syntax that also handles opacity.

A set of space-separated tokens is a string containing zero or more words separated by one or more space
charactersp36, where words consist of any string of one or more characters, none of which are space charactersp36.

A string containing a set of space-separated tokensp52 may have leading or trailing space charactersp36.

An unordered set of unique space-separated tokens is a set of space-separated tokensp52 where none of the
words are duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokensp52 where none of the words
are duplicated but where the order of the tokens is meaningful.

Sets of space-separated tokensp52 sometimes have a defined set of allowed values. When a set of allowed values is
defined, the tokens must all be from that list of allowed values; other values are non-conforming. If no such set of
allowed values is provided, then all values are conforming.

When a user agent has to split a string on spaces, it must use the following algorithm:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let tokens be a list of tokens, initially empty.

4. Skip whitespacep36

5. While position is not past the end of input:

2.4.7 Space-separated tokens

52

1. Collect a sequence of charactersp36 that are not space charactersp36.

2. Add the string collected in the previous step to tokens.

3. Skip whitespacep36

6. Return tokens.

When a user agent has to remove a token from a string, it must use the following algorithm:

1. Let input be the string being modified.

2. Let token be the token being removed. It will not contain any space charactersp36.

3. Let output be the output string, initially empty.

4. Let position be a pointer into input, initially pointing at the start of the string.

5. If position is beyond the end of input, abort these steps.

6. If the character at position is a space characterp36:

1. Append the character at position to the end of output.

2. Advance position so it points at the next character in input.

3. Return to step 5 in the overall set of steps.

7. Otherwise, the character at position is the first character of a token. Collect a sequence of charactersp36 that
are not space charactersp36, and let that be s.

8. If s is exactly equal to token, then:

1. Skip whitespacep36 (in input).

2. Remove any space charactersp36 currently at the end of output.

3. If position is not past the end of input, and output is not the empty string, append a single U+0020
SPACE character at the end of output.

9. Otherwise, append s to the end of output.

10. Return to step 6 in the overall set of steps.

Note: This causes any occurrences of the token to be removed from the string, and any spaces
that were surrounding the token to be collapsed to a single space, except at the start and end of
the string, where such spaces are removed.

A set of comma-separated tokens is a string containing zero or more tokens each separated from the next by a
single U+002C COMMA character (,), where tokens consist of any string of zero or more characters, neither beginning
nor ending with space charactersp36, nor containing any U+002C COMMA characters (,), and optionally surrounded by
space charactersp36.

For instance, the string " a ,b,,d d " consists of four tokens: "a", "b", the empty string, and "d d". Leading and
trailing whitespace around each token doesn't count as part of the token, and the empty string can be a token.

Sets of comma-separated tokensp53 sometimes have further restrictions on what consists a valid token. When such
restrictions are defined, the tokens must all fit within those restrictions; other values are non-conforming. If no such
restrictions are specified, then all values are conforming.

When a user agent has to split a string on commas, it must use the following algorithm:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let tokens be a list of tokens, initially empty.

4. Token: If position is past the end of input, jump to the last step.

2.4.8 Comma-separated tokens

53

5. Collect a sequence of charactersp36 that are not U+002C COMMA characters (,). Let s be the resulting
sequence (which might be the empty string).

6. Remove any leading or trailing sequence of space charactersp36 from s.

7. Add s to tokens.

8. If position is not past the end of input, then the character at position is a U+002C COMMA character (,);
advance position past that character.

9. Jump back to the step labeled token.

10. Return tokens.

A valid hash-name reference to an element of type type is a string consisting of a U+0023 NUMBER SIGN character
(#) followed by a string which exactly matches the value of the name attribute of an element with type type in the
document.

The rules for parsing a hash-name reference to an element of type type are as follows:

1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if the first such character
in the string is the last character in the string, then return null and abort these steps.

2. Let s be the string from the character immediately after the first U+0023 NUMBER SIGN character in the
string being parsed up to the end of that string.

3. Return the first element of type type that has an idp89 attribute whose value is a case-sensitivep35 match for
s or a name attribute whose value is a compatibility caselessp36 match for s.

A string is a valid media query if it matches the media_query_list production of the Media Queries specification.
[MQ]p740

A string matches the environment of the user if it is the empty string, a string consisting of only space
charactersp36, or is a media query that matches the user's environment according to the definitions given in the Media
Queries specification. [MQ]p740

2.5 URLs

A URL is a string used to identify a resource.

A URLp54 is a valid URL if at least one of the following conditions holds:

• The URLp54 is a valid URI reference [RFC3986]p741.

• The URLp54 is a valid IRI reference and it has no query component. [RFC3987]p741

• The URLp54 is a valid IRI reference and its query component contains no unescaped non-ASCII characters.
[RFC3987]p741

• The URLp54 is a valid IRI reference and the character encodingp79 of the URL's Documentp33 is UTF-8 or
UTF-16. [RFC3987]p741

A URLp54 is a valid non-empty URL if it is a valid URLp54 but it is not the empty string.

To parse a URL url into its component parts, the user agent must use the parse an address algorithm defined by

the IRI specification. [RFC3987]p741

Parsing a URL can fail. If it does not, then results in the following components, again as defined by the IRI specification:

• <scheme>

2.4.9 References

2.4.10 Media queries

2.5.1 Terminology

54

• <host>
• <port>
• <hostport>
• <path>
• <query>
• <fragment>
• <host-specific>

To resolve a URL to an absolute URLp55 relative to either another absolute URLp55 or an element, the user agent must
use the following steps. Resolving a URL can result in an error, in which case the URL is not resolvable.

1. Let url be the URLp54 being resolved.

2. Let encoding be determined as follows:

↪ If the URL had a character encoding defined when the URL was created or defined
The URL character encoding is as defined.

↪ If the URL came from a script (e.g. as an argument to a method)
The URL character encoding is the script's URL character encodingp515.

↪ If the URL came from a DOM node (e.g. from an element)
The node has a Documentp33, and the URL character encoding is the document's character
encodingp79.

3. If encoding is a UTF-16 encoding, then change the value of encoding to UTF-8.

4. If the algorithm was invoked with an absolute URLp55 to use as the base URL, let base be that absolute
URLp55.

Otherwise, let base be the base URI of the element, as defined by the XML Base specification, with the base
URI of the document entity being defined as the document base URLp55 of the Documentp33 that owns the
element. [XMLBASE]p743

For the purposes of the XML Base specification, user agents must act as if all Documentp33 objects
represented XML documents.

Note: It is possible for xml:basep90 attributes to be present even in HTML fragments, as
such attributes can be added dynamically using script. (Such scripts would not be
conforming, however, as xml:basep90 attributes are not allowed in HTML documentsp75.)

The document base URL of a Documentp33 object is the absolute URLp55 obtained by running these
substeps:

1. Let fallback base url be the document's addressp75.

2. If fallback base url is about:blankp59, and the Documentp33 's browsing contextp463 has a creator
browsing contextp463, then let fallback base url be the document base URLp55 of the creator
Documentp463 instead.

3. If there is no basep114 element that is both a child of the head elementp80 and has an hrefp115

attribute, then the document base URLp55 is fallback base url.

4. Otherwise, let url be the value of the hrefp115 attribute of the first such element.

5. Resolvep55 url relative to fallback base url (thus, the basep114 hrefp115 attribute isn't affected by
xml:basep90 attributes).

6. The document base URLp55 is the result of the previous step if it was successful; otherwise it is
fallback base url.

5. Return the result of applying the resolve an address algorithm defined by the IRI specification to resolve

url relative to base using encoding encoding. [RFC3987]p741

A URLp54 is an absolute URL if resolvingp55 it results in the same output regardless of what it is resolved relative to,
and that output is not a failure.

55

An absolute URLp55 is a hierarchical URL if, when resolvedp55 and then parsedp54, there is a character immediately
after the <scheme>p54 component and it is a U+002F SOLIDUS character (/).

An absolute URLp55 is an authority-based URL if, when resolvedp55 and then parsedp54, there are two characters
immediately after the <scheme>p54 component and they are both U+002F SOLIDUS characters (//).

This specification defines the URL about:legacy-compat as a reserved, though unresolvable, about: URI, for use in
DOCTYPEp577s in HTML documentsp75 when needed for compatibility with XML tools. [ABOUT]p738

This specification defines the URL about:srcdoc as a reserved, though unresolvable, about: URI, that is used as the
document's addressp75 of iframe srcdoc documentsp211. [ABOUT]p738

Note: The term "URL" in this specification is used in a manner distinct from the precise technical
meaning it is given in RFC 3986. Readers familiar with that RFC will find it easier to read this
specification if they pretend the term "URL" as used herein is really called something else
altogether. This is a willful violationp18 of RFC 3986. [RFC3986]p741

When an xml:basep90 attribute changes, the attribute's element, and all descendant elements, are affected by a base
URL changep56.

When a document's document base URLp55 changes, all elements in that document are affected by a base URL
changep56.

When an element is moved from one document to another, if the two documents have different base URLsp55, then
that element and all its descendants are affected by a base URL changep56.

When an element is affected by a base URL change, it must act as described in the following list:

↪ If the element is a hyperlink elementp404

If the absolute URLp55 identified by the hyperlink is being shown to the user, or if any data derived from that
URL is affecting the display, then the hrefp404 attribute should be re-resolvedp55 relative to the element and
the UI updated appropriately.

For example, the CSS :linkp419/:visitedp419 pseudo-classes might have been affected.

If the hyperlink has a pingp404 attribute and its absolute URL(s)p55 are being shown to the user, then the
pingp404 attribute's tokens should be re-resolvedp55 relative to the element and the UI updated appropriately.

↪ If the element is a qp175, blockquotep159, sectionp140, articlep144, insp193, or delp194 element with a cite
attribute

If the absolute URLp55 identified by the cite attribute is being shown to the user, or if any data derived from
that URL is affecting the display, then the URLp54 should be re-resolvedp55 relative to the element and the UI
updated appropriately.

↪ Otherwise
The element is not directly affected.

Changing the base URL doesn't affect the image displayed by imgp196 elements, although subsequent
accesses of the srcp199 IDL attribute from script will return a new absolute URLp55 that might no longer
correspond to the image being shown.

An interface that has a complement of URL decomposition IDL attributes will have seven attributes with the
following definitions:

attribute DOMString protocol;
attribute DOMString host;
attribute DOMString hostname;
attribute DOMString port;
attribute DOMString pathname;

2.5.2 Dynamic changes to base URLs

2.5.3 Interfaces for URL manipulation

56

attribute DOMString search;
attribute DOMString hash;

This box is non-normative. Implementation requirements are given below this box.

o . protocolp58 [= value]
Returns the current scheme of the underlying URL.
Can be set, to change the underlying URL's scheme.

o . hostp58 [= value]
Returns the current host and port (if it's not the default port) in the underlying URL.
Can be set, to change the underlying URL's host and port.
The host and the port are separated by a colon. The port part, if omitted, will be assumed to be the current
scheme's default port.

o . hostnamep58 [= value]
Returns the current host in the underlying URL.
Can be set, to change the underlying URL's host.

o . portp58 [= value]
Returns the current port in the underlying URL.
Can be set, to change the underlying URL's port.

o . pathnamep58 [= value]
Returns the current path in the underlying URL.
Can be set, to change the underlying URL's path.

o . searchp58 [= value]
Returns the current query component in the underlying URL.
Can be set, to change the underlying URL's query component.

o . hashp58 [= value]
Returns the current fragment identifier in the underlying URL.
Can be set, to change the underlying URL's fragment identifier.

The attributes defined to be URL decomposition IDL attributes must act as described for the attributes with the same
corresponding names in this section.

In addition, an interface with a complement of URL decomposition IDL attributes will define an input, which is a URLp54

that the attributes act on, and a common setter action, which is a set of steps invoked when any of the attributes'
setters are invoked.

The seven URL decomposition IDL attributes have similar requirements.

On getting, if the inputp57 is an absolute URLp55 that fulfills the condition given in the "getter condition" column
corresponding to the attribute in the table below, the user agent must return the part of the inputp57 URL given in the
"component" column, with any prefixes specified in the "prefix" column appropriately added to the start of the string
and any suffixes specified in the "suffix" column appropriately added to the end of the string. Otherwise, the attribute
must return the empty string.

On setting, the new value must first be mutated as described by the "setter preprocessor" column, then mutated by
%-escaping any characters in the new value that are not valid in the relevant component as given by the "component"
column. Then, if the inputp57 is an absolute URLp55 and the resulting new value fulfills the condition given in the "setter
condition" column, the user agent must make a new string output by replacing the component of the URL given by the
"component" column in the inputp57 URL with the new value; otherwise, the user agent must let output be equal to the
inputp57. Finally, the user agent must invoke the common setter actionp57 with the value of output.

When replacing a component in the URL, if the component is part of an optional group in the URL syntax consisting of
a character followed by the component, the component (including its prefix character) must be included even if the
new value is the empty string.

57

Note: The previous paragraph applies in particular to the ":" before a <port> component, the "?"
before a <query> component, and the "#" before a <fragment> component.

For the purposes of the above definitions, URLs must be parsed using the URL parsing rulesp54 defined in this
specification.

Attribute Component Getter
Condition

Prefix Suffix Setter Preprocessor Setter Condition

protocol <scheme>p54 — — U+003A
COLON
(:)

Remove all trailing U+003A COLON characters (:) The new value is not
the empty string

host <hostport>p55 inputp57 is an
authority-based
URLp56

— — — The new value is not
the empty string and
inputp57 is an
authority-based
URLp56

hostname <host>p55 inputp57 is an
authority-based
URLp56

— — Remove all leading U+002F SOLIDUS characters (/) The new value is not
the empty string and
inputp57 is an
authority-based
URLp56

port <port>p55 inputp57 is an
authority-based
URLp56, and
contained a
<port>p55

component
(possibly an
empty one)

— — Remove all characters in the new value from the
first that is not in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9), if any. Remove any
leading U+0030 DIGIT ZERO characters (0) in the
new value. If the resulting string is empty, set it to
a single U+0030 DIGIT ZERO character (0).

inputp57 is an
authority-based
URLp56, and the new
value, when
interpretted as a
base-ten integer, is
less than or equal to
65535

pathname <path>p55 inputp57 is a
hierarchical
URLp56

— — If it has no leading U+002F SOLIDUS character (/),
prepend a U+002F SOLIDUS character (/) to the
new value

inputp57 is
hierarchical

search <query>p55 inputp57 is a
hierarchical
URLp56, and
contained a
<query>p55

component
(possibly an
empty one)

U+003F
QUESTION
MARK (?)

— Remove one leading U+003F QUESTION MARK
character (?), if any

inputp57 is a
hierarchical URLp56

hash <fragment>p55 inputp57

contained a non-
empty
<fragment>p55

component

U+0023
NUMBER
SIGN (#)

— Remove one leading U+0023 NUMBER SIGN
character (#), if any

—

The table below demonstrates how the getter condition for searchp58 results in different results depending on
the exact original syntax of the URL:

Input URL searchp58

value
Explanation

http://example.com/ empty string No <query>p55 component in input URL.
http://example.com/? ? There is a <query>p55 component, but it is empty. The question mark in the resulting value

is the prefix.
http://example.com/
?test

?test The <query>p55 component has the value "test".

http://example.com/
?test#

?test The (empty) <fragment>p55 component is not part of the <query>p55 component.

2.6 Fetching resources

When a user agent is to fetch a resource or URLp54, optionally from an origin origin, and optionally with a synchronous
flag and/or a manual redirect flag, the following steps must be run. (When a URL is to be fetched, the URL identifies a
resource to be obtained.)

1. Generate the address of the resource from which Request-URIs are obtained as required by HTTP for the
Referer (sic) header from the document's current addressp75 of the appropriate Documentp33 as given by the
following list. [HTTP]p739

58

↪ When navigatingp484

The active documentp463 of the source browsing contextp484.

↪ When fetching resources for an element
The element's Documentp33.

↪ When fetching resources in response to a call to an API
The entry scriptp466 's documentp515.

Remove any <fragment>p55 component from the generated address of the resource from which Request-
URIs are obtained.

If the originp474 of the appropriate Documentp33 is not a scheme/host/port tuple, then the Referer (sic)
header must be omitted, regardless of its value.

2. If the algorithm was not invoked with the synchronous flag, perform the remaining steps asynchronously.

3. This is the main step.

If the resource is identified by an absolute URLp55, and the resource is to be obtained using an idempotent
action (such as an HTTP GET or equivalentp60), and it is already being downloaded for other reasons (e.g.
another invocation of this algorithm), and this request would be identical to the previous one (e.g. same
Accept and Origin headers), and the user agent is configured such that it is to reuse the data from the
existing download instead of initiating a new one, then use the results of the existing download instead of
starting a new one.

Otherwise, at a time convenient to the user and the user agent, download (or otherwise obtain) the
resource, applying the semantics of the relevant specifications (e.g. performing an HTTP GET or POST
operation, or reading the file from disk, dereferencing javascript: URLsp518, etc).

For the purposes of the Referer (sic) header, use the address of the resource from which Request-URIs are
obtained generated in the earlier step.

For the purposes of the Origin header, if the fetching algorithmp58 was explicitly initiated from an origin,
then the origin that initiated the HTTP request is origin. Otherwise, this is a request from a "privacy-
sensitive" context. [ORIGIN]p740

If the resource is identified by the URLp54 about:blank, then the resource is immediately available and
consists of the empty string, with no metadata.

4. If there are cookies to be set, then the user agent must run the following substeps:

1. Wait until ownership of the storage mutexp517 can be taken by this instance of the fetchingp58

algorithm.

2. Take ownership of the storage mutexp517.

3. Update the cookies. [COOKIES]p738

4. Release the storage mutexp517 so that it is once again free.

5. If the fetched resource is an HTTP redirect or equivalentp60, then:

↪ If the manual redirect flag is set
Continue, using the fetched resource (the redirect) as the result of the algorithm.

↪ Otherwise
First, apply any relevant requirements for redirects (such as showing any appropriate prompts).
Then, redo main step, but using the target of the redirect as the resource to fetch, rather than the
original resource.

Note: The HTTP specification requires that 301, 302, and 307 redirects, when
applied to methods other than the safe methods, not be followed without user
confirmation. That would be an appropriate prompt for the purposes of the
requirement in the paragraph above. [HTTP]p739

6. If the algorithm was not invoked with the synchronous flag: When the resource is available, or if there is an
error of some description, queue a taskp517 that uses the resource as appropriate. If the resource can be
processed incrementally, as, for instance, with a progressively interlaced JPEG or an HTML file, additional

59

tasks may be queued to process the data as it is downloaded. The task sourcep517 for these tasksp517 is the
networking task sourcep518.

Otherwise, return the resource or error information to the calling algorithm.

If the user agent can determine the actual length of the resource being fetchedp58 for an instance of this algorithm,
and if that length is finite, then that length is the file's size. Otherwise, the subject of the algorithm (that is, the
resource being fetched) has no known sizep60. (For example, the HTTP Content-Length header might provide this
information.)

The user agent must also keep track of the number of bytes downloaded for each instance of this algorithm. This
number must exclude any out-of-band metadata, such as HTTP headers.

Note: The application cachep497 processing model introduces some changes to the networking
modelp510 to handle the returning of cached resources.

Note: The navigationp484 processing model handles redirects itself, overriding the redirection
handling that would be done by the fetching algorithm.

Note: Whether the type sniffing rulesp61 apply to the fetched resource depends on the algorithm
that invokes the rules — they are not always applicable.

User agents can implement a variety of transfer protocols, but this specification mostly defines behavior in terms of
HTTP. [HTTP]p739

The HTTP GET method is equivalent to the default retrieval action of the protocol. For example, RETR in FTP. Such
actions are idempotent and safe, in HTTP terms.

The HTTP response codes are equivalent to statuses in other protocols that have the same basic meanings. For
example, a "file not found" error is equivalent to a 404 code, a server error is equivalent to a 5xx code, and so on.

The HTTP headers are equivalent to fields in other protocols that have the same basic meaning. For example, the
HTTP authentication headers are equivalent to the authentication aspects of the FTP protocol.

Anything in this specification that refers to HTTP also applies to HTTP-over-TLS, as represented by URLsp54 representing
the https scheme.

⚠Warning! User agents should report certificate errors to the user and must either refuse to download
resources sent with erroneous certificates or must act as if such resources were in fact served with no
encryption.

User agents should warn the user that there is a potential problem whenever the user visits a page that the user has
previously visited, if the page uses less secure encryption on the second visit.

Not doing so can result in users not noticing man-in-the-middle attacks.

If a user connects to a server with a self-signed certificate, the user agent could allow the connection but just
act as if there had been no encryption. If the user agent instead allowed the user to override the problem and
then displayed the page as if it was fully and safely encrypted, the user could be easily tricked into accepting
man-in-the-middle connections.

If a user connects to a server with full encryption, but the page then refers to an external resource that has an
expired certificate, then the user agent will act as if the resource was unavailable, possibly also reporting the
problem to the user. If the user agent instead allowed the resource to be used, then an attacker could just look
for "secure" sites that used resources from a different host and only apply man-in-the-middle attacks to that
host, for example taking over scripts in the page.

If a user bookmarks a site that uses a CA-signed certificate, and then later revisits that site directly but the site
has started using a self-signed certificate, the user agent could warn the user that a man-in-the-middle attack is
likely underway, instead of simply acting as if the page was not encrypted.

2.6.1 Protocol concepts

2.6.2 Encrypted HTTP and related security concerns

60

The Content-Type metadata of a resource must be obtained and interpreted in a manner consistent with the
requirements of the Content-Type Processing Model specification. [MIMESNIFF]p740

The algorithm for extracting an encoding from a Content-Type, given a string s, is given in the Content-Type
Processing Model specification. It either returns an encoding or nothing. [MIMESNIFF]p740

The above is out of date now that the relevant section has been removed from MIMESNIFF. Stay tuned; I'll bring it
back here soon.

The sniffed type of a resource must be found in a manner consistent with the requirements given in the Content-
Type Processing Model specification for finding the sniffed-type of the relevant sequence of octets. [MIMESNIFF]p740

The rules for sniffing images specifically and the rules for distingushing if a resource is text or binary are
also defined in the Content-Type Processing Model specification. Both sets of rules return a MIME typep28 as their
result. [MIMESNIFF]p740

⚠Warning! It is imperative that the rules in the Content-Type Processing Model specification be followed
exactly. When a user agent uses different heuristics for content type detection than the server expects,
security problems can occur. For more details, see the Content-Type Processing Model specification.
[MIMESNIFF]p740

2.7 Common DOM interfaces

Some IDL attributes are defined to reflect a particular content attribute. This means that on getting, the IDL attribute
returns the current value of the content attribute, and on setting, the IDL attribute changes the value of the content
attribute to the given value.

In general, on getting, if the content attribute is not present, the IDL attribute must act as if the content attribute's
value is the empty string; and on setting, if the content attribute is not present, it must first be added.

If a reflecting IDL attribute is a DOMString attribute whose content attribute is defined to contain a URLp54, then on
getting, the IDL attribute must resolvep55 the value of the content attribute relative to the element and return the
resulting absolute URLp55 if that was successful, or the empty string otherwise; and on setting, must set the content
attribute to the specified literal value. If the content attribute is absent, the IDL attribute must return the default value,
if the content attribute has one, or else the empty string.

If a reflecting IDL attribute is a DOMString attribute whose content attribute is defined to contain one or more URLsp54,
then on getting, the IDL attribute must split the content attribute on spacesp52 and return the concatenation of
resolvingp55 each token URL to an absolute URLp55 relative to the element, with a single U+0020 SPACE character
between each URL, ignoring any tokens that did not resolve successfully. If the content attribute is absent, the IDL
attribute must return the default value, if the content attribute has one, or else the empty string. On setting, the IDL
attribute must set the content attribute to the specified literal value.

If a reflecting IDL attribute is a DOMString whose content attribute is an enumerated attributep37, and the IDL attribute
is limited to only known values, then, on getting, the IDL attribute must return the conforming value associated
with the state the attribute is in (in its canonical case), or the empty string if the attribute is in a state that has no
associated keyword value; and on setting, if the new value is an ASCII case-insensitivep35 match for one of the
keywords given for that attribute, then the content attribute must be set to the conforming value associated with the
state that the attribute would be in if set to the given new value, otherwise, if the new value is the empty string, then
the content attribute must be removed, otherwise, the content attribute must be set to the given new value.

If a reflecting IDL attribute is a DOMString but doesn't fall into any of the above categories, then the getting and
setting must be done in a transparent, case-preserving manner.

If a reflecting IDL attribute is a boolean attribute, then on getting the IDL attribute must return true if the content
attribute is set, and false if it is absent. On setting, the content attribute must be removed if the IDL attribute is set to
false, and must be set to have the same value as its name if the IDL attribute is set to true. (This corresponds to the
rules for boolean content attributesp37.)

If a reflecting IDL attribute is a signed integer type (long) then, on getting, the content attribute must be parsed
according to the rules for parsing signed integersp38, and if that is successful, and the value is in the range of the IDL
attribute's type, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or

**
**

2.6.3 Determining the type of a resource

2.7.1 Reflecting content attributes in IDL attributes

61

if the attribute is absent, then the default value must be returned instead, or 0 if there is no default value. On setting,
the given value must be converted to the shortest possible string representing the number as a valid integerp38 and
then that string must be used as the new content attribute value.

If a reflecting IDL attribute is a signed integer type (long) that is limited to only non-negative numbers then, on
getting, the content attribute must be parsed according to the rules for parsing non-negative integersp37, and if that is
successful, and the value is in the range of the IDL attribute's type, the resulting value must be returned. If, on the
other hand, it fails or returns an out of range value, or if the attribute is absent, the default value must be returned
instead, or −1 if there is no default value. On setting, if the value is negative, the user agent must fire an
INDEX_SIZE_ERRp74 exception. Otherwise, the given value must be converted to the shortest possible string
representing the number as a valid non-negative integerp37 and then that string must be used as the new content
attribute value.

If a reflecting IDL attribute is an unsigned integer type (unsigned long) then, on getting, the content attribute must
be parsed according to the rules for parsing non-negative integersp37, and if that is successful, and the value is in the
range of the IDL attribute's type, the resulting value must be returned. If, on the other hand, it fails or returns an out of
range value, or if the attribute is absent, the default value must be returned instead, or 0 if there is no default value.
On setting, the given value must be converted to the shortest possible string representing the number as a valid non-
negative integerp37 and then that string must be used as the new content attribute value.

If a reflecting IDL attribute is an unsigned integer type (unsigned long) that is limited to only non-negative
numbers greater than zero, then the behavior is similar to the previous case, but zero is not allowed. On getting,
the content attribute must first be parsed according to the rules for parsing non-negative integersp37, and if that is
successful, and the value is in the range of the IDL attribute's type, the resulting value must be returned. If, on the
other hand, it fails or returns an out of range value, or if the attribute is absent, the default value must be returned
instead, or 1 if there is no default value. On setting, if the value is zero, the user agent must fire an INDEX_SIZE_ERRp74

exception. Otherwise, the given value must be converted to the shortest possible string representing the number as a
valid non-negative integerp37 and then that string must be used as the new content attribute value.

If a reflecting IDL attribute is a floating point number type (float), then, on getting, the content attribute must be
parsed according to the rules for parsing floating point number valuesp39, and if that is successful, the resulting value
must be returned. If, on the other hand, it fails, or if the attribute is absent, the default value must be returned
instead, or 0.0 if there is no default value. On setting, the given value must be converted to the best representation of
the number as a floating point numberp39 and then that string must be used as the new content attribute value.

Note: The values Infinity and Not-a-Number (NaN) values throw an exception on setting, as
defined earlierp34.

If a reflecting IDL attribute is of the type DOMTokenListp69 or DOMSettableTokenListp71, then on getting it must return
a DOMTokenListp69 or DOMSettableTokenListp71 object (as appropriate) whose underlying string is the element's
corresponding content attribute. When the object mutates its underlying string, the content attribute must itself be
immediately mutated. When the attribute is absent, then the string represented by the object is the empty string;
when the object mutates this empty string, the user agent must add the corresponding content attribute, with its
value set to the value it would have been set to after mutating the empty string. The same DOMTokenListp69 or
DOMSettableTokenListp71 object must be returned every time for each attribute.

If an element with no attributes has its element.classList.remove()p70 method invoked, the underlying string
won't be changed, since the result of removing any token from the empty string is still the empty string.
However, if the element.classList.add()p70 method is then invoked, a classp91 attribute will be added to the
element with the value of the token to be added.

If a reflecting IDL attribute has the type HTMLElementp85, or an interface that descends from HTMLElementp85, then, on
getting, it must run the following algorithm (stopping at the first point where a value is returned):

1. If the corresponding content attribute is absent, then the IDL attribute must return null.

2. Let candidate be the element that the document.getElementById()p33 method would find when called on
the content attribute's document if it was passed as its argument the current value of the corresponding
content attribute.

3. If candidate is null, or if it is not type-compatible with the IDL attribute, then the IDL attribute must return
null.

4. Otherwise, it must return candidate.

On setting, if the given element has an idp89 attribute, then the content attribute must be set to the value of that idp89

attribute. Otherwise, the IDL attribute must be set to the empty string.

62

The HTMLCollectionp63, HTMLAllCollectionp64, HTMLFormControlsCollectionp65, HTMLOptionsCollectionp66, and
HTMLPropertiesCollectionp68 interfaces represent various lists of DOM nodes. Collectively, objects implementing
these interfaces are called collections.

When a collectionp63 is created, a filter and a root are associated with the collection.

For example, when the HTMLCollectionp63 object for the document.imagesp81 attribute is created, it is
associated with a filter that selects only imgp196 elements, and rooted at the root of the document.

The collectionp63 then represents a livep29 view of the subtree rooted at the collection's root, containing only nodes
that match the given filter. The view is linear. In the absence of specific requirements to the contrary, the nodes within
the collection must be sorted in tree orderp29.

Note: The rowsp292 list is not in tree order.

An attribute that returns a collection must return the same object every time it is retrieved.

2.7.2.1 HTMLCollection

The HTMLCollectionp63 interface represents a generic collectionp63 of elements.

interface HTMLCollection {
readonly attribute unsigned long length;
caller getter object item(in unsigned long index); // only returns Element
caller getter object namedItem(in DOMString name); // only returns Element

};

This box is non-normative. Implementation requirements are given below this box.

collection . lengthp63

Returns the number of elements in the collection.

element = collection . itemp63(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree orderp29.
Returns null if index is out of range.

element = collection . namedItemp63(name)
collection[name]
collection(name)

Returns the first item with IDp89 or name name from the collection.

Returns null if no element with that IDp89 or name could be found.

Only ap169, appletp701, areap280, embedp217, formp314, framep705, framesetp704, iframep211, imgp196, and
objectp220 elements can have a name for the purpose of this method; their name is given by the value of
their name attribute.

The object's indices of the supported indexed properties are the numbers in the range zero to one less than the
number of nodes represented by the collectionp63. If there are no such elements, then there are no supported indexed
properties.

The length attribute must return the number of nodes represented by the collectionp63.

The item(index) method must return the indexth node in the collection. If there is no indexth node in the collection,
then the method must return null.

The names of the supported named properties consist of the values of the name attributes of each ap169, appletp701,
areap280, embedp217, formp314, framep705, framesetp704, iframep211, imgp196, and objectp220 element represented by the
collectionp63 with a name attribute, plus the list of IDs that the elements represented by the collectionp63 have.

2.7.2 Collections

63

The namedItem(key) method must return the first node in the collection that matches the following requirements:

• It is an ap169, appletp701, areap280, embedp217, formp314, framep705, framesetp704, iframep211, imgp196, or
objectp220 element with a name attribute equal to key, or,

• It is an element with an IDp89 equal to key.

If no such elements are found, then the method must return null.

2.7.2.2 HTMLAllCollection

The HTMLAllCollectionp64 interface represents a generic collectionp63 of elements just like HTMLCollectionp63, with
the exception that its namedItem()p64 method returns an HTMLCollectionp63 object when there are multiple matching
elements.

interface HTMLAllCollection : HTMLCollection {
// inherits length and item()
caller getter object namedItem(in DOMString name); // overrides inherited namedItem()
HTMLAllCollection tags(in DOMString tagName);

};

This box is non-normative. Implementation requirements are given below this box.

collection . lengthp63

Returns the number of elements in the collection.

element = collection . itemp63(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree orderp29.
Returns null if index is out of range.

element = collection . namedItemp64(name)
collection = collection . namedItemp64(name)
collection[name]
collection(name)

Returns the item with IDp89 or name name from the collection.

If there are multiple matching items, then an HTMLAllCollectionp64 object containing all those elements
is returned.

Returns null if no element with that IDp89 or name could be found.

Only ap169, appletp701, areap280, embedp217, formp314, framep705, framesetp704, iframep211, imgp196, and
objectp220 elements can have a name for the purpose of this method; their name is given by the value of
their name attribute.

collection = collection . tagsp65(tagName)
Returns a collection that is a filtered view of the current collection, containing only elements with the given
tag name.

The object's indices of the supported indexed properties and names of the supported named properties are as defined
for HTMLCollectionp63 objects.

The namedItem(key) method must act according to the following algorithm:

1. Let collection be an HTMLAllCollectionp64 object rooted at the same node as the HTMLAllCollectionp64

object on which the method was invoked, whose filter matches only only elements that already match the
filter of the HTMLAllCollectionp64 object on which the method was invoked and that are either:

• ap169, appletp701, areap280, embedp217, formp314, framep705, framesetp704, iframep211, imgp196, or
objectp220 elements with a name attribute equal to key, or,

• elements with an IDp89 equal to key.

64

2. If, at the time the method is called, there is exactly one node in collection, then return that node and stop
the algorithm.

3. Otherwise, if, at the time the method is called, collection is empty, return null and stop the algorithm.

4. Otherwise, return collection.

The tags(tagName) method must return an HTMLAllCollectionp64 rooted at the same node as the
HTMLAllCollectionp64 object on which the method was invoked, whose filter matches only HTML elementsp28 whose
local name is the tagName argument and that already match the filter of the HTMLAllCollectionp64 object on which
the method was invoked. In HTML documentsp75, the argument must first be converted to ASCII lowercasep36.

2.7.2.3 HTMLFormControlsCollection

The HTMLFormControlsCollectionp65 interface represents a collectionp63 of listed elementsp313 in formp314 and
fieldsetp317 elements.

interface HTMLFormControlsCollection : HTMLCollection {
// inherits length and item()
caller getter object namedItem(in DOMString name); // overrides inherited namedItem()

};

interface RadioNodeList : NodeList {
attribute DOMString value;

};

This box is non-normative. Implementation requirements are given below this box.

collection . lengthp63

Returns the number of elements in the collection.

element = collection . itemp63(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree orderp29.
Returns null if index is out of range.

element = collection . namedItemp65(name)
radioNodeList = collection . namedItemp65(name)
collection[name]
collection(name)

Returns the item with IDp89 or namep374 name from the collection.

If there are multiple matching items, then a RadioNodeListp65 object containing all those elements is
returned.

Returns null if no element with that IDp89 or namep374 could be found.

radioNodeList . value [= value]
Returns the value of the first checked radio button represented by the object.
Can be set, to check the first radio button with the given value represented by the object.

The object's indices of the supported indexed properties are as defined for HTMLCollectionp63 objects.

The names of the supported named properties consist of the values of all the idp89 and namep374 attributes of all the
elements represented by the collectionp63.

The namedItem(name) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that has either an idp89

attribute or a namep374 attribute equal to name, then return that node and stop the algorithm.

65

2. Otherwise, if there are no nodes in the collection that have either an idp89 attribute or a namep374 attribute
equal to name, then return null and stop the algorithm.

3. Otherwise, create a new RadioNodeListp65 object representing a livep29 view of the
HTMLFormControlsCollectionp65 object, further filtered so that the only nodes in the RadioNodeListp65

object are those that have either an idp89 attribute or a namep374 attribute equal to name. The nodes in the
RadioNodeListp65 object must be sorted in tree orderp29.

4. Return that RadioNodeListp65 object.

Members of the RadioNodeListp65 interface inherited from the NodeListp33 interface must behave as they would on a
NodeListp33 object.

The value IDL attribute on the RadioNodeListp65 object, on getting, must return the value returned by running the
following steps:

1. Let element be the first element in tree orderp29 represented by the RadioNodeListp65 object that is an
inputp320 element whose typep321 attribute is in the Radio Buttonp337 state and whose checkednessp374 is
true. Otherwise, let it be null.

2. If element is null, or if it is an element with no valuep323 attribute, return the empty string.

3. Otherwise, return the value of element's valuep323 attribute.

On setting, the valuep66 IDL attribute must run the following steps:

1. Let element be the first element in tree orderp29 represented by the RadioNodeListp65 object that is an
inputp320 element whose typep321 attribute is in the Radio Buttonp337 state and whose valuep323 content
attribute is present and equal to the new value, if any. Otherwise, let it be null.

2. If element is not null, then set its checkednessp374 to true.

2.7.2.4 HTMLOptionsCollection

The HTMLOptionsCollectionp66 interface represents a list of optionp358 elements. It is always rooted on a selectp353

element and has attributes and methods that manipulate that element's descendants.

interface HTMLOptionsCollection : HTMLCollection {
// inherits item()

attribute unsigned long length; // overrides inherited length
caller getter object namedItem(in DOMString name); // overrides inherited namedItem()
void add(in HTMLElement element, in optional HTMLElement before);
void add(in HTMLElement element, in long before);
void remove(in long index);

};

This box is non-normative. Implementation requirements are given below this box.

collection . lengthp67 [= value]
Returns the number of elements in the collection.

When set to a smaller number, truncates the number of optionp358 elements in the corresponding
container.

When set to a greater number, adds new blank optionp358 elements to that container.

element = collection . itemp63(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree orderp29.
Returns null if index is out of range.

66

element = collection . namedItemp67(name)
nodeList = collection . namedItemp67(name)
collection[name]
collection(name)

Returns the item with IDp89 or namep698 name from the collection.

If there are multiple matching items, then a NodeListp33 object containing all those elements is returned.

Returns null if no element with that IDp89 could be found.

collection . addp67(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that
number, or an element from the collection, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.

This method will throw a HIERARCHY_REQUEST_ERRp74 exception if element is an ancestor of the element
into which it is to be inserted. If element is not an optionp358 or optgroupp357 element, then the method
does nothing.

The object's indices of the supported indexed properties are as defined for HTMLCollectionp63 objects.

On getting, the length attribute must return the number of nodes represented by the collectionp63.

On setting, the behavior depends on whether the new value is equal to, greater than, or less than the number of
nodes represented by the collectionp63 at that time. If the number is the same, then setting the attribute must do
nothing. If the new value is greater, then n new optionp358 elements with no attributes and no child nodes must be
appended to the selectp353 element on which the HTMLOptionsCollectionp66 is rooted, where n is the difference
between the two numbers (new value minus old value). Mutation events must be fired as if a DocumentFragmentp33

containing the new optionp358 elements had been inserted. If the new value is lower, then the last n nodes in the
collection must be removed from their parent nodes, where n is the difference between the two numbers (old value
minus new value).

Note: Setting lengthp67 never removes or adds any optgroupp357 elements, and never adds new
children to existing optgroupp357 elements (though it can remove children from them).

The names of the supported named properties consist of the values of all the idp89 and namep698 attributes of all the
elements represented by the collectionp63.

The namedItem(name) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that has either an idp89

attribute or a namep698 attribute equal to name, then return that node and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an idp89 attribute or a namep698 attribute
equal to name, then return null and stop the algorithm.

3. Otherwise, create a new NodeListp33 object representing a livep29 view of the HTMLOptionsCollectionp66

object, further filtered so that the only nodes in the NodeListp33 object are those that have either an idp89

attribute or a namep698 attribute equal to name. The nodes in the NodeListp33 object must be sorted in tree
orderp29.

4. Return that NodeListp33 object.

The add(element, before) method must act according to the following algorithm:

1. If element is not an optionp358 or optgroupp357 element, then return and abort these steps.

2. If element is an ancestor of the selectp353 element on which the HTMLOptionsCollectionp66 is rooted, then
throw a HIERARCHY_REQUEST_ERRp74 exception.

3. If before is an element, but that element isn't a descendant of the selectp353 element on which the
HTMLOptionsCollectionp66 is rooted, then throw a NOT_FOUND_ERRp74 exception.

4. If element and before are the same element, then return and abort these steps.

67

5. If before is a node, then let reference be that node. Otherwise, if before is an integer, and there is a beforeth
node in the collection, let reference be that node. Otherwise, let reference be null.

6. If reference is not null, let parent be the parent node of reference. Otherwise, let parent be the selectp353

element on which the HTMLOptionsCollectionp66 is rooted.

7. Act as if the DOM Core insertBefore()p33 method was invoked on the parent node, with element as the first
argument and reference as the second argument.

The remove(index) method must act according to the following algorithm:

1. If the number of nodes represented by the collectionp63 is zero, abort these steps.

2. If index is not a number greater than or equal to 0 and less than the number of nodes represented by the
collectionp63, let element be the first element in the collection. Otherwise, let element be the indexth
element in the collection.

3. Remove element from its parent node.

2.7.2.5 HTMLPropertiesCollection

The HTMLPropertiesCollectionp68 interface represents a collectionp63 of elements that add name-value pairs to a
particular itemp427 in the microdatap422 model.

interface HTMLPropertiesCollection : HTMLCollection {
// inherits length and item()
caller getter PropertyNodeList namedItem(in DOMString name); // overrides inherited

namedItem()
readonly attribute DOMStringList names;

};

typedef sequence<any> PropertyValueArray;

interface PropertyNodeList : NodeList {
readonly attribute PropertyValueArray values;

};

This box is non-normative. Implementation requirements are given below this box.

collection . lengthp63

Returns the number of elements in the collection.

element = collection . itemp63(index)
collection[index]
collection(index)

Returns the element with index index from the collection. The items are sorted in tree orderp29.
Returns null if index is out of range.

propertyNodeList = collection . namedItemp69(name)
collection[name]
collection(name)

Returns a PropertyNodeListp68 object containing any elements that add a property named name.

collection . namesp69

Returns a DOMStringList with the property namesp428 of the elements in the collection.

propertyNodeList . valuesp69

Returns an array of the various values that the relevant elements have.

The object's indices of the supported indexed properties are as defined for HTMLCollectionp63 objects.

68

The names of the supported named properties consist of the property namesp428 of all the elements represented by
the collectionp63.

The names attribute must return a livep29 DOMStringList object giving the property namesp428 of all the elements
represented by the collectionp63, listed in tree orderp29, but with duplicates removed, leaving only the first occurrence
of each name. The same object must be returned each time.

The namedItem(name) method must return a PropertyNodeListp68 object representing a livep29 view of the
HTMLPropertiesCollectionp68 object, further filtered so that the only nodes in the PropertyNodeListp68 object are
those that have a property namep428 equal to name. The nodes in the PropertyNodeListp68 object must be sorted in
tree orderp29, and the same object must be returned each time a particular name is queried.

Members of the PropertyNodeListp68 interface inherited from the NodeListp33 interface must behave as they would
on a NodeListp33 object.

The values IDL attribute on the PropertyNodeListp68 object, on getting, must return a newly constructed array whose
values are the values obtained from the itemValuep432 DOM property of each of the elements represented by the
object, in tree orderp29.

The DOMTokenListp69 interface represents an interface to an underlying string that consists of a set of space-separated
tokensp52.

Note: DOMTokenListp69 objects are always case-sensitivep35, even when the underlying string might
ordinarily be treated in a case-insensitive manner.

interface DOMTokenList {
readonly attribute unsigned long length;
getter DOMString item(in unsigned long index);
boolean contains(in DOMString token);
void add(in DOMString token);
void remove(in DOMString token);
boolean toggle(in DOMString token);
stringifier DOMString ();

};

This box is non-normative. Implementation requirements are given below this box.

tokenlist . lengthp70

Returns the number of tokens in the string.

element = tokenlist . itemp70(index)
tokenlist[index]

Returns the token with index index. The tokens are returned in the order they are found in the underlying
string.
Returns null if index is out of range.

hastoken = tokenlist . containsp70(token)
Returns true if the token is present; false otherwise.

Throws a SYNTAX_ERRp74 exception if token is empty.

Throws an INVALID_CHARACTER_ERRp74 exception if token contains any spaces.

tokenlist . addp70(token)
Adds token, unless it is already present.

Throws a SYNTAX_ERRp74 exception if token is empty.

Throws an INVALID_CHARACTER_ERRp74 exception if token contains any spaces.

2.7.3 DOMTokenList

69

tokenlist . removep70(token)
Removes token if it is present.

Throws a SYNTAX_ERRp74 exception if token is empty.

Throws an INVALID_CHARACTER_ERRp74 exception if token contains any spaces.

hastoken = tokenlist . togglep70(token)
Adds token if it is not present, or removes it if it is. Returns true if token is now present (it was added);
returns false if it is not (it was removed).

Throws a SYNTAX_ERRp74 exception if token is empty.

Throws an INVALID_CHARACTER_ERRp74 exception if token contains any spaces.

The length attribute must return the number of tokens that result from splitting the underlying string on spacesp52.
This is the lengthp70.

The object's indices of the supported indexed properties are the numbers in the range zero to lengthp70-1, unless the
lengthp70 is zero, in which case there are no supported indexed properties.

The item(index) method must split the underlying string on spacesp52, preserving the order of the tokens as found in
the underlying string, and then return the indexth item in this list. If index is equal to or greater than the number of
tokens, then the method must return null.

For example, if the string is "a b a c" then there are four tokens: the token with index 0 is "a", the token with
index 1 is "b", the token with index 2 is "a", and the token with index 3 is "c".

The contains(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERRp74 exception and stop the algorithm.

2. If the token argument contains any space charactersp36, then raise an INVALID_CHARACTER_ERRp74 exception
and stop the algorithm.

3. Otherwise, split the underlying string on spacesp52 to get the list of tokens in the object's underlying string.

4. If the token indicated by token is a case-sensitivep35 match for one of the tokens in the object's underlying
string then return true and stop this algorithm.

5. Otherwise, return false.

The add(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERRp74 exception and stop the algorithm.

2. If the token argument contains any space charactersp36, then raise an INVALID_CHARACTER_ERRp74 exception
and stop the algorithm.

3. Otherwise, split the underlying string on spacesp52 to get the list of tokens in the object's underlying string.

4. If the given token is a case-sensitivep35 match for one of the tokens in the DOMTokenListp69 object's
underlying string then stop the algorithm.

5. Otherwise, if the DOMTokenListp69 object's underlying string is not the empty string and the last character of
that string is not a space characterp36, then append a U+0020 SPACE character to the end of that string.

6. Append the value of token to the end of the DOMTokenListp69 object's underlying string.

The remove(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERRp74 exception and stop the algorithm.

2. If the token argument contains any space charactersp36, then raise an INVALID_CHARACTER_ERRp74 exception
and stop the algorithm.

3. Otherwise, remove the given token from the underlying stringp53.

The toggle(token) method must run the following algorithm:

70

1. If the token argument is the empty string, then raise a SYNTAX_ERRp74 exception and stop the algorithm.

2. If the token argument contains any space charactersp36, then raise an INVALID_CHARACTER_ERRp74 exception
and stop the algorithm.

3. Otherwise, split the underlying string on spacesp52 to get the list of tokens in the object's underlying string.

4. If the given token is a case-sensitivep35 match for one of the tokens in the DOMTokenListp69 object's
underlying string then remove the given token from the underlying stringp53 and stop the algorithm,
returning false.

5. Otherwise, if the DOMTokenListp69 object's underlying string is not the empty string and the last character of
that string is not a space characterp36, then append a U+0020 SPACE character to the end of that string.

6. Append the value of token to the end of the DOMTokenListp69 object's underlying string.

7. Return true.

Objects implementing the DOMTokenListp69 interface must stringify to the object's underlying string representation.

The DOMSettableTokenListp71 interface is the same as the DOMTokenListp69 interface, except that it allows the
underlying string to be directly changed.

interface DOMSettableTokenList : DOMTokenList {
attribute DOMString value;

};

This box is non-normative. Implementation requirements are given below this box.

tokenlist . valuep71

Returns the underlying string.
Can be set, to change the underlying string.

An object implementing the DOMSettableTokenListp71 interface must act as defined for the DOMTokenListp69

interface, except for the valuep71 attribute defined here.

The value attribute must return the underlying string on getting, and must replace the underlying string with the new
value on setting.

When a user agent is required to obtain a structured clone of an object, it must run the following algorithm, which
either returns a separate object, or throws an exception.

1. Let input be the object being cloned.

2. Let memory be a list of objects, initially empty. (This is used to catch cycles.)

3. Let output be the object resulting from calling the internal structured cloning algorithmp71 with input and
memory.

4. Return output.

The internal structured cloning algorithm is always called with two arguments, input and memory, and its
behavior depends on the type of input, as follows:

↪ If input is the undefined value
Return the undefined value.

↪ If input is the null value
Return the null value.

2.7.4 DOMSettableTokenList

2.7.5 Safe passing of structured data

71

↪ If input is the false value
Return the false value.

↪ If input is the true value
Return the true value.

↪ If input is a Number object
Return a newly constructed Number object with the same value as input.

↪ If input is a String object
Return a newly constructed String object with the same value as input.

↪ If input is a Date object
Return a newly constructed Date object with the same value as input.

↪ If input is a RegExp object
Return a newly constructed RegExp object with the same pattern and flags as input.

Note: The value of the lastIndex property is not copied.

↪ If input is a ImageDatap256 object
Return a newly constructed ImageDatap256 object with the same widthp275 and heightp275 as input, and with a
newly constructed CanvasPixelArrayp256 for its datap275 attribute, with the same lengthp275 and pixel values
as the input's.

↪ If input is a File object
Return a newly constructed File object corresponding to the same underlying data.

↪ If input is a Blob object
Return a newly constructed Blob object corresponding to the same underlying data.

↪ If input is a FileList object
Return a newly constructed FileList object containing a list of newly constructed File objects
corresponding to the same underlying data as those in input, maintaining their relative order.

↪ If input is a host object (e.g. a DOM node)
Return the null value.

↪ If input is an Array object
↪ If input is an Object object

1. If input is in memory, then throw a NOT_SUPPORTED_ERRp74 exception and abort the overall
structured clonep71 algorithm.

2. Otherwise, let new memory be a list consisting of the items in memory with the addition of input.

3. Create a new object, output, of the same type as input: either an Array or an Object.

4. For each enumerable property in input, add a corresponding property to output having the same
name, and having a value created from invoking the internal structured cloning algorithmp71

recursively with the value of the property as the "input" argument and new memory as the
"memory" argument. The order of the properties in the input and output objects must be the same.

Note: This does not walk the prototype chain.

5. Return output.

↪ If input is another native object type (e.g. Error)
Return the null value.

The DOMStringMapp73 interface represents a set of name-value pairs. It exposes these using the scripting language's
native mechanisms for property access.

2.7.6 DOMStringMap

72

When a DOMStringMapp73 object is instantiated, it is associated with three algorithms, one for getting the list of name-
value pairs, one for setting names to certain values, and one for deleting names.

interface DOMStringMap {
getter DOMString (in DOMString name);
setter void (in DOMString name, in DOMString value);
creator void (in DOMString name, in DOMString value);
deleter void (in DOMString name);

};

The names of the supported named properties on a DOMStringMapp73 object at any instant are the names of each pair
returned from the algorithm for getting the list of name-value pairs at that instant.

When a DOMStringMapp73 object is indexed to retrieve a named property name, the value returned must be the value
component of the name-value pair whose name component is name in the list returned by the algorithm for getting
the list of name-value pairs.

When a DOMStringMapp73 object is indexed to create or modify a named property name with value value, the algorithm
for setting names to certain values must be run, passing name as the name and the result of converting value to a
DOMString as the value.

When a DOMStringMapp73 object is indexed to delete a named property named name, the algorithm for deleting names
must be run, passing name as the name.

Note: The DOMStringMapp73 interface definition here is only intended for JavaScript environments.
Other language bindings will need to define how DOMStringMapp73 is to be implemented for those
languages.

The datasetp92 attribute on elements exposes the data-*p92 attributes on the element.

Given the following fragment and elements with similar constructions:

<img class="tower" id="tower5" data-x="12" data-y="5"
data-ai="robotarget" data-hp="46" data-ability="flames"
src="towers/rocket.png alt="Rocket Tower">

...one could imagine a function splashDamage() that takes some arguments, the first of which is the element to
process:

function splashDamage(node, x, y, damage) {
if (node.classList.contains('tower') && // checking the 'class' attribute

node.dataset.x == x && // reading the 'data-x' attribute
node.dataset.y == y) { // reading the 'data-y' attribute

var hp = parseInt(node.dataset.hp); // reading the 'data-hp' attribute
hp = hp - damage;
if (hp < 0) {

hp = 0;
node.dataset.ai = 'dead'; // setting the 'data-ai' attribute
delete node.dataset.ability; // removing the 'data-ability' attribute

}
node.dataset.hp = hp; // setting the 'data-hp' attribute

}
}

DOM3 Core defines mechanisms for checking for interface support, and for obtaining implementations of interfaces,
using feature strings. [DOMCORE]p739

Authors are strongly discouraged from using these, as they are notoriously unreliable and imprecise. Authors are
encouraged to rely on explicit feature testing or the graceful degradation behavior intrinsic to some of the features in
this specification.

For historical reasons, user agents should return the true value when the hasFeature(feature, version) method of
the DOMImplementationp33 interface is invoked with feature set to either "HTML" or "XHTML" and version set to either
"1.0" or "2.0".

2.7.7 DOM feature strings

73

http://www.w3.org/TR/DOM-Level-3-Core/core.html#DOMFeatures

The following are DOMExceptionp33 codes. [DOMCORE]p739

1. INDEX_SIZE_ERR
2. DOMSTRING_SIZE_ERR
3. HIERARCHY_REQUEST_ERR
4. WRONG_DOCUMENT_ERR
5. INVALID_CHARACTER_ERR
6. NO_DATA_ALLOWED_ERR
7. NO_MODIFICATION_ALLOWED_ERR
8. NOT_FOUND_ERR
9. NOT_SUPPORTED_ERR

10. INUSE_ATTRIBUTE_ERR
11. INVALID_STATE_ERR
12. SYNTAX_ERR
13. INVALID_MODIFICATION_ERR
14. NAMESPACE_ERR
15. INVALID_ACCESS_ERR
16. VALIDATION_ERR
17. TYPE_MISMATCH_ERR
18. SECURITY_ERR
19. NETWORK_ERR
20. ABORT_ERR
21. URL_MISMATCH_ERR
22. QUOTA_EXCEEDED_ERR
81. PARSE_ERR
82. SERIALIZE_ERR

There is an implied strong reference from any IDL attribute that returns a pre-existing object to that object.

For example, the document.location attribute means that there is a strong reference from a Documentp33 object
to its Locationp482 object. Similarly, there is always a strong reference from a Documentp33 to any descendant
nodes, and from any node to its owner Documentp33.

2.8 Namespaces

The HTML namespace is: http://www.w3.org/1999/xhtml

The MathML namespace is: http://www.w3.org/1998/Math/MathML

The SVG namespace is: http://www.w3.org/2000/svg

The XLink namespace is: http://www.w3.org/1999/xlink

The XML namespace is: http://www.w3.org/XML/1998/namespace

The XMLNS namespace is: http://www.w3.org/2000/xmlns/

Data mining tools and other user agents that perform operations on content without running scripts, evaluating CSS or
XPath expressions, or otherwise exposing the resulting DOM to arbitrary content, may "support namespaces" by just
asserting that their DOM node analogues are in certain namespaces, without actually exposing the above strings.

2.7.8 Exceptions

2.7.9 Garbage collection

74

3 Semantics, structure, and APIs of HTML documents

3.1 Documents

Every XML and HTML document in an HTML UA is represented by a Documentp33 object. [DOMCORE]p739

The document's address is an absolute URLp55 that is set when the Documentp33 is created. The document's
current address is an absolute URLp55 that can change during the lifetime of the Documentp33, for example when the
user navigatesp484 to a fragment identifierp490 on the page or when the pushState()p480 method is called with a new
URLp54. The document's current addressp75 must be set to the document's addressp75 when the Documentp33 is created.

Note: Interactive user agents typically expose the document's current addressp75 in their user
interface.

When a Documentp33 is created by a scriptp514 using the createDocument()p33 or createHTMLDocument()p83 APIs, the
document's addressp75 is the same as the document's addressp75 of the script's documentp515.

Documentp33 objects are assumed to be XML documents unless they are flagged as being HTML documents when
they are created. Whether a document is an HTML documentp75 or an XML documentp75 affects the behavior of certain
APIs and the case-sensitivity of some selectors.

All Documentp33 objects (in user agents implementing this specification) must also implement the HTMLDocumentp75

interface, available using binding-specific methods. (This is the case whether or not the document in question is an
HTML documentp75 or indeed whether it contains any HTML elementsp28 at all.) Documentp33 objects must also
implement the document-level interface of any other namespaces that the UA supports.

For example, if an HTML implementation also supports SVG, then the Documentp33 object implements both
HTMLDocumentp75 and SVGDocument.

Note: Because the HTMLDocumentp75 interface is now obtained using binding-specific casting
methods instead of simply being the primary interface of the document object, it is no longer
defined as inheriting from Documentp33.

[OverrideBuiltins]
interface HTMLDocument {

// resource metadata management
[PutForwards=href] readonly attribute Location location;
readonly attribute DOMString URL;

attribute DOMString domain;
readonly attribute DOMString referrer;

attribute DOMString cookie;
readonly attribute DOMString lastModified;
readonly attribute DOMString compatMode;

attribute DOMString charset;
readonly attribute DOMString characterSet;
readonly attribute DOMString defaultCharset;
readonly attribute DOMString readyState;

// DOM tree accessors
getter any (in DOMString name);

attribute DOMString title;
attribute DOMString dir;
attribute HTMLElement body;

readonly attribute HTMLHeadElement head;
readonly attribute HTMLCollection images;
readonly attribute HTMLCollection embeds;
readonly attribute HTMLCollection plugins;
readonly attribute HTMLCollection links;
readonly attribute HTMLCollection forms;
readonly attribute HTMLCollection scripts;

3.1.1 Documents in the DOM

75

NodeList getElementsByName(in DOMString elementName);
NodeList getElementsByClassName(in DOMString classNames);
NodeList getItems(in optional DOMString typeNames); // microdata

// dynamic markup insertion
attribute DOMString innerHTML;

HTMLDocument open(in optional DOMString type, in optional DOMString replace);
WindowProxy open(in DOMString url, in DOMString name, in DOMString features, in optional

boolean replace);
void close();
void write(in DOMString... text);
void writeln(in DOMString... text);

// user interaction
readonly attribute WindowProxy defaultView;
Selection getSelection();
readonly attribute Element activeElement;
boolean hasFocus();

attribute DOMString designMode;
boolean execCommand(in DOMString commandId);
boolean execCommand(in DOMString commandId, in boolean showUI);
boolean execCommand(in DOMString commandId, in boolean showUI, in DOMString value);
boolean queryCommandEnabled(in DOMString commandId);
boolean queryCommandIndeterm(in DOMString commandId);
boolean queryCommandState(in DOMString commandId);
boolean queryCommandSupported(in DOMString commandId);
DOMString queryCommandValue(in DOMString commandId);
readonly attribute HTMLCollection commands;

// event handler IDL attributes
attribute Function onabort;
attribute Function onblur;
attribute Function oncanplay;
attribute Function oncanplaythrough;
attribute Function onchange;
attribute Function onclick;
attribute Function oncontextmenu;
attribute Function ondblclick;
attribute Function ondrag;
attribute Function ondragend;
attribute Function ondragenter;
attribute Function ondragleave;
attribute Function ondragover;
attribute Function ondragstart;
attribute Function ondrop;
attribute Function ondurationchange;
attribute Function onemptied;
attribute Function onended;
attribute Function onerror;
attribute Function onfocus;
attribute Function onformchange;
attribute Function onforminput;
attribute Function oninput;
attribute Function oninvalid;
attribute Function onkeydown;
attribute Function onkeypress;
attribute Function onkeyup;
attribute Function onload;
attribute Function onloadeddata;
attribute Function onloadedmetadata;
attribute Function onloadstart;
attribute Function onmousedown;
attribute Function onmousemove;

76

attribute Function onmouseout;
attribute Function onmouseover;
attribute Function onmouseup;
attribute Function onmousewheel;
attribute Function onpause;
attribute Function onplay;
attribute Function onplaying;
attribute Function onprogress;
attribute Function onratechange;
attribute Function onreadystatechange;
attribute Function onscroll;
attribute Function onseeked;
attribute Function onseeking;
attribute Function onselect;
attribute Function onshow;
attribute Function onstalled;
attribute Function onsubmit;
attribute Function onsuspend;
attribute Function ontimeupdate;
attribute Function onvolumechange;
attribute Function onwaiting;

};
Document implements HTMLDocument;

Since the HTMLDocumentp75 interface holds methods and attributes related to a number of disparate features, the
members of this interface are described in various different sections.

User agents must raise a SECURITY_ERRp74 exception whenever any of the members of an HTMLDocumentp75 object are
accessed by scripts whose effective script originp474 is not the samep476 as the Documentp33 's effective script originp474.

This box is non-normative. Implementation requirements are given below this box.

document . URLp77

Returns the document's addressp75.

document . referrerp77

Returns the addressp75 of the Documentp33 from which the user navigated to this one, unless it was blocked
or there was no such document, in which case it returns the empty string.

The noreferrerp411 link type can be used to block the referrer.

The URL attribute must return the document's addressp75.

The referrer attribute must return either the current addressp75 of the active documentp463 of the source browsing
contextp484 at the time the navigation was started (that is, the page which navigatedp484 the browsing contextp463 to
the current document), with any <fragment>p55 component removed; or the empty string if there is no such
originating page, or if the UA has been configured not to report referrers in this case, or if the navigation was initiated
for a hyperlinkp404 with a noreferrerp411 keyword.

Note: In the case of HTTP, the referrerp77 IDL attribute will match the Referer (sic) header that
was sent when fetchingp58 the current page.

Note: Typically user agents are configured to not report referrers in the case where the referrer
uses an encrypted protocol and the current page does not (e.g. when navigating from an https:
page to an http: page).

3.1.2 Security

3.1.3 Resource metadata management

77

This box is non-normative. Implementation requirements are given below this box.

document . cookiep78 [= value]
Returns the HTTP cookies that apply to the Documentp33. If there are no cookies or cookies can't be applied
to this resource, the empty string will be returned.
Can be set, to add a new cookie to the element's set of HTTP cookies.

If the contents are sandboxed into a unique originp214 (in an iframep211 with the sandboxp213 attribute) or
the resource was labeled as text/html-sandboxedp716, a SECURITY_ERRp74 exception will be thrown on
getting and setting.

The cookie attribute represents the cookies of the resource from which the Documentp33 was created.

Some Documentp33 objects are cookie-free Document objects. Any Documentp33 object created by the
createDocument() or createHTMLDocument()p83 factory methods is a cookie-free Document objectp78. Any Documentp33

whose addressp75 does not use a server-based naming authority is a cookie-free Document objectp78. Other
specifications can also define Documentp33 objects as being cookie-free Document objectsp78.

On getting, if the document is a cookie-free Document objectp78, then the user agent must return the empty string.
Otherwise, if the Documentp33 's originp474 is not a scheme/host/port tuple, the user agent must raise a SECURITY_ERRp74

exception. Otherwise, the user agent must first obtain the storage mutexp518 and then return the cookie-string for the
document's addressp75 for a "non-HTTP" API. [COOKIES]p738

On setting, if the document is a cookie-free Document objectp78, then the user agent must do nothing. Otherwise, if the
Documentp33 's originp474 is not a scheme/host/port tuple, the user agent must raise a SECURITY_ERRp74 exception.
Otherwise, the user agent must obtain the storage mutexp518 and then act as it would when receiving a set-cookie-
string for the document's addressp75 via a "non-HTTP" API, consisting of the new value. [COOKIES]p738

Note: Since the cookiep78 attribute is accessible across frames, the path restrictions on cookies are
only a tool to help manage which cookies are sent to which parts of the site, and are not in any
way a security feature.

This box is non-normative. Implementation requirements are given below this box.

document . lastModifiedp78

Returns the date of the last modification to the document, as reported by the server, in the form "MM/DD/
YYYY hh:mm:ss", in the user's local time zone.
If the last modification date is not known, the current time is returned instead.

The lastModified attribute, on getting, must return the date and time of the Documentp33 's source file's last
modification, in the user's local time zone, in the following format:

1. The month component of the date.

2. A U+002F SOLIDUS character (/).

3. The day component of the date.

4. A U+002F SOLIDUS character (/).

5. The year component of the date.

6. A U+0020 SPACE character.

7. The hours component of the time.

8. A U+003A COLON character (:).

9. The minutes component of the time.

10. A U+003A COLON character (:).

11. The seconds component of the time.

All the numeric components above, other than the year, must be given as two digits in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9) representing the number in base ten, zero-padded if necessary. The year must be given

78

as the shortest possible string of four or more digits in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9)
representing the number in base ten, zero-padded if necessary.

The Documentp33 's source file's last modification date and time must be derived from relevant features of the
networking protocols used, e.g. from the value of the HTTP Last-Modified header of the document, or from metadata
in the file system for local files. If the last modification date and time are not known, the attribute must return the
current date and time in the above format.

This box is non-normative. Implementation requirements are given below this box.

document . compatModep79

In a conforming document, returns the string "CSS1Compat". (In quirks modep79 documents, returns the
string "BackCompat", but a conforming document can never trigger quirks modep79.)

A Documentp33 is always set to one of three modes: no-quirks mode, the default; quirks mode, used typically for
legacy documents; and limited-quirks mode, also known as "almost standards" mode. The mode is only ever
changed from the default by the HTML parserp584, based on the presence, absence, or value of the DOCTYPE string.

The compatMode IDL attribute must return the literal string "CSS1Compat" unless the document has been set to quirks
modep79 by the HTML parserp584, in which case it must instead return the literal string "BackCompat".

This box is non-normative. Implementation requirements are given below this box.

document . charsetp79 [= value]
Returns the document's character encodingp79.

Can be set, to dynamically change the document's character encodingp79.
New values that are not IANA-registered aliases supported by the user agent are ignored.

document . characterSetp79

Returns the document's character encodingp79.

document . defaultCharsetp79

Returns what might be the user agent's default character encoding. (The user agent might return another
character encoding altogether, e.g. to protect the user's privacy, or if the user agent doesn't use a single
default encoding.)

Documents have an associated character encoding. When a Documentp33 object is created, the document's
character encodingp79 must be initialized to UTF-16. Various algorithms during page loading affect this value, as does
the charsetp79 setter. [IANACHARSET]p739

The charset IDL attribute must, on getting, return the preferred MIME namep30 of the document's character
encodingp79. On setting, if the new value is an IANA-registered alias for a character encoding supported by the user
agent, the document's character encodingp79 must be set to that character encoding. (Otherwise, nothing happens.)

The characterSet IDL attribute must, on getting, return the preferred MIME namep30 of the document's character
encodingp79.

The defaultCharset IDL attribute must, on getting, return the preferred MIME namep30 of a character encoding,
possibly the user's default encoding, or an encoding associated with the user's current geographical location, or any
arbitrary encoding name.

This box is non-normative. Implementation requirements are given below this box.

document . readyStatep80

Returns "loading" while the Documentp33 is loading, and "complete" once it has loaded.

The readystatechange event fires on the Documentp33 object when this value changes.

Each document has a current document readiness. When a Documentp33 object is created, it must have its current
document readinessp79 set to the string "loading" if the document is associated with an HTML parserp584 or an XML

79

parserp669, or to the string "complete" otherwise. Various algorithms during page loading affect this value. When the
value is set, the user agent must fire a simple eventp523 named readystatechange at the Documentp33 object.

A Documentp33 is said to have an active parser if it is associated with an HTML parserp584 or an XML parserp669 that
has not yet been stoppedp653 or aborted.

The readyState IDL attribute must, on getting, return the current document readinessp79.

The html element of a document is the document's root element, if there is one and it's an htmlp112 element, or null
otherwise.

This box is non-normative. Implementation requirements are given below this box.

document . headp80

Returns the head elementp80.

The head element of a document is the first headp112 element that is a child of the html elementp80, if there is one, or
null otherwise.

The head attribute, on getting, must return the head elementp80 of the document (a headp112 element or null).

This box is non-normative. Implementation requirements are given below this box.

document . titlep80 [= value]
Returns the document's title, as given by the title elementp80.

Can be set, to update the document's title. If there is no head elementp80, the new value is ignored.
In SVG documents, the SVGDocument interface's title attribute takes precedence.

The title element of a document is the first titlep113 element in the document (in tree order), if there is one, or null
otherwise.

The title attribute must, on getting, run the following algorithm:

1. If the root elementp29 is an svgp285 element in the "http://www.w3.org/2000/svg" namespace, and the user
agent supports SVG, then return the value that would have been returned by the IDL attribute of the same
name on the SVGDocument interface. [SVG]p742

2. Otherwise, let value be a concatenation of the data of all the child text nodesp29 of the title elementp80, in
tree orderp29, or the empty string if the title elementp80 is null.

3. Replace any sequence of one or more consecutive space charactersp36 in value with a single U+0020 SPACE
character.

4. Remove any leading or trailing space charactersp36 in value.

5. Return value.

On setting, the following algorithm must be run. Mutation events must be fired as appropriate.

1. If the root elementp29 is an svgp285 element in the "http://www.w3.org/2000/svg" namespace, and the user
agent supports SVG, then the setter must defer to the setter for the IDL attribute of the same name on the
SVGDocument interface (if it is readonly, then this will raise an exception). Stop the algorithm here. [SVG]p742

2. If the title elementp80 is null and the head elementp80 is null, then the attribute must do nothing. Stop the
algorithm here.

3. If the title elementp80 is null, then a new titlep113 element must be created and appended to the head
elementp80. Let element be that element. Otherwise, let element be the title elementp80.

4. The children of element (if any) must all be removed.

5. A single Textp33 node whose data is the new value being assigned must be appended to element.

3.1.4 DOM tree accessors

80

The titlep80 attribute on the HTMLDocumentp75 interface should shadow the attribute of the same name on the
SVGDocument interface when the user agent supports both HTML and SVG. [SVG]p742

This box is non-normative. Implementation requirements are given below this box.

document . bodyp81 [= value]
Returns the body elementp81.

Can be set, to replace the body elementp81.

If the new value is not a bodyp138 or framesetp704 element, this will throw a HIERARCHY_REQUEST_ERRp74

exception.

The body element of a document is the first child of the html elementp80 that is either a bodyp138 element or a
framesetp704 element. If there is no such element, it is null. If the body element is null, then when the specification
requires that events be fired at "the body element", they must instead be fired at the Documentp33 object.

The body attribute, on getting, must return the body elementp81 of the document (either a bodyp138 element, a
framesetp704 element, or null). On setting, the following algorithm must be run:

1. If the new value is not a bodyp138 or framesetp704 element, then raise a HIERARCHY_REQUEST_ERRp74

exception and abort these steps.

2. Otherwise, if the new value is the same as the body elementp81, do nothing. Abort these steps.

3. Otherwise, if the body elementp81 is not null, then replace that element with the new value in the DOM, as if
the root element's replaceChild() method had been called with the new value and the incumbent body
elementp81 as its two arguments respectively, then abort these steps.

4. Otherwise, the body elementp81 is null. Append the new value to the root element.

This box is non-normative. Implementation requirements are given below this box.

document . imagesp81

Returns an HTMLCollectionp63 of the imgp196 elements in the Documentp33.

document . embedsp81

document . pluginsp81

Return an HTMLCollectionp63 of the embedp217 elements in the Documentp33.

document . linksp81

Returns an HTMLCollectionp63 of the ap169 and areap280 elements in the Documentp33 that have hrefp404

attributes.

document . formsp81

Return an HTMLCollectionp63 of the formp314 elements in the Documentp33.

document . scriptsp82

Return an HTMLCollectionp63 of the scriptp129 elements in the Documentp33.

The images attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
imgp196 elements.

The embeds attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
embedp217 elements.

The plugins attribute must return the same object as that returned by the embedsp81 attribute.

The links attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only ap169

elements with hrefp404 attributes and areap280 elements with hrefp404 attributes.

The forms attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
formp314 elements.

81

The scripts attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
scriptp129 elements.

This box is non-normative. Implementation requirements are given below this box.

collection = document . getElementsByNamep82(name)
Returns a NodeListp33 of elements in the Documentp33 that have a name attribute with the value name.

collection = document . getElementsByClassName(classes)p82

collection = element . getElementsByClassName(classes)p82

Returns a NodeListp33 of the elements in the object on which the method was invoked (a Documentp33 or
an Elementp33) that have all the classes given by classes.
The classes argument is interpreted as a space-separated list of classes.

The getElementsByName(name) method takes a string name, and must return a livep29 NodeListp33 containing all the
HTML elementsp28 in that document that have a name attribute whose value is equal to the name argument (in a case-
sensitivep35 manner), in tree orderp29. When the method is invoked on a Documentp33 object again with the same
argument, the user agent may return the same as the object returned by the earlier call. In other cases, a new
NodeListp33 object must be returned.

The getElementsByClassName(classNames) method takes a string that contains a set of space-separated tokensp52

representing classes. When called, the method must return a livep29 NodeListp33 object containing all the elements in
the document, in tree orderp29, that have all the classes specified in that argument, having obtained the classes by
splitting a string on spacesp52. (Duplicates are ignored.) If there are no tokens specified in the argument, then the
method must return an empty NodeListp33. If the document is in quirks modep79, then the comparisons for the classes
must be done in an ASCII case-insensitivep35 manner, otherwise, the comparisons must be done in a case-sensitivep35

manner. When the method is invoked on a Documentp33 object again with the same argument, the user agent may
return the same object as the object returned by the earlier call. In other cases, a new NodeListp33 object must be
returned.

The getElementsByClassName(classNames) method on the HTMLElementp85 interface must return a livep29

NodeListp33 with the nodes that the HTMLDocumentp75 getElementsByClassName()p82 method would return when
passed the same argument(s), excluding any elements that are not descendants of the HTMLElementp85 object on
which the method was invoked. When the method is invoked on an HTMLElementp85 object again with the same
argument, the user agent may return the same object as the object returned by the earlier call. In other cases, a new
NodeListp33 object must be returned.

HTML, SVG, and MathML elements define which classes they are in by having an attribute with no namespace with the
name class containing a space-separated list of classes to which the element belongs. Other specifications may also
allow elements in their namespaces to be labeled as being in specific classes.

Given the following XHTML fragment:

<div id="example">
<p id="p1" class="aaa bbb"/>
<p id="p2" class="aaa ccc"/>
<p id="p3" class="bbb ccc"/>

</div>

A call to document.getElementById('example').getElementsByClassName('aaa') would return a
NodeListp33 with the two paragraphs p1 and p2 in it.

A call to getElementsByClassName('ccc bbb') would only return one node, however, namely p3. A call to
document.getElementById('example').getElementsByClassName('bbb ccc ') would return the same
thing.

A call to getElementsByClassName('aaa,bbb') would return no nodes; none of the elements above are in the
"aaa,bbb" class.

The HTMLDocumentp75 interface supports named properties. The names of the supported named properties at any
moment consist of the values of the name content attributes of all the appletp701, embedp217, formp314, iframep211,
imgp196, and fallback-freep83 objectp220 elements in the Documentp33 that have name content attributes, and the values
of the idp89 content attributes of all the appletp701 and fallback-freep83 objectp220 elements in the Documentp33 that

82

have idp89 content attributes, and the values of the idp89 content attributes of all the imgp196 elements in the
Documentp33 that have both name content attributes and idp89 content attributes.

When the HTMLDocument object is indexed for property retrieval using a name name, then the user agent must
return the value obtained using the following steps:

1. Let elements be the list of named elementsp83 with the name name in the Documentp33.

Note: There will be at least one such element, by definition.

2. If elements has only one element, and that element is an iframep211 element, then return the
WindowProxyp473 object of the nested browsing contextp463 represented by that iframep211 element, and
abort these steps.

3. Otherwise, if elements has only one element, return that element and abort these steps.

4. Otherwise return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only named
elementsp83 with the name name.

Named elements with the name name, for the purposes of the above algorithm, are those that are either:

• appletp701, embedp217, formp314, iframep211, imgp196, or fallback-freep83 objectp220 elements that have a name
content attribute whose value is name, or

• appletp701 or fallback-freep83 objectp220 elements that have an idp89 content attribute whose value is name,
or

• imgp196 elements that have an idp89 content attribute whose value is name, and that have a name content
attribute present also.

An objectp220 element is said to be fallback-free if it has no objectp220 or embedp217 descendants.

Note: The dirp91 attribute on the HTMLDocumentp75 interface is defined along with the dirp90 content
attribute.

XML documentsp75 can be created from script using the createDocument()p33 method on the DOMImplementationp33

interface.

HTML documentsp75 can be created using the createHTMLDocument()p83 method:

[Supplemental, NoInterfaceObject]
interface DOMHTMLImplementation {

Document createHTMLDocument(in DOMString title);
};
DOMImplementation implements DOMHTMLImplementation;

This box is non-normative. Implementation requirements are given below this box.

document = document . implementation . createHTMLDocumentp83(title)
Returns a new Documentp33, with a basic DOM already constructed with an appropriate titlep113 element.

The createHTMLDocument(title) method, when invoked, must run the following steps:

1. Let doc be a newly created Documentp33 object.

2. Mark doc as being an HTML documentp75.

3. Create a DocumentTypep33 node with the name attribute set to the string "html", and the other attributes
specific to DocumentTypep33 objects set to the empty string, null, and empty lists, as appropriate. Append the
newly created node to doc.

4. Create an htmlp112 element, and append it to doc.

3.1.5 Creating documents

83

5. Create a headp112 element, and append it to the htmlp112 element created in the previous step.

6. Create a titlep113 element, and append it to the headp112 element created in the previous step.

7. Create a Textp33 node, and set its data attribute to the string given by the method's argument (which could
be the empty string). Append it to the titlep113 element created in the previous step.

8. Create a bodyp138 element, and append it to the htmlp112 element created in the earlier step.

9. Return doc.

3.2 Elements

Elements, attributes, and attribute values in HTML are defined (by this specification) to have certain meanings
(semantics). For example, the olp161 element represents an ordered list, and the langp89 attribute represents the
language of the content.

Authors must not use elements, attributes, or attribute values for purposes other than their appropriate intended
semantic purpose. Authors must not use elements, attributes, or attribute values that are not permitted by this
specification or other applicable specificationsp35.

For example, the following document is non-conforming, despite being syntactically correct:

<!DOCTYPE HTML>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<table>
<tr> <td> My favourite animal is the cat. </td> </tr>
<tr>
<td>
—<cite>Ernest</cite>,
in an essay from 1992

</td>
</tr>

</table>
</body>

</html>

...because the data placed in the cells is clearly not tabular data (and the citep174 element mis-used). A
corrected version of this document might be:

<!DOCTYPE HTML>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<blockquote>
<p> My favourite animal is the cat. </p>

</blockquote>
<p>
—Ernest,
in an essay from 1992

</p>
</body>

</html>

This next document fragment, intended to represent the heading of a corporate site, is similarly non-conforming
because the second line is not intended to be a heading of a subsection, but merely a subheading or subtitle (a
subordinate heading for the same section).

<body>
<h1>ABC Company</h1>
<h2>Leading the way in widget design since 1432</h2>
...

3.2.1 Semantics

84

The hgroupp148 element is intended for these kinds of situations:

<body>
<hgroup>
<h1>ABC Company</h1>
<h2>Leading the way in widget design since 1432</h2>

</hgroup>
...

In the next example, there is a non-conforming attribute value ("carpet") and a non-conforming attribute
("texture"), which is not permitted by this specification:

<label>Carpet: <input type="carpet" name="c" texture="deep pile"></label>

Here would be an alternative and correct way to mark this up:

<label>Carpet: <input type="text" class="carpet" name="c" data-texture="deep
pile"></label>

Through scripting and using other mechanisms, the values of attributes, text, and indeed the entire structure of the
document may change dynamically while a user agent is processing it. The semantics of a document at an instant in
time are those represented by the state of the document at that instant in time, and the semantics of a document can
therefore change over time. User agents must update their presentation of the document as this occurs.

HTML has a progressp367 element that describes a progress bar. If its "value" attribute is dynamically updated
by a script, the UA would update the rendering to show the progress changing.

The nodes representing HTML elementsp28 in the DOM must implement, and expose to scripts, the interfaces listed for
them in the relevant sections of this specification. This includes HTML elementsp28 in XML documentsp75, even when
those documents are in another context (e.g. inside an XSLT transform).

Elements in the DOM representp672 things; that is, they have intrinsic meaning, also known as semantics.

For example, an olp161 element represents an ordered list.

The basic interface, from which all the HTML elementsp28 ' interfaces inherit, and which must be used by elements that
have no additional requirements, is the HTMLElementp85 interface.

interface HTMLElement : Element {
// DOM tree accessors
NodeList getElementsByClassName(in DOMString classNames);

// dynamic markup insertion
attribute DOMString innerHTML;
attribute DOMString outerHTML;

void insertAdjacentHTML(in DOMString position, in DOMString text);

// metadata attributes
attribute DOMString id;
attribute DOMString title;
attribute DOMString lang;
attribute DOMString dir;
attribute DOMString className;

readonly attribute DOMTokenList classList;
readonly attribute DOMStringMap dataset;

// microdata
attribute boolean itemScope;
attribute DOMString itemType;
attribute DOMString itemId;

[PutForwards=value] readonly attribute DOMSettableTokenList itemRef;
[PutForwards=value] readonly attribute DOMSettableTokenList itemProp;
readonly attribute HTMLPropertiesCollection properties;

attribute any itemValue;

3.2.2 Elements in the DOM

85

// user interaction
attribute boolean hidden;

void click();
void scrollIntoView();
void scrollIntoView(in boolean top);

attribute long tabIndex;
void focus();
void blur();

attribute DOMString accessKey;
readonly attribute DOMString accessKeyLabel;

attribute boolean draggable;
attribute DOMString contentEditable;

readonly attribute boolean isContentEditable;
attribute HTMLMenuElement contextMenu;
attribute DOMString spellcheck;

// command API
readonly attribute DOMString commandType;
readonly attribute DOMString label;
readonly attribute DOMString icon;
readonly attribute boolean disabled;
readonly attribute boolean checked;

// styling
readonly attribute CSSStyleDeclaration style;

// event handler IDL attributes
attribute Function onabort;
attribute Function onblur;
attribute Function oncanplay;
attribute Function oncanplaythrough;
attribute Function onchange;
attribute Function onclick;
attribute Function oncontextmenu;
attribute Function ondblclick;
attribute Function ondrag;
attribute Function ondragend;
attribute Function ondragenter;
attribute Function ondragleave;
attribute Function ondragover;
attribute Function ondragstart;
attribute Function ondrop;
attribute Function ondurationchange;
attribute Function onemptied;
attribute Function onended;
attribute Function onerror;
attribute Function onfocus;
attribute Function onformchange;
attribute Function onforminput;
attribute Function oninput;
attribute Function oninvalid;
attribute Function onkeydown;
attribute Function onkeypress;
attribute Function onkeyup;
attribute Function onload;
attribute Function onloadeddata;
attribute Function onloadedmetadata;
attribute Function onloadstart;
attribute Function onmousedown;
attribute Function onmousemove;
attribute Function onmouseout;
attribute Function onmouseover;

86

attribute Function onmouseup;
attribute Function onmousewheel;
attribute Function onpause;
attribute Function onplay;
attribute Function onplaying;
attribute Function onprogress;
attribute Function onratechange;
attribute Function onreadystatechange;
attribute Function onscroll;
attribute Function onseeked;
attribute Function onseeking;
attribute Function onselect;
attribute Function onshow;
attribute Function onstalled;
attribute Function onsubmit;
attribute Function onsuspend;
attribute Function ontimeupdate;
attribute Function onvolumechange;
attribute Function onwaiting;

};

interface HTMLUnknownElement : HTMLElement { };

The HTMLElementp85 interface holds methods and attributes related to a number of disparate features, and the
members of this interface are therefore described in various different sections of this specification.

The HTMLUnknownElementp87 interface must be used for HTML elementsp28 that are not defined by this specification (or
other applicable specificationsp35).

The following attributes are common to and may be specified on all HTML elementsp28 (even those not defined in this
specification):

• accesskeyp541

• classp91

• contenteditablep546

• contextmenup395

• dirp90

• draggablep560

• hiddenp536

• idp89

• itemidp427

• itempropp428

• itemrefp428

• itemscopep427

• itemtypep427

• langp89

• spellcheckp549

• stylep91

• tabindexp537

• titlep89

The following event handler content attributesp520 may be specified on any HTML elementp28:

• onabortp522

• onblurp522*
• oncanplayp522

• oncanplaythroughp522

• onchangep522

• onclickp522

• oncontextmenup522

• ondblclickp522

• ondragp522

• ondragendp522

• ondragenterp522

3.2.3 Global attributes

87

• ondragleavep522

• ondragoverp522

• ondragstartp522

• ondropp522

• ondurationchangep522

• onemptiedp522

• onendedp522

• onerrorp523*
• onfocusp523*
• onformchangep522

• onforminputp522

• oninputp522

• oninvalidp522

• onkeydownp522

• onkeypressp522

• onkeyupp522

• onloadp523*
• onloadeddatap522

• onloadedmetadatap522

• onloadstartp522

• onmousedownp522

• onmousemovep522

• onmouseoutp522

• onmouseoverp522

• onmouseupp522

• onmousewheelp522

• onpausep522

• onplayp522

• onplayingp522

• onprogressp522

• onratechangep522

• onreadystatechangep522

• onscrollp522

• onseekedp522

• onseekingp522

• onselectp522

• onshowp522

• onstalledp522

• onsubmitp522

• onsuspendp522

• ontimeupdatep522

• onvolumechangep522

• onwaitingp522

Note: The attributes marked with an asterisk have a different meaning when specified on bodyp138

elements as those elements expose event handlersp519 of the Windowp467 object with the same
names.

Note: While these attributes apply to all elements, they are not useful on all elements. For
example, only media elementsp231 will ever receive a volumechangep251 event fired by the user
agent.

Custom data attributesp92 (e.g. data-foldername or data-msgid) can be specified on any HTML elementp28, to store
custom data specific to the page.

In HTML documentsp75, elements in the HTML namespacep74 may have an xmlns attribute specified, if, and only if, it
has the exact value "http://www.w3.org/1999/xhtml". This does not apply to XML documentsp75.

Note: In HTML, the xmlns attribute has absolutely no effect. It is basically a talisman. It is allowed
merely to make migration to and from XHTML mildly easier. When parsed by an HTML parserp584,
the attribute ends up in no namespace, not the "http://www.w3.org/2000/xmlns/" namespace like
namespace declaration attributes in XML do.

Note: In XML, an xmlns attribute is part of the namespace declaration mechanism, and an element
cannot actually have an xmlns attribute in no namespace specified.

88

To enable assistive technology products to expose a more fine-grained interface than is otherwise possible with HTML
elements and attributes, a set of annotations for assistive technology productsp100 can be specified (the ARIA role and
aria-* attributes).

3.2.3.1 The id attribute

The idp89 attribute specifies its element's unique identifier (ID). The value must be unique amongst all the IDs in the
element's home subtreep29 and must contain at least one character. The value must not contain any space
charactersp36.

Note: An element's unique identifierp89 can be used for a variety of purposes, most notably as a
way to link to specific parts of a document using fragment identifiers, as a way to target an
element when scripting, and as a way to style a specific element from CSS.

If the value is not the empty string, user agents must associate the element with the given value (exactly, including
any space characters) for the purposes of ID matching within the element's home subtreep29 (e.g. for selectors in CSS
or for the getElementById()p33 method in the DOM).

Identifiers are opaque strings. Particular meanings should not be derived from the value of the idp89 attribute.

This specification doesn't preclude an element having multiple IDs, if other mechanisms (e.g. DOM Core methods) can
set an element's ID in a way that doesn't conflict with the idp89 attribute.

The id IDL attribute must reflectp61 the idp89 content attribute.

3.2.3.2 The title attribute

The titlep89 attribute representsp672 advisory information for the element, such as would be appropriate for a tooltip.
On a link, this could be the title or a description of the target resource; on an image, it could be the image credit or a
description of the image; on a paragraph, it could be a footnote or commentary on the text; on a citation, it could be
further information about the source; and so forth. The value is text.

If this attribute is omitted from an element, then it implies that the titlep89 attribute of the nearest ancestor HTML
elementp28 with a titlep89 attribute set is also relevant to this element. Setting the attribute overrides this, explicitly
stating that the advisory information of any ancestors is not relevant to this element. Setting the attribute to the
empty string indicates that the element has no advisory information.

If the titlep89 attribute's value contains U+000A LINE FEED (LF) characters, the content is split into multiple lines.
Each U+000A LINE FEED (LF) character represents a line break.

Caution is advised with respect to the use of newlines in titlep89 attributes.

For instance, the following snippet actually defines an abbreviation's expansion with a line break in it:

<p>My logs show that there was some interest in <abbr title="Hypertext
Transport Protocol">HTTP</abbr> today.</p>

Some elements, such as linkp115, abbrp177, and inputp320, define additional semantics for the titlep89 attribute
beyond the semantics described above.

The title IDL attribute must reflectp61 the titlep89 content attribute.

3.2.3.3 The langp89 and xml:langp89 attributes

The lang attribute (in no namespace) specifies the primary language for the element's contents and for any of the
element's attributes that contain text. Its value must be a valid BCP 47 language code, or the empty string. Setting the
attribute to the empty string indicates that the primary language is unknown. [BCP47]p738

The lang attribute in the XML namespacep74 is defined in XML. [XML]p743

If these attributes are omitted from an element, then the language of this element is the same as the language of its
parent element, if any.

The langp89 attribute in no namespace may be used on any HTML elementp28.

89

The lang attribute in the XML namespacep89 may be used on HTML elementsp28 in XML documentsp75, as well as
elements in other namespaces if the relevant specifications allow it (in particular, MathML and SVG allow lang
attributes in the XML namespacep89 to be specified on their elements). If both the langp89 attribute in no namespace
and the lang attribute in the XML namespacep89 are specified on the same element, they must have exactly the same
value when compared in an ASCII case-insensitivep35 manner.

Authors must not use the lang attribute in the XML namespacep89 on HTML elementsp28 in HTML documentsp75. To
ease migration to and from XHTML, authors may specify an attribute in no namespace with no prefix and with the
literal localname "xml:lang" on HTML elementsp28 in HTML documentsp75, but such attributes must only be specified if
a langp89 attribute in no namespace is also specified, and both attributes must have the same value when compared
in an ASCII case-insensitivep35 manner.

Note: The attribute in no namespace with no prefix and with the literal localname "xml:lang" has
no effect on language processing.

To determine the language of a node, user agents must look at the nearest ancestor element (including the element
itself if the node is an element) that has a lang attribute in the XML namespacep89 set or is an HTML elementp28 and
has a langp89 in no namespace attribute set. That attribute specifies the language of the node (regardless of its value).

If both the langp89 attribute in no namespace and the lang attribute in the XML namespacep89 are set on an element,
user agents must use the lang attribute in the XML namespacep89, and the langp89 attribute in no namespace must be
ignoredp29 for the purposes of determining the element's language.

If none of the node's ancestors, including the root elementp29, have either attribute set, but there is a pragma-set
default languagep122 set, then that is the language of the node. If there is no pragma-set default languagep122 set, then
language information from a higher-level protocol (such as HTTP), if any, must be used as the final fallback language
instead. In the absence of any such language information, and in cases where the higher-level protocol reports
multiple languages, the language of the node is unknown, and the corresponding language code is the empty string.

If the resulting value is not a recognized language code, then it must be treated as an unknown language having the
given language code, distinct from all other languages. For the purposes of round-tripping or communicating with
other services that expect language codes, user agents should pass unknown language codes through unmodified.

Thus, for instance, an element with lang="xyzzy" would be matched by the selector :lang(xyzzy) (e.g. in
CSS), but it would not be matched by :lang(abcde), even though both are equally invalid. Similarly, if a Web
browser and screen reader working in unison communicated about the language of the element, the browser
would tell the screen reader that the language was "xyzzy", even if it knew it was invalid, just in case the screen
reader actually supported a language with that code after all.

If the resulting value is the empty string, then it must be interpreted as meaning that the language of the node is
explicitly unknown.

User agents may use the element's language to determine proper processing or rendering (e.g. in the selection of
appropriate fonts or pronunciations, or for dictionary selection).

The lang IDL attribute must reflectp61 the langp89 content attribute in no namespace.

3.2.3.4 The xml:base attribute (XML only)

The xml:basep90 attribute is defined in XML Base. [XMLBASE]p743

The xml:basep90 attribute may be used on elements of XML documentsp75. Authors must not use the xml:basep90

attribute in HTML documentsp75.

3.2.3.5 The dir attribute

The dirp90 attribute specifies the element's text directionality. The attribute is an enumerated attributep37 with the
keyword ltr mapping to the state ltr, and the keyword rtl mapping to the state rtl. The attribute has no invalid value
default and no missing value default.

The processing of this attribute is primarily performed by the presentation layer. For example, the rendering section in
this specification defines a mapping from this attribute to the CSS 'direction' and 'unicode-bidi' properties, and CSS
defines rendering in terms of those properties.

90

The directionality of an element, which is used in particular by the canvasp251 element's text rendering API, is either
'ltr' or 'rtl'. If the user agent supports CSS and the 'direction' property on this element has a computed value of either
'ltr' or 'rtl', then that is the directionalityp91 of the element. Otherwise, if the element is being renderedp672, then the
directionalityp91 of the element is the directionality used by the presentation layer, potentially determined from the
value of the dirp90 attribute on the element. Otherwise, if the element's dirp90 attribute has the state ltr, the
element's directionality is 'ltr' (left-to-right); if the attribute has the state rtl, the element's directionality is 'rtl' (right-
to-left); and otherwise, the element's directionality is the same as its parent element, or 'ltr' if there is no parent
element.

This box is non-normative. Implementation requirements are given below this box.

document . dirp91 [= value]
Returns the html elementp80 's dirp90 attribute's value, if any.

Can be set, to either "ltr" or "rtl", to replace the html elementp80 's dirp90 attribute's value.

If there is no html elementp80, returns the empty string and ignores new values.

The dir IDL attribute on an element must reflectp61 the dirp90 content attribute of that element, limited to only known
valuesp61.

The dir IDL attribute on HTMLDocumentp75 objects must reflectp61 the dirp90 content attribute of the html elementp80, if
any, limited to only known valuesp61. If there is no such element, then the attribute must return the empty string and
do nothing on setting.

Note: Authors are strongly encouraged to use the dirp90 attribute to indicate text direction rather
than using CSS, since that way their documents will continue to render correctly even in the
absence of CSS (e.g. as interpreted by search engines).

3.2.3.6 The class attribute

Every HTML elementp28 may have a classp91 attribute specified.

The attribute, if specified, must have a value that is a set of space-separated tokensp52 representing the various
classes that the element belongs to.

The classes that an HTML elementp28 has assigned to it consists of all the classes returned when the value of the
classp91 attribute is split on spacesp52. (Duplicates are ignored.)

Note: Assigning classes to an element affects class matching in selectors in CSS, the
getElementsByClassName()p82 method in the DOM, and other such features.

There are no additional restrictions on the tokens authors can use in the classp91 attribute, but authors are
encouraged to use values that describe the nature of the content, rather than values that describe the desired
presentation of the content.

The className and classList IDL attributes must both reflectp61 the classp91 content attribute.

3.2.3.7 The style attribute

All HTML elementsp28 may have the stylep91 content attribute set. This is a CSS styling attribute as defined by the CSS
Styling Attribute Syntax specification. [CSSATTR]p738

In user agents that support CSS, the attribute's value must be parsed when the attribute is added or has its value
changed, according to the rules given for CSS styling attributes. [CSSATTR]p738

Documents that use stylep91 attributes on any of their elements must still be comprehensible and usable if those
attributes were removed.

Note: In particular, using the stylep91 attribute to hide and show content, or to convey meaning
that is otherwise not included in the document, is non-conforming. (To hide and show content, use
the hiddenp536 attribute.)

91

This box is non-normative. Implementation requirements are given below this box.

element . stylep92

Returns a CSSStyleDeclaration object for the element's stylep91 attribute.

The style IDL attribute must return a CSSStyleDeclaration whose value represents the declarations specified in the
attribute, if present. Mutating the CSSStyleDeclaration object must create a stylep91 attribute on the element (if
there isn't one already) and then change its value to be a value representing the serialized form of the
CSSStyleDeclaration object. The same object must be returned each time. [CSSOM]p739

In the following example, the words that refer to colors are marked up using the spanp191 element and the
stylep91 attribute to make those words show up in the relevant colors in visual media.

<p>My sweat suit is <span style="color: green; background:
transparent">green and my eyes are <span style="color: blue;
background: transparent">blue.</p>

3.2.3.8 Embedding custom non-visible data

A custom data attribute is an attribute in no namespace whose name starts with the string "data-", has at least
one character after the hyphen, is XML-compatiblep29, and contains no characters in the range U+0041 to U+005A
(LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z).

Note: All attributes on HTML elementsp28 in HTML documentsp75 get ASCII-lowercased
automatically, so the restriction on ASCII uppercase letters doesn't affect such documents.

Custom data attributesp92 are intended to store custom data private to the page or application, for which there are no
more appropriate attributes or elements.

These attributes are not intended for use by software that is independent of the site that uses the attributes.

For instance, a site about music could annotate list items representing tracks in an album with custom data
attributes containing the length of each track. This information could then be used by the site itself to allow the
user to sort the list by track length, or to filter the list for tracks of certain lengths.

<li data-length="2m11s">Beyond The Sea
...

It would be inappropriate, however, for the user to use generic software not associated with that music site to
search for tracks of a certain length by looking at this data.

This is because these attributes are intended for use by the site's own scripts, and are not a generic extension
mechanism for publicly-usable metadata.

Every HTML elementp28 may have any number of custom data attributesp92 specified, with any value.

This box is non-normative. Implementation requirements are given below this box.

element . datasetp92

Returns a DOMStringMapp73 object for the element's data-*p92 attributes.
Hyphenated names become camel-cased. For example, data-foo-bar="" becomes
element.dataset.fooBar.

The dataset IDL attribute provides convenient accessors for all the data-*p92 attributes on an element. On getting,
the datasetp92 IDL attribute must return a DOMStringMapp73 object, associated with the following algorithms, which
expose these attributes on their element:

The algorithm for getting the list of name-value pairs

1. Let list be an empty list of name-value pairs.

92

2. For each content attribute on the element whose first five characters are the string "data-" and whose
remaining characters (if any) do not include any characters in the range U+0041 to U+005A (LATIN
CAPITAL LETTER A to LATIN CAPITAL LETTER Z), add a name-value pair to list whose name is the
attribute's name with the first five characters removed and whose value is the attribute's value.

3. For each name on the list, for each U+002D HYPHEN-MINUS character (-) in the name that is followed
by a character in the range U+0061 to U+007A (U+0061 LATIN SMALL LETTER A to U+007A LATIN
SMALL LETTER Z), remove the U+002D HYPHEN-MINUS character (-) and replace the character that
followed it by the same character converted to ASCII uppercasep36.

4. Return list.

The algorithm for setting names to certain values

1. Let name be the name passed to the algorithm.

2. Let value be the value passed to the algorithm.

3. If name contains a U+002D HYPHEN-MINUS character (-) followed by a character in the range U+0061
to U+007A (U+0061 LATIN SMALL LETTER A to U+007A LATIN SMALL LETTER Z), throw a
SYNTAX_ERRp74 exception and abort these steps.

4. For each character in the range U+0041 to U+005A (U+0041 LATIN CAPITAL LETTER A to U+005A
LATIN CAPITAL LETTER Z) in name, insert a U+002D HYPHEN-MINUS character (-) before the character
and replace the character with the same character converted to ASCII lowercasep36.

5. Insert the string data- at the front of name.

6. Set the value of the attribute with the name name, to the value value, replacing any previous value if
the attribute already existed. If setAttribute() would have raised an exception when setting an
attribute with the name name, then this must raise the same exception.

The algorithm for deleting names

1. Let name be the name passed to the algorithm.

2. If name contains a U+002D HYPHEN-MINUS character (-) followed by a character in the range U+0061
to U+007A (U+0061 LATIN SMALL LETTER A to U+007A LATIN SMALL LETTER Z), throw a
SYNTAX_ERRp74 exception and abort these steps.

3. For each character in the range U+0041 to U+005A (U+0041 LATIN CAPITAL LETTER A to U+005A
LATIN CAPITAL LETTER Z) in name, insert a U+002D HYPHEN-MINUS character (-) before the character
and replace the character with the same character converted to ASCII lowercasep36.

4. Insert the string data- at the front of name.

5. Remove the attribute with the name name, if such an attribute exists. Do nothing otherwise.

The same object must be returned each time.

If a Web page wanted an element to represent a space ship, e.g. as part of a game, it would have to use the
classp91 attribute along with data-*p92 attributes:

<div class="spaceship" data-ship-id="92432"
data-weapons="laser 2" data-shields="50%"
data-x="30" data-y="10" data-z="90">

<button class="fire"
onclick="spaceships[this.parentNode.dataset.shipId].fire()">

Fire
</button>

</div>

Notice how the hyphenated attribute name becomes capitalized in the API.

Authors should carefully design such extensions so that when the attributes are ignored and any associated CSS
dropped, the page is still usable.

User agents must not derive any implementation behavior from these attributes or values. Specifications intended for
user agents must not define these attributes to have any meaningful values.

93

JavaScript libraries may use the custom data attributesp92, as they are considered to be part of the page on which they
are used. Authors of libraries that are reused by many authors are encouraged to include their name in the attribute
names, to reduce the risk of clashes.

For example, a library called "DoQuery" could use attribute names like data-doquery-range, and a library
called "jJo" could use attributes names like data-jjo-range.

Each element in this specification has a definition that includes the following information:

Categories
A list of categoriesp95 to which the element belongs. These are used when defining the content modelsp94 for
each element.

Contexts in which this element may be used
A non-normative description of where the element can be used. This information is redundant with the content
models of elements that allow this one as a child, and is provided only as a convenience.

Content model
A normative description of what content must be included as children and descendants of the element.

Content attributes
A normative list of attributes that may be specified on the element (except where otherwise disallowed).

DOM interface
A normative definition of a DOM interface that such elements must implement.

This is then followed by a description of what the element representsp672, along with any additional normative
conformance criteria that may apply to authors and implementations. Examples are sometimes also included.

Each element defined in this specification has a content model: a description of the element's expected contents. An
HTML elementp28 must have contents that match the requirements described in the element's content model.

Note: As noted in the conformance and terminology sections, for the purposes of determining if
an element matches its content model or not, CDATASection nodes in the DOM are treated as
equivalent to Text nodesp29, and entity reference nodes are treated as if they were expanded in
placep33.

The space charactersp36 are always allowed between elements. User agents represent these characters between
elements in the source markup as text nodes in the DOM. Empty text nodesp29 and text nodesp29 consisting of just
sequences of those characters are considered inter-element whitespace.

Inter-element whitespacep94, comment nodes, and processing instruction nodes must be ignored when establishing
whether an element's contents match the element's content model or not, and must be ignored when following
algorithms that define document and element semantics.

An element A is said to be preceded or followed by a second element B if A and B have the same parent node and
there are no other element nodes or text nodes (other than inter-element whitespacep94) between them.

Authors must not use HTML elementsp28 anywhere except where they are explicitly allowed, as defined for each
element, or as explicitly required by other specifications. For XML compound documents, these contexts could be
inside elements from other namespaces, if those elements are defined as providing the relevant contexts.

For example, the Atom specification defines a content element. When its type attribute has the value xhtml,
the Atom specification requires that it contain a single HTML divp168 element. Thus, a divp168 element is allowed
in that context, even though this is not explicitly normatively stated by this specification. [ATOM]p738

In addition, HTML elementsp28 may be orphan nodes (i.e. without a parent node).

For example, creating a tdp298 element and storing it in a global variable in a script is conforming, even though
tdp298 elements are otherwise only supposed to be used inside trp296 elements.

var data = {
name: "Banana",

3.2.4 Element definitions

3.2.5 Content models

94

cell: document.createElement('td'),
};

3.2.5.1 Kinds of content

Each element in HTML falls into zero or more categories that group elements with similar characteristics together.
The following broad categories are used in this specification:

• Metadata contentp95

• Flow contentp96

• Sectioning contentp96

• Heading contentp96

• Phrasing contentp96

• Embedded contentp97

• Interactive contentp97

Note: Some elements also fall into other categories, which are defined in other parts of this
specification.

These categories are related as follows:

Flow

Heading

Sectioning

Metadata

Interactive
Phrasing

Embedded

In addition, certain elements are categorized as form-associated elementsp313 and further subcategorized to define
their role in various form-related processing models.

Some elements have unique requirements and do not fit into any particular category.

3.2.5.1.1 Metadata content

Metadata content is content that sets up the presentation or behavior of the rest of the content, or that sets up the
relationship of the document with other documents, or that conveys other "out of band" information.

⇒ basep114, commandp391, linkp115, metap119, noscriptp136, scriptp129, stylep126, titlep113

Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are also metadata
contentp95.

Thus, in the XML serialization, one can use RDF, like this:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<head>
<title>Hedral's Home Page</title>
<r:RDF>
<Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#"

r:about="http://hedral.example.com/#">
<fullName>Cat Hedral</fullName>
<mailbox r:resource="mailto:hedral@damowmow.com"/>
<personalTitle>Sir</personalTitle>

</Person>
</r:RDF>

</head>
<body>
<h1>My home page</h1>
<p>I like playing with string, I guess. Sister says squirrels are fun

95

too so sometimes I follow her to play with them.</p>
</body>

</html>

This isn't possible in the HTML serialization, however.

3.2.5.1.2 Flow content

Most elements that are used in the body of documents and applications are categorized as flow content.
⇒ ap169, abbrp177, addressp151, areap280 (if it is a descendant of a mapp279 element), articlep144, asidep145,
audiop228, bp185, bdop190, blockquotep159, brp191, buttonp351, canvasp251, citep174, codep181, commandp391,
datalistp356, delp194, detailsp387, dfnp176, divp168, dlp164, emp171, embedp217, fieldsetp317, figurep167,
footerp150, formp314, h1p147, h2p147, h3p147, h4p147, h5p147, h6p147, headerp148, hgroupp148, hrp158, ip184,
iframep211, imgp196, inputp320, insp193, kbdp183, keygenp363, labelp319, linkp115 (if the itempropp428 attribute is
present), mapp279, markp186, mathp285, menup393, metap119 (if the itempropp428 attribute is present), meterp369,
navp142, noscriptp136, objectp220, olp161, outputp366, pp157, prep158, progressp367, qp175, rubyp188, sampp182,
scriptp129, sectionp140, selectp353, smallp173, spanp191, strongp172, stylep126 (if the scopedp127 attribute is
present), subp184, supp184, svgp285, tablep286, textareap360, timep178, ulp162, varp182, videop225, wbrp192, textp97

As a general rule, elements whose content model allows any flow contentp96 should have either at least one
descendant text nodep29 that is not inter-element whitespacep94, or at least one descendant element node that is
embedded contentp97. For the purposes of this requirement, delp194 elements and their descendants must not be
counted as contributing to the ancestors of the delp194 element.

This requirement is not a hard requirement, however, as there are many cases where an element can be empty
legitimately, for example when it is used as a placeholder which will later be filled in by a script, or when the element
is part of a template and would on most pages be filled in but on some pages is not relevant.

3.2.5.1.3 Sectioning content

Sectioning content is content that defines the scope of headingsp96 and footersp150.
⇒ articlep144, asidep145, navp142, sectionp140

Each sectioning contentp96 element potentially has a heading and an outlinep153. See the section on headings and
sectionsp152 for further details.

Note: There are also certain elements that are sectioning rootsp152. These are distinct from
sectioning contentp96, but they can also have an outlinep153.

3.2.5.1.4 Heading content

Heading content defines the header of a section (whether explicitly marked up using sectioning contentp96 elements,
or implied by the heading content itself).

⇒ h1p147, h2p147, h3p147, h4p147, h5p147, h6p147, hgroupp148

3.2.5.1.5 Phrasing content

Phrasing content is the text of the document, as well as elements that mark up that text at the intra-paragraph
level. Runs of phrasing contentp96 form paragraphsp98.

⇒ ap169 (if it contains only phrasing contentp96), abbrp177, areap280 (if it is a descendant of a mapp279 element),
audiop228, bp185, bdop190, brp191, buttonp351, canvasp251, citep174, codep181, commandp391, datalistp356, delp194

(if it contains only phrasing contentp96), dfnp176, emp171, embedp217, ip184, iframep211, imgp196, inputp320, insp193

(if it contains only phrasing contentp96), kbdp183, keygenp363, labelp319, linkp115 (if the itempropp428 attribute
is present), mapp279 (if it contains only phrasing contentp96), markp186, mathp285, metap119 (if the itempropp428

attribute is present), meterp369, noscriptp136, objectp220, outputp366, progressp367, qp175, rubyp188, sampp182,
scriptp129, selectp353, smallp173, spanp191, strongp172, subp184, supp184, svgp285, textareap360, timep178,
varp182, videop225, wbrp192, textp97

As a general rule, elements whose content model allows any phrasing contentp96 should have either at least one
descendant text nodep29 that is not inter-element whitespacep94, or at least one descendant element node that is

96

embedded contentp97. For the purposes of this requirement, nodes that are descendants of delp194 elements must not
be counted as contributing to the ancestors of the delp194 element.

Note: Most elements that are categorized as phrasing content can only contain elements that are
themselves categorized as phrasing content, not any flow content.

Text, in the context of content models, means text nodesp29. Textp97 is sometimes used as a content model on its own,
but is also phrasing contentp96, and can be inter-element whitespacep94 (if the text nodesp29 are empty or contain just
space charactersp36).

3.2.5.1.6 Embedded content

Embedded content is content that imports another resource into the document, or content from another vocabulary
that is inserted into the document.

⇒ audiop228, canvasp251, embedp217, iframep211, imgp196, mathp285, objectp220, svgp285, videop225

Elements that are from namespaces other than the HTML namespacep74 and that convey content but not metadata,
are embedded contentp97 for the purposes of the content models defined in this specification. (For example, MathML,
or SVG.)

Some embedded content elements can have fallback content: content that is to be used when the external resource
cannot be used (e.g. because it is of an unsupported format). The element definitions state what the fallback is, if any.

3.2.5.1.7 Interactive content

Interactive content is content that is specifically intended for user interaction.
⇒ ap169, audiop228 (if the controlsp248 attribute is present), buttonp351, detailsp387, embedp217, iframep211,
imgp196 (if the usemapp282 attribute is present), inputp320 (if the typep321 attribute is not in the hiddenp324

state), keygenp363, labelp319, menup393 (if the typep393 attribute is in the toolbarp393 state), objectp220 (if the
usemapp282 attribute is present), selectp353, textareap360, videop225 (if the controlsp248 attribute is present)

Certain elements in HTML have an activation behaviorp98, which means that the user can activate them. This triggers a
sequence of events dependent on the activation mechanism, and normally culminating in a clickp33 event followed by
a DOMActivatep33 event, as described below.

The user agent should allow the user to manually trigger elements that have an activation behaviorp98, for instance
using keyboard or voice input, or through mouse clicks. When the user triggers an element with a defined activation
behaviorp98 in a manner other than clicking it, the default action of the interaction event must be to run synthetic click
activation stepsp97 on the element.

When a user agent is to run synthetic click activation steps on an element, the user agent must run pre-click
activation stepsp98 on the element, then fire a click eventp523 at the element. The default action of this clickp33 event
must be to run post-click activation stepsp98 on the element. If the event is canceled, the user agent must run
canceled activation stepsp98 on the element instead.

Given an element target, the nearest activatable element is the element returned by the following algorithm:

1. If target has a defined activation behaviorp98, then return target and abort these steps.

2. If target has a parent element, then set target to that parent element and return to the first step.

3. Otherwise, there is no nearest activatable elementp97.

When a pointing device is clicked, the user agent must run these steps:

1. Let e be the nearest activatable element of the element designated by the user, if any.

2. If there is an element e, run pre-click activation stepsp98 on it.

3. Dispatch the required clickp33 event.

If there is an element e, then the default action of the clickp33 event must be to run post-click activation
stepsp98 on element e.

If there is an element e but the event is canceled, the user agent must run canceled activation stepsp98 on
element e.

97

Note: The above doesn't happen for arbitrary synthetic events dispatched by author script.
However, the click()p537 method can be used to make it happen programmatically.

When a user agent is to run pre-click activation steps on an element, it must run the pre-click activation steps
defined for that element, if any.

When a user agent is to run post-click activation steps on an element, the user agent must fire a simple eventp523

named DOMActivatep33 that is cancelable at that element. The default action of this event must be to run final
activation stepsp98 on that element. If the event is canceled, the user agent must run canceled activation stepsp98 on
the element instead.

When a user agent is to run canceled activation steps on an element, it must run the canceled activation steps
defined for that element, if any.

When a user agent is to run final activation steps on an element, it must run the activation behavior defined for
that element. Activation behaviors can refer to the clickp33 and DOMActivatep33 events that were fired by the steps
above leading up to this point.

3.2.5.2 Transparent content models

Some elements are described as transparent; they have "transparent" in the description of their content model.

When a content model includes a part that is "transparent", those parts must not contain content that would not be
conformant if all transparent elements in the tree were replaced, in their parent element, by the children in the
"transparent" part of their content model, retaining order.

Consider the following markup fragment:

<p>Hello wonderful world!</p>

Its DOM looks like the following:

The content model of the ap169 element is transparentp98. To see if its contents are conforming, therefore, the
element is replaced by its contents:

Since that is conforming, the contents of the ap169 are conforming in the original fragment.

When a transparent element has no parent, then the part of its content model that is "transparent" must instead be
treated as accepting any flow contentp96.

3.2.5.3 Paragraphs

Note: The term paragraphp98 as defined in this section is distinct from (though related to) the pp157

element defined later. The paragraphp98 concept defined here is used to describe how to interpret
documents.

A paragraph is typically a run of phrasing contentp96 that forms a block of text with one or more sentences that
discuss a particular topic, as in typography, but can also be used for more general thematic grouping. For instance, an
address is also a paragraph, as is a part of a form, a byline, or a stanza in a poem.

pp157

#text: Hello
ap169 href="world.html"
emp171

#text: wonderful
#text: world

#text: !

pp157

#text: Hello
emp171

#text: wonderful
#text: world
#text: !

98

In the following example, there are two paragraphs in a section. There is also a heading, which contains
phrasing content that is not a paragraph. Note how the comments and inter-element whitespacep94 do not form
paragraphs.

<section>
<h1>Example of paragraphs</h1>
This is the first paragraph in this example.
<p>This is the second.</p>
<!-- This is not a paragraph. -->

</section>

Paragraphs in flow contentp96 are defined relative to what the document looks like without the ap169, insp193, delp194,
and mapp279 elements complicating matters, since those elements, with their hybrid content models, can straddle
paragraph boundaries, as shown in the first two examples below.

Note: Generally, having elements straddle paragraph boundaries is best avoided. Maintaining
such markup can be difficult.

The following example takes the markup from the earlier example and puts insp193 and delp194 elements around
some of the markup to show that the text was changed (though in this case, the changes admittedly don't make
much sense). Notice how this example has exactly the same paragraphs as the previous one, despite the insp193

and delp194 elements — the insp193 element straddles the heading and the first paragraph, and the delp194

element straddles the boundary between the two paragraphs.

<section>
<ins><h1>Example of paragraphs</h1>
This is the first paragraph in</ins> this example.
<p>This is the second.</p>
<!-- This is not a paragraph. -->

</section>

Let view be a view of the DOM that replaces all ap169, insp193, delp194, and mapp279 elements in the document with their
contents. Then, in view, for each run of sibling phrasing contentp96 nodes uninterrupted by other types of content, in
an element that accepts content other than phrasing contentp96 as well as phrasing contentp96, let first be the first
node of the run, and let last be the last node of the run. For each such run that consists of at least one node that is
neither embedded contentp97 nor inter-element whitespacep94, a paragraph exists in the original DOM from
immediately before first to immediately after last. (Paragraphs can thus span across ap169, insp193, delp194, and mapp279

elements.)

Conformance checkers may warn authors of cases where they have paragraphs that overlap each other (this can
happen with objectp220, videop225, audiop228, and canvasp251 elements, and indirectly through elements in other
namespaces that allow HTML to be further embedded therein, like svgp285 or mathp285).

A paragraphp98 is also formed explicitly by pp157 elements.

Note: The pp157 element can be used to wrap individual paragraphs when there would otherwise
not be any content other than phrasing content to separate the paragraphs from each other.

In the following example, the link spans half of the first paragraph, all of the heading separating the two
paragraphs, and half of the second paragraph. It straddles the paragraphs and the heading.

<aside>
Welcome!

This is home of...
<h1>The Falcons!</h1>
The Lockheed Martin multirole jet fighter aircraft!

This page discusses the F-16 Fighting Falcon's innermost secrets.

</aside>

Here is another way of marking this up, this time showing the paragraphs explicitly, and splitting the one link
element into three:

<aside>
<p>Welcome! This is home of...</p>
<h1>The Falcons!</h1>

99

<p>The Lockheed Martin multirole jet
fighter aircraft! This page discusses the F-16 Fighting
Falcon's innermost secrets.</p>

</aside>

It is possible for paragraphs to overlap when using certain elements that define fallback content. For example, in
the following section:

<section>
<h1>My Cats</h1>
You can play with my cat simulator.
<object data="cats.sim">
To see the cat simulator, use one of the following links:

Download simulator file
Use online simulator

Alternatively, upgrade to the Mellblom Browser.

</object>
I'm quite proud of it.

</section>

There are five paragraphs:

1. The paragraph that says "You can play with my cat simulator. object I'm quite proud of it.", where
object is the objectp220 element.

2. The paragraph that says "To see the cat simulator, use one of the following links:".
3. The paragraph that says "Download simulator file".
4. The paragraph that says "Use online simulator".
5. The paragraph that says "Alternatively, upgrade to the Mellblom Browser.".

The first paragraph is overlapped by the other four. A user agent that supports the "cats.sim" resource will only
show the first one, but a user agent that shows the fallback will confusingly show the first sentence of the first
paragraph as if it was in the same paragraph as the second one, and will show the last paragraph as if it was at
the start of the second sentence of the first paragraph.

To avoid this confusion, explicit pp157 elements can be used.

Authors may use the ARIA role and aria-* attributes on HTML elementsp28, in accordance with the requirements
described in the ARIA specifications, except where these conflict with the strong native semantics described below.
These exceptions are intended to prevent authors from making assistive technology products report nonsensical states
that do not represent the actual state of the document. [ARIA]p738

User agents are required to implement ARIA semantics on all HTML elementsp28, as defined in the ARIA specifications.
The implicit ARIA semantics defined below must be recognized by implementations. [ARIAIMPL]p738

The following table defines the strong native semantics and corresponding implicit ARIA semantics that apply to HTML
elementsp28. Each language feature (element or attribute) in a cell in the first column implies the ARIA semantics (role,
states, and/or properties) given in the cell in the second column of the same row. Authors must not set the ARIA role
and aria-* attributes in a manner that conflicts with the semantics described in the following table. When multiple
rows apply to an element, the role from the last row to define a role must be applied, and the states and properties
from all the rows must be combined.

Language feature Strong native semantics and implied ARIA semantics

ap169 element that represents a
hyperlinkp404

link role

areap280 element that represents a
hyperlinkp404

link role

buttonp351 element button role

datalistp356 element listbox role, with the aria-multiselectable property set to "false"

h1p147 element that does not have an
hgroupp148 ancestor

heading role, with the aria-level property set to the element's outline depthp156

h2p147 element that does not have an
hgroupp148 ancestor

heading role, with the aria-level property set to the element's outline depthp156

h3p147 element that does not have an
hgroupp148 ancestor

heading role, with the aria-level property set to the element's outline depthp156

3.2.6 Annotations for assistive technology products (ARIA)

100

Language feature Strong native semantics and implied ARIA semantics

h4p147 element that does not have an
hgroupp148 ancestor

heading role, with the aria-level property set to the element's outline depthp156

h5p147 element that does not have an
hgroupp148 ancestor

heading role, with the aria-level property set to the element's outline depthp156

h6p147 element that does not have an
hgroupp148 ancestor

heading role, with the aria-level property set to the element's outline depthp156

hgroupp148 element heading role, with the aria-level property set to the element's outline depthp156

hrp158 element separator role

imgp196 element whose altp197

attribute's value is empty
presentation role

inputp320 element with a typep321

attribute in the Buttonp341 state
button role

inputp320 element with a typep321

attribute in the Checkboxp336 state
checkbox role, with the aria-checked state set to "mixed" if the element's indeterminatep324 IDL
attribute is true, or "true" if the element's checkednessp374 is true, or "false" otherwise

inputp320 element with a typep321

attribute in the Colorp336 state
No role

inputp320 element with a typep321

attribute in the Datep329 state
No role, with the aria-readonly state set to "true" if the element has a readonlyp344 attribute

inputp320 element with a typep321

attribute in the Date and Timep328 state
No role, with the aria-readonly state set to "true" if the element has a readonlyp344 attribute

inputp320 element with a typep321

attribute in the Local Date and Timep332

state

No role, with the aria-readonly state set to "true" if the element has a readonlyp344 attribute

inputp320 element with a typep321

attribute in the E-mailp327 state with no
suggestions source elementp342

textbox role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute

inputp320 element with a typep321

attribute in the File Uploadp338 state
button role

inputp320 element with a typep321

attribute in the Hiddenp324 state
No role

inputp320 element with a typep321

attribute in the Image Buttonp339 state
button role

inputp320 element with a typep321

attribute in the Monthp330 state
No role, with the aria-readonly state set to "true" if the element has a readonlyp344 attribute

inputp320 element with a typep321

attribute in the Numberp333 state
spinbutton role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute, the aria-valuemax property set to the element's maximump347, the aria-valuemin
property set to the element's minimump347, and, if the result of applying the rules for parsing
floating point number valuesp39 to the element's valuep374 is a number, with the aria-valuenow
property set to that number

inputp320 element with a typep321

attribute in the Passwordp327 state
textbox role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute

inputp320 element with a typep321

attribute in the Radio Buttonp337 state
radio role, with the aria-checked state set to "true" if the element's checkednessp374 is true, or
"false" otherwise

inputp320 element with a typep321

attribute in the Rangep334 state
slider role, with the aria-valuemax property set to the element's maximump347, the aria-
valuemin property set to the element's minimump347, and the aria-valuenow property set to the
result of applying the rules for parsing floating point number valuesp39 to the element's valuep374, if
that that results in a number, or the default valuep334 otherwise

inputp320 element with a typep321

attribute in the Reset Buttonp341 state
button role

inputp320 element with a typep321

attribute in the Searchp325 state with no
suggestions source elementp342

textbox role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute

inputp320 element with a typep321

attribute in the Submit Buttonp339 state
button role

inputp320 element with a typep321

attribute in the Telephonep325 state with
no suggestions source elementp342

textbox role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute

inputp320 element with a typep321

attribute in the Textp325 state with no
suggestions source elementp342

textbox role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute

inputp320 element with a typep321

attribute in the Textp325, Searchp325,
Telephonep325, URLp326, or E-mailp327

states with a suggestions source
elementp342

combobox role, with the aria-owns property set to the same value as the listp342 attribute, and the
aria-readonly state set to "true" if the element has a readonlyp344 attribute

101

Language feature Strong native semantics and implied ARIA semantics

inputp320 element with a typep321

attribute in the Timep331 state
No role, with the aria-readonly state set to "true" if the element has a readonlyp344 attribute

inputp320 element with a typep321

attribute in the URLp326 state with no
suggestions source elementp342

textbox role, with the aria-readonly state set to "true" if the element has a readonlyp344

attribute

inputp320 element with a typep321

attribute in the Weekp330 state
No role, with the aria-readonly state set to "true" if the element has a readonlyp344 attribute

linkp115 element that represents a
hyperlinkp404

link role

menup393 element with a typep393

attribute in the context menup393 state
No role

menup393 element with a typep393

attribute in the listp393 state
menu role

menup393 element with a typep393

attribute in the toolbarp393 state
toolbar role

navp142 element navigation role

optionp358 element that is in a list of
optionsp354 or that represents a
suggestion in a datalistp356 element

option role, with the aria-selected state set to "true" if the element's selectednessp359 is true, or
"false" otherwise.

progressp367 element progressbar role, with, if the progress bar is determinate, the aria-valuemax property set to the
maximum value of the progress bar, the aria-valuemin property set to zero, and the aria-
valuenow property set to the current value of the progress bar

selectp353 element with a multiplep354

attribute
listbox role, with the aria-multiselectable property set to "true"

selectp353 element with no multiplep354

attribute
listbox role, with the aria-multiselectable property set to "false"

tdp298 element gridcell role, with the aria-labelledby property set to the value of the headersp300 attribute, if
any

textareap360 element textbox role, with the aria-multiline property set to "true", and the aria-readonly state set to
"true" if the element has a readonlyp361 attribute

thp298 element that is neither a column
headerp306 nor a row headerp306

gridcell role, with the aria-labelledby property set to the value of the headersp300 attribute, if
any

thp298 element that is a column
headerp306

columnheader role, with the aria-labelledby property set to the value of the headersp300

attribute, if any

thp298 element that is a row headerp306 rowheader role, with the aria-labelledby property set to the value of the headersp300 attribute, if
any

trp296 element row role

An element that defines a commandp396,
whose Typep396 facet is "checkbox", and
that is a descendant of a menup393

element whose typep393 attribute in the
listp393 state

menuitemcheckbox role, with the aria-checked state set to "true" if the command's Checked
Statep396 facet is true, and "false" otherwise

An element that defines a commandp396,
whose Typep396 facet is "command", and
that is a descendant of a menup393

element whose typep393 attribute in the
listp393 state

menuitem role

An element that defines a commandp396,
whose Typep396 facet is "radio", and that
is a descendant of a menup393 element
whose typep393 attribute in the listp393

state

menuitemradio role, with the aria-checked state set to "true" if the command's Checked Statep396

facet is true, and "false" otherwise

Elements that are disabledp374 The aria-disabled state set to "true"

Elements that are requiredp344 The aria-required state set to "true"

Some HTML elementsp28 have native semantics that can be overridden. The following table lists these elements and
their implicit ARIA semantics, along with the restrictions that apply to those elements. Each language feature (element
or attribute) in a cell in the first column implies, unless otherwise overriden, the ARIA semantic (role, state, or
property) given in the cell in the second column of the same row, but this semantic may be overridden under the
conditions listed in the cell in the third column of that row.

Language feature Default
implied ARIA

semantic

Restrictions

addressp151 element No role If specified, role must be contentinfo (ARIA restricts usage of this role to one per page)

102

Language feature Default
implied ARIA

semantic

Restrictions

articlep144 element article role Role must be either article, document, application, or main (ARIA restricts usage of this role to
one per page)

asidep145 element note role Role must be either note, complementary, or search

footerp150 element No role If specified, role must be contentinfo (ARIA restricts usage of this role to one per page)

headerp148 element No role If specified, role must be banner (ARIA restricts usage of this role to one per page)

lip163 element whose
parent is an olp161 or
ulp162 element

listitem role Role must be either listitem or treeitem

olp161 element list role Role must be either list, tree, or directory

outputp366 element status role No restrictions

sectionp140 element region role Role must be either region, document, application, contentinfo (ARIA restricts usage of this role
to one per page), main (ARIA restricts usage of this role to one per page), search, alert, dialog,
alertdialog, status, or log

tablep286 element grid role Role must be either grid or treegrid

ulp162 element list role Role must be either list or tree, or directory

The body elementp81 document role Role must be either document or application

User agents may apply different defaults than those described in this section in order to expose the semantics of HTML
elementsp28 in a manner more fine-grained than possible with the above definitions.

Conformance checkers are encouraged to phrase errors such that authors are encouraged to use more appropriate
elements rather than remove accessibility annotations. For example, if an ap169 element is marked as having the
button role, a conformance checker could say "Either a buttonp351 element or an inputp320 element is required when
using the button role" rather than "The button role cannot be used with ap169 elements".

3.3 APIs in HTML documents

For HTML documentsp75, and for HTML elementsp28 in HTML documentsp75, certain APIs defined in DOM Core become
case-insensitive or case-changing, as sometimes defined in DOM Core, and as summarized or required below.
[DOMCORE]p739

This does not apply to XML documentsp75 or to elements that are not in the HTML namespacep74 despite being in HTML
documentsp75.

Element.tagNamep33 and Node.nodeName
These attributes must return element names converted to ASCII uppercasep36, regardless of the case with which
they were created.

Document.createElement()
The canonical form of HTML markup is all-lowercase; thus, this method will lowercasep36 the argument before
creating the requisite element. Also, the element created must be in the HTML namespacep74.

Note: This doesn't apply to Document.createElementNS(). Thus, it is possible, by passing this
last method a tag name in the wrong case, to create an element that appears to have the
same tag name as that of an element defined in this specification when its tagNamep33

attribute is examined, but that doesn't support the corresponding interfaces. The "real"
element name (unaffected by case conversions) can be obtained from the localNamep33

attribute.

Element.setAttribute()
Element.setAttributeNode()

Attribute names are converted to ASCII lowercasep36.

Specifically: when an attribute is set on an HTML elementp28 using Element.setAttribute(), the name
argument must be converted to ASCII lowercasep36 before the element is affected; and when an Attrp33 node is
set on an HTML elementp28 using Element.setAttributeNode(), it must have its name converted to ASCII
lowercasep36 before the element is affected.

Note: This doesn't apply to Element.setAttributeNS() and Element.setAttributeNodeNS().

103

Element.getAttribute()
Element.getAttributeNode()

Attribute names are converted to ASCII lowercasep36.

Specifically: When the Element.getAttribute() method or the Element.getAttributeNode() method is
invoked on an HTML elementp28, the name argument must be converted to ASCII lowercasep36 before the
element's attributes are examined.

Note: This doesn't apply to Element.getAttributeNS() and Element.getAttributeNodeNS().

Document.getElementsByTagName()
Element.getElementsByTagName()

HTML elements match by lower-casing the argument before comparison, elements from other namespaces are
treated as in XML (case-sensitively).

Specifically, these methods (but not their namespaced counterparts) must compare the given argument in a
case-sensitivep35 manner, but when looking at HTML elementsp28, the argument must first be converted to ASCII
lowercasep36.

Note: Thus, in an HTML documentp75 with nodes in multiple namespaces, these methods will
effectively be both case-sensitive and case-insensitive at the same time.

3.4 Interactions with XPath and XSLT

Implementations of XPath 1.0 that operate on HTML documents parsed or created in the manners described in this
specification (e.g. as part of the document.evaluate() API) must act as if the following edit was applied to the XPath
1.0 specification.

First, remove this paragraph:

A QName in the node test is expanded into an expanded-name using the namespace declarations from the
expression context. This is the same way expansion is done for element type names in start and end-tags except
that the default namespace declared with xmlns is not used: if the QName does not have a prefix, then the
namespace URI is null (this is the same way attribute names are expanded). It is an error if the QName has a
prefix for which there is no namespace declaration in the expression context.

Then, insert in its place the following:

A QName in the node test is expanded into an expanded-name using the namespace declarations from the
expression context. If the QName has a prefix, then there must be a namespace declaration for this prefix in the
expression context, and the corresponding namespace URI is the one that is associated with this prefix. It is an
error if the QName has a prefix for which there is no namespace declaration in the expression context.

If the QName has no prefix and the principal node type of the axis is element, then the default element
namespace is used. Otherwise if the QName has no prefix, the namespace URI is null. The default element
namespace is a member of the context for the XPath expression. The value of the default element namespace
when executing an XPath expression through the DOM3 XPath API is determined in the following way:

1. If the context node is from an HTML DOM, the default element namespace is "http://www.w3.org/1999/
xhtml".

2. Otherwise, the default element namespace URI is null.

Note: This is equivalent to adding the default element namespace feature of XPath 2.0 to
XPath 1.0, and using the HTML namespace as the default element namespace for HTML
documents. It is motivated by the desire to have implementations be compatible with legacy
HTML content while still supporting the changes that this specification introduces to HTML
regarding the namespace used for HTML elements, and by the desire to use XPath 1.0 rather
than XPath 2.0.

Note: This change is a willful violationp18 of the XPath 1.0 specification, motivated by desire to
have implementations be compatible with legacy content while still supporting the changes that
this specification introduces to HTML regarding which namespace is used for HTML elements.
[XPATH10]p743

104

http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/1999/REC-xpath-19991116#dt-expanded-name
http://www.w3.org/TR/REC-xml-names#NT-QName
http://www.w3.org/TR/REC-xml-names#NT-QName

XSLT 1.0 processors outputting to a DOM when the output method is "html" (either explicitly or via the defaulting rule
in XSLT 1.0) are affected as follows:

If the transformation program outputs an element in no namespace, the processor must, prior to constructing the
corresponding DOM element node, change the namespace of the element to the HTML namespacep74, ASCII-
lowercasep36 the element's local name, and ASCII-lowercasep36 the names of any non-namespaced attributes on the
element.

Note: This requirement is a willful violationp18 of the XSLT 1.0 specification, required because this
specification changes the namespaces and case-sensitivity rules of HTML in a manner that would
otherwise be incompatible with DOM-based XSLT transformations. (Processors that serialize the
output are unaffected.) [XSLT10]p743

3.5 Dynamic markup insertion

Note: APIs for dynamically inserting markup into the document interact with the parser, and thus
their behavior varies depending on whether they are used with HTML documentsp75 (and the
HTML parserp584) or XHTML in XML documentsp75 (and the XML parserp669).

The open() method comes in several variants with different numbers of arguments.

This box is non-normative. Implementation requirements are given below this box.

document = document . openp105([type [, replace]])
Causes the Documentp33 to be replaced in-place, as if it was a new Documentp33 object, but reusing the
previous object, which is then returned.

If the type argument is omitted or has the value "text/htmlp715", then the resulting Documentp33 has an
HTML parser associated with it, which can be given data to parse using document.write()p107. Otherwise,
all content passed to document.write()p107 will be parsed as plain text.
If the replace argument is present and has the value "replace", the existing entries in the session history
for the Documentp33 object are removed.

The method has no effect if the Documentp33 is still being parsed.

Throws an INVALID_STATE_ERRp74 exception if the Documentp33 is an XML documentp75.

window = document . openp105(url, name, features [, replace])
Works like the window.open()p470 method.

When called with two or fewer arguments, the method must act as follows:

1. If the Documentp33 object is not flagged as an HTML documentp75, throw an INVALID_STATE_ERRp74 exception
and abort these steps.

2. Let type be the value of the first argument, if there is one, or "text/htmlp715" otherwise.

3. Let replace be true if there is a second argument and it is an ASCII case-insensitivep35 match for the value
"replace", and false otherwise.

4. If the document has an active parserp80 that isn't a script-created parserp106, and the insertion pointp592

associated with that parser's input streamp586 is not undefined (that is, it does point to somewhere in the
input stream), then the method does nothing. Abort these steps and return the Documentp33 object on which
the method was invoked.

Note: This basically causes document.open()p105 to be ignored when it's called in an inline
script found during the parsing of data sent over the network, while still letting it have
an effect when called asynchronously or on a document that is itself being spoon-fed
using these APIs.

3.5.1 Opening the input stream

105

5. Release the storage mutexp517.

6. Prompt to unloadp494 the Documentp33 object. If the user refused to allow the document to be unloadedp494,
then these steps must be aborted.

7. Unloadp494 the Documentp33 object, with the recycle parameter set to true.

8. If the document has an active parserp80, then abort that parserp654.

9. Unregister all event listeners registered on the Documentp33 node and its descendants.

10. Remove any tasksp517 associated with the Documentp33 in any task sourcep517.

11. Remove all child nodes of the document, without firing any mutation events.

12. Replace the Documentp33 's singleton objects with new instances of those objects. (This includes in particular
the Windowp467, Locationp482, Historyp478, ApplicationCachep510, UndoManagerp561, Navigatorp529, and
Selectionp543 objects, the various BarPropp472 objects, the two Storage objects, and the various
HTMLCollectionp63 objects. It also includes all the Web IDL prototypes in the JavaScript binding, including
the Documentp33 object's prototype.)

13. Change the document's character encodingp79 to UTF-16.

14. Change the document's addressp75 to the entry scriptp466 's documentp515 's addressp75.

15. Create a new HTML parserp584 and associate it with the document. This is a script-created parser
(meaning that it can be closed by the document.open()p105 and document.close()p107 methods, and that
the tokenizer will wait for an explicit call to document.close()p107 before emitting an end-of-file token). The
encoding confidencep587 is irrelevant.

16. If the type string contains a U+003B SEMICOLON character (;), remove the first such character and all
characters from it up to the end of the string.

Strip all leading and trailing space charactersp36 from type.

If type is not now an ASCII case-insensitivep35 match for the string "text/htmlp715", then act as if the
tokenizer had emitted a start tag token with the tag name "pre", then switch the HTML parserp584 's tokenizer
to the PLAINTEXT statep598.

17. Remove all the entries in the browsing contextp463 's session historyp478 after the current entryp478. If the
current entryp478 is the last entry in the session history, then no entries are removed.

Note: This doesn't necessarily have to affectp484 the user agent's user interface.

18. Remove any tasksp517 queued by the history traversal task sourcep518.

19. Remove any earlier entries that share the same Documentp33.

20. If replace is false, then add a new entry, just before the last entry, and associate with the new entry the text
that was parsed by the previous parser associated with the Documentp33 object, as well as the state of the
document at the start of these steps. (This allows the user to step backwards in the session history to see
the page before it was blown away by the document.open()p105 call.)

21. Finally, set the insertion pointp592 to point at just before the end of the input streamp586 (which at this point
will be empty).

22. Return the Documentp33 on which the method was invoked.

When called with three or more arguments, the open()p105 method on the HTMLDocumentp75 object must call the
open()p470 method on the Windowp467 object of the HTMLDocumentp75 object, with the same arguments as the original
call to the open()p105 method, and return whatever that method returned. If the HTMLDocumentp75 object has no
Windowp467 object, then the method must raise an INVALID_ACCESS_ERRp74 exception.

This box is non-normative. Implementation requirements are given below this box.

3.5.2 Closing the input stream

106

document . closep107()
Closes the input stream that was opened by the document.open()p105 method.

Throws an INVALID_STATE_ERRp74 exception if the Documentp33 is an XML documentp75.

The close() method must run the following steps:

1. If the Documentp33 object is not flagged as an HTML documentp75, throw an INVALID_STATE_ERRp74 exception
and abort these steps.

2. If there is no script-created parserp106 associated with the document, then abort these steps.

3. Insert an explicit "EOF" characterp592 at the end of the parser's input streamp586.

4. If there is a pending parsing-blocking scriptp132, then abort these steps.

5. Run the tokenizer, processing resulting tokens as they are emitted, and stopping when the tokenizer reaches
the explicit "EOF" characterp592 or spins the event loopp518.

This box is non-normative. Implementation requirements are given below this box.

document . writep107(text...)
Adds the given string(s) to the Documentp33 's input stream. If necessary, calls the open()p105 method
implicitly first.

This method throws an INVALID_STATE_ERRp74 exception when invoked on XML documentsp75.

Unless called from the body of a scriptp129 element while the document is being parsed, or called on a
script-created document, calling this method will clear the current page first, as if document.open()p105

had been called.

The document.write(...) method must act as follows:

1. If the method was invoked on an XML documentp75, throw an INVALID_STATE_ERRp74 exception and abort
these steps.

2. If the insertion pointp592 is undefined, the open()p105 method must be called (with no arguments) on the
documentp33 object. If the user refused to allow the document to be unloadedp494, then these steps must be
aborted. Otherwise, the insertion pointp592 will point at just before the end of the (empty) input streamp586.

3. The string consisting of the concatenation of all the arguments to the method must be inserted into the
input streamp586 just before the insertion pointp592.

4. If there is a pending parsing-blocking scriptp132, then the method must now return without further processing
of the input streamp586.

5. Otherwise, the tokenizer must process the characters that were inserted, one at a time, processing resulting
tokens as they are emitted, and stopping when the tokenizer reaches the insertion point or when the
processing of the tokenizer is aborted by the tree construction stage (this can happen if a scriptp129 end tag
token is emitted by the tokenizer).

Note: If the document.write()p107 method was called from script executing inline (i.e.
executing because the parser parsed a set of scriptp129 tags), then this is a reentrant
invocation of the parserp586.

6. Finally, the method must return.

3.5.3 document.write()p107

107

This box is non-normative. Implementation requirements are given below this box.

document . writelnp108(text...)
Adds the given string(s) to the Documentp33 's input stream, followed by a newline character. If necessary,
calls the open()p105 method implicitly first.

This method throws an INVALID_STATE_ERRp74 exception when invoked on XML documentsp75.

The document.writeln(...) method, when invoked, must act as if the document.write()p107 method had been
invoked with the same argument(s), plus an extra argument consisting of a string containing a single line feed
character (U+000A).

The innerHTML IDL attribute represents the markup of the node's contents.

This box is non-normative. Implementation requirements are given below this box.

document . innerHTMLp108 [= value]
Returns a fragment of HTML or XML that represents the Documentp33.

Can be set, to replace the Documentp33 's contents with the result of parsing the given string.

In the case of XML documentsp75, will throw an INVALID_STATE_ERRp74 if the Documentp33 cannot be
serialized to XML, and a SYNTAX_ERRp74 if the given string is not well-formed.

element . innerHTMLp108 [= value]
Returns a fragment of HTML or XML that represents the element's contents.
Can be set, to replace the contents of the element with nodes parsed from the given string.

In the case of XML documentsp75, will throw an INVALID_STATE_ERRp74 if the element cannot be serialized
to XML, and a SYNTAX_ERRp74 if the given string is not well-formed.

On getting, if the node's document is an HTML documentp75, then the attribute must return the result of running the
HTML fragment serialization algorithmp659 on the node; otherwise, the node's document is an XML documentp75, and
the attribute must return the result of running the XML fragment serialization algorithmp670 on the node instead (this
might raise an exception instead of returning a string).

On setting, the following steps must be run:

1. If the node's document is an HTML documentp75: Invoke the HTML fragment parsing algorithmp661.

If the node's document is an XML documentp75: Invoke the XML fragment parsing algorithmp671.

In either case, the algorithm must be invoked with the string being assigned into the innerHTMLp108 attribute
as the input. If the node is an Elementp33 node, then, in addition, that element must be passed as the
context element.

If this raises an exception, then abort these steps.

Otherwise, let new children be the nodes returned.

2. If the attribute is being set on a Documentp33 node, and that document has an active parserp80, then abort
that parser.

3. Remove the child nodes of the node whose innerHTMLp108 attribute is being set, firing appropriate mutation
events.

4. If the attribute is being set on a Documentp33 node, let target document be that Documentp33 node. Otherwise,
the attribute is being set on an Elementp33 node; let target document be the ownerDocument of that
Elementp33.

5. Set the ownerDocument of all the nodes in new children to the target document.

3.5.4 document.writeln()p108

3.5.5 innerHTMLp108

108

6. Append all the new children nodes to the node whose innerHTMLp108 attribute is being set, preserving their
order, and firing mutation events as if a DocumentFragmentp33 containing the new children had been
inserted.

The outerHTML IDL attribute represents the markup of the element and its contents.

This box is non-normative. Implementation requirements are given below this box.

element . outerHTMLp109 [= value]
Returns a fragment of HTML or XML that represents the element and its contents.
Can be set, to replace the element with nodes parsed from the given string.

In the case of XML documentsp75, will throw an INVALID_STATE_ERRp74 if the element cannot be serialized
to XML, and a SYNTAX_ERRp74 if the given string is not well-formed.

Throws a NO_MODIFICATION_ALLOWED_ERRp74 exception if the parent of the element is the Documentp33

node.

On getting, if the node's document is an HTML documentp75, then the attribute must return the result of running the
HTML fragment serialization algorithmp659 on a fictional node whose only child is the node on which the attribute was
invoked; otherwise, the node's document is an XML documentp75, and the attribute must return the result of running
the XML fragment serialization algorithmp670 on that fictional node instead (this might raise an exception instead of
returning a string).

On setting, the following steps must be run:

1. Let target be the element whose outerHTMLp109 attribute is being set.

2. If target has no parent node, then abort these steps. There would be no way to obtain a reference to the
nodes created even if the remaining steps were run.

3. If target's parent node is a Documentp33 object, throw a NO_MODIFICATION_ALLOWED_ERRp74 exception and
abort these steps.

4. Let parent be target's parent node, unless that is a DocumentFragmentp33 node, in which case let parent be
an arbitrary bodyp138 element.

5. If target's document is an HTML documentp75: Invoke the HTML fragment parsing algorithmp661.

If target's document is an XML documentp75: Invoke the XML fragment parsing algorithmp671.

In either case, the algorithm must be invoked with the string being assigned into the outerHTMLp109 attribute
as the input, and parent as the context element.

If this raises an exception, then abort these steps.

Otherwise, let new children be the nodes returned.

6. Set the ownerDocument of all the nodes in new children to target's document.

7. Remove target from its parent node, firing mutation events as appropriate, and then insert in its place all the
new children nodes, preserving their order, and again firing mutation events as if a DocumentFragmentp33

containing the new children had been inserted.

This box is non-normative. Implementation requirements are given below this box.

element . insertAdjacentHTMLp110(position, text)
Parses the given string text as HTML or XML and inserts the resulting nodes into the tree in the position
given by the position argument, as follows:

3.5.6 outerHTMLp109

3.5.7 insertAdjacentHTML()p110

109

"beforebegin"
Before the element itself.

"afterbegin"
Just inside the element, before its first child.

"beforeend"
Just inside the element, after its last child.

"afterend"
After the element itself.

Throws a SYNTAX_ERRp74 exception if the arguments have invalid values (e.g., in the case of XML
documentsp75, if the given string is not well-formed).

Throws a NO_MODIFICATION_ALLOWED_ERRp74 exception if the given position isn't possible (e.g. inserting
elements after the root element of a Documentp33).

The insertAdjacentHTML(position, text) method, when invoked, must run the following algorithm:

1. Let position and text be the method's first and second arguments, respectively.

2. Let target be the element on which the method was invoked.

3. Use the first matching item from this list:

If position is an ASCII case-insensitivep35 match for the string "beforebegin"
If position is an ASCII case-insensitivep35 match for the string "afterend"

If target has no parent node, then abort these steps.

If target's parent node is a Documentp33 object, then throw a NO_MODIFICATION_ALLOWED_ERRp74

exception and abort these steps.

Otherwise, let context be the parent node of target.

If position is an ASCII case-insensitivep35 match for the string "afterbegin"
If position is an ASCII case-insensitivep35 match for the string "beforeend"

Let context be the same as target.

Otherwise
Throw a SYNTAX_ERRp74 exception.

4. If target's document is an HTML documentp75: Invoke the HTML fragment parsing algorithmp661.

If target's document is an XML documentp75: Invoke the XML fragment parsing algorithmp671.

In either case, the algorithm must be invoked with text as the input, and the element selected in by the
previous step as the context element.

If this raises an exception, then abort these steps.

Otherwise, let new children be the nodes returned.

5. Set the ownerDocument of all the nodes in new children to target's document.

6. Use the first matching item from this list:

If position is an ASCII case-insensitivep35 match for the string "beforebegin"
Insert all the new children nodes immediately before target.

If position is an ASCII case-insensitivep35 match for the string "afterbegin"
Insert all the new children nodes before the first child of target, if there is one. If there is no such child,
append them all to target.

If position is an ASCII case-insensitivep35 match for the string "beforeend"
Append all the new children nodes to target.

110

If position is an ASCII case-insensitivep35 match for the string "afterend"
Insert all the new children nodes immediately after target.

The new children nodes must be inserted in a manner that preserves their order and fires mutation events
as if a DocumentFragmentp33 containing the new children had been inserted.

111

4 The elements of HTML

4.1 The root element

The htmlp112 element representsp672 the root of an HTML document.

The manifest attribute gives the address of the document's application cachep497 manifestp497, if there is one. If the
attribute is present, the attribute's value must be a valid non-empty URLp54.

The manifestp112 attribute only has an effectp509 during the early stages of document load. Changing the attribute
dynamically thus has no effect (and thus, no DOM API is provided for this attribute).

Note: For the purposes of application cache selectionp509, later basep114 elements cannot affect the
resolving of relative URLsp55 in manifestp112 attributes, as the attributes are processed before
those elements are seen.

Note: The window.applicationCachep511 IDL attribute provides scripted access to the offline
application cachep497 mechanism.

The htmlp112 element in the following example declares that the document's language is English.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Swapping Songs</title>
</head>
<body>
<h1>Swapping Songs</h1>
<p>Tonight I swapped some of the songs I wrote with some friends, who
gave me some of the songs they wrote. I love sharing my music.</p>
</body>
</html>

4.2 Document metadata

Categories
None.

Contexts in which this element may be used:
As the root element of a document.
Wherever a subdocument fragment is allowed in a compound document.

Content model:
A headp112 element followed by a bodyp138 element.

Content attributes:
Global attributesp87

manifestp112

DOM interface:

interface HTMLHtmlElement : HTMLElement {};

Categories
None.

Contexts in which this element may be used:
As the first element in an htmlp112 element.

4.1.1 The html element

4.2.1 The head element

112

The headp112 element representsp672 a collection of metadata for the Documentp33.

The collection of metadata in a headp112 element can be large or small. Here is an example of a very short one:

<!doctype html>
<html>
<head>
<title>A document with a short head</title>

</head>
<body>
...

Here is an example of a longer one:

<!DOCTYPE HTML>
<HTML>
<HEAD>
<META CHARSET="UTF-8">
<BASE HREF="http://www.example.com/">
<TITLE>An application with a long head</TITLE>
<LINK REL="STYLESHEET" HREF="default.css">
<LINK REL="STYLESHEET ALTERNATE" HREF="big.css" TITLE="Big Text">
<SCRIPT SRC="support.js"></SCRIPT>
<META NAME="APPLICATION-NAME" CONTENT="Long headed application">

</HEAD>
<BODY>
...

Note: The titlep113 element is a required child in most situations, but when a higher-level protocol
provides title information, e.g. in the Subject line of an e-mail when HTML is used as an e-mail
authoring format, the titlep113 element can be omitted.

Content model:
If the document is an iframe srcdoc documentp211 or if title information is available from a higher-level
protocol: Zero or more elements of metadata contentp95.
Otherwise: One or more elements of metadata contentp95, of which exactly one is a titlep113 element.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLHeadElement : HTMLElement {};

Categories
Metadata contentp95.

Contexts in which this element may be used:
In a headp112 element containing no other titlep113 elements.

Content model:
Textp97.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLTitleElement : HTMLElement {
attribute DOMString text;

};

4.2.2 The title element

113

The titlep113 element representsp672 the document's title or name. Authors should use titles that identify their
documents even when they are used out of context, for example in a user's history or bookmarks, or in search results.
The document's title is often different from its first heading, since the first heading does not have to stand alone when
taken out of context.

There must be no more than one titlep113 element per document.

This box is non-normative. Implementation requirements are given below this box.

title . textp114 [= value]
Returns the contents of the element, ignoring child nodes that aren't text nodesp29.
Can be set, to replace the element's children with the given value.

The IDL attribute text must return a concatenation of the contents of all the text nodesp29 that are direct children of
the titlep113 element (ignoring any other nodes such as comments or elements), in tree order. On setting, it must act
the same way as the textContentp33 IDL attribute.

Here are some examples of appropriate titles, contrasted with the top-level headings that might be used on
those same pages.

<title>Introduction to The Mating Rituals of Bees</title>
...

<h1>Introduction</h1>
<p>This companion guide to the highly successful
<cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the subject matter unambiguously,
while the first heading assumes the reader knows what the context is and therefore won't wonder if the dances
are Salsa or Waltz:

<title>Dances used during bee mating rituals</title>
...

<h1>The Dances</h1>

The string to use as the document's title is given by the document.titlep80 IDL attribute. User agents should use the
document's title when referring to the document in their user interface.

The basep114 element allows authors to specify the document base URLp55 for the purposes of resolving relative
URLsp55, and the name of the default browsing contextp463 for the purposes of following hyperlinksp405. The element
does not representp672 any content beyond this information.

There must be no more than one basep114 element per document.

Categories
Metadata contentp95.

Contexts in which this element may be used:
In a headp112 element containing no other basep114 elements.

Content model:
Empty.

Content attributes:
Global attributesp87

hrefp115

targetp115

DOM interface:

interface HTMLBaseElement : HTMLElement {
attribute DOMString href;
attribute DOMString target;

};

4.2.3 The base element

114

A basep114 element must have either an hrefp115 attribute, a targetp115 attribute, or both.

The href content attribute, if specified, must contain a valid URLp54.

A basep114 element, if it has an hrefp115 attribute, must come before any other elements in the tree that have
attributes defined as taking URLsp54, except the htmlp112 element (its manifestp112 attribute isn't affected by basep114

elements).

Note: If there are multiple basep114 elements with hrefp115 attributes, all but the first are ignored.

The target attribute, if specified, must contain a valid browsing context name or keywordp466, which specifies which
browsing contextp463 is to be used as the default when hyperlinksp404 and formsp314 in the Documentp33 cause
navigationp484.

A basep114 element, if it has a targetp115 attribute, must come before any elements in the tree that represent
hyperlinksp404.

Note: If there are multiple basep114 elements with targetp115 attributes, all but the first are ignored.

The href and target IDL attributes must reflectp61 the respective content attributes of the same name.

In this example, a basep114 element is used to set the document base URLp55:

<!DOCTYPE html>
<html>

<head>
<title>This is an example for the <base> element</title>
<base href="http://www.example.com/news/index.html">

</head>
<body>

<p>Visit the archives.</p>
</body>

</html>

The link in the above example would be a link to "http://www.example.com/news/archives.html".

Categories
Metadata contentp95.
If the itempropp428 attribute is present: flow contentp96.
If the itempropp428 attribute is present: phrasing contentp96.

Contexts in which this element may be used:
Where metadata contentp95 is expected.
In a noscriptp136 element that is a child of a headp112 element.
If the itempropp428 attribute is present: where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

hrefp116

relp116

mediap117

hreflangp117

typep117

sizesp410

Also, the titlep118 attribute has special semantics on this element.

DOM interface:

interface HTMLLinkElement : HTMLElement {
attribute boolean disabled;

4.2.4 The link element

115

The linkp115 element allows authors to link their document to other resources.

The destination of the link(s) is given by the href attribute, which must be present and must contain a valid non-
empty URLp54. If the hrefp116 attribute is absent, then the element does not define a link.

A linkp115 element must have either a relp116 attribute, or an itempropp428 attribute, or both.

The types of link indicated (the relationships) are given by the value of the rel attribute, which, if present, must have
a value that is a set of space-separated tokensp52. The allowed values and their meaningsp406 are defined in a later
section. If the relp116 attribute is absent, or if none of the values used are allowed according to the definitions in this
specification, then the element does not define a link.

Two categories of links can be created using the linkp115 element. Links to external resources are links to
resources that are to be used to augment the current document, and hyperlink links are links to other
documentsp404. The link types sectionp406 defines whether a particular link type is an external resource or a hyperlink.
One element can create multiple links (of which some might be external resource links and some might be hyperlinks);
exactly which and how many links are created depends on the keywords given in the relp116 attribute. User agents
must process the links on a per-link basis, not a per-element basis.

Note: Each link is handled separately. For instance, if there are two linkp115 elements with
rel="stylesheet", they each count as a separate external resource, and each is affected by its
own attributes independently.

The exact behavior for links to external resources depends on the exact relationship, as defined for the relevant link
type. Some of the attributes control whether or not the external resource is to be applied (as defined below).

For external resources that are represented in the DOM (for example, style sheets), the DOM representation must be
made available even if the resource is not applied. To obtain the resource, the user agent must run the following
steps:

1. If the hrefp116 attribute's value is the empty string, then abort these steps.

2. Resolvep55 the URLp54 given by the hrefp116 attribute, relative to the element.

3. If the previous step fails, then abort these steps.

4. Fetchp58 the resulting absolute URLp55.

User agents may opt to only try to obtain such resources when they are needed, instead of pro-actively fetchingp58 all
the external resources that are not applied.

The semantics of the protocol used (e.g. HTTP) must be followed when fetching external resources. (For example,
redirects will be followed and 404 responses will cause the external resource to not be applied.)

Once the attempts to obtain the resource and its critical subresourcesp28 are complete, the user agent must, if the
loads were successful, queue a taskp517 to fire a simple eventp523 named load at the linkp115 element, or, if the
resource or one of its critical subresourcesp28 failed to completely load for any reason (e.g. DNS error, HTTP 404
response, a connection being prematurely closed, unsupported Content-Type), queue a taskp517 to fire a simple
eventp523 named error at the linkp115 element. Non-network errors in processing the resource or its subresources
(e.g. CSS parse errors, PNG decoding errors) are not failures for the purposes of this paragraph.

The task sourcep517 for these tasksp517 is the DOM manipulation task sourcep518.

attribute DOMString href;
attribute DOMString rel;

readonly attribute DOMTokenList relList;
attribute DOMString media;
attribute DOMString hreflang;
attribute DOMString type;

[PutForwards=value] readonly attribute DOMSettableTokenList sizes;
};
HTMLLinkElement implements LinkStyle;

116

The element must delay the load eventp653 of the element's document until all the attempts to obtain the resource and
its critical subresourcesp28 are complete. (Resources that the user agent has not yet attempted to obtain, e.g. because
it is waiting for the resource to be needed, do not delay the load eventp653.)

Interactive user agents may provide users with a means to follow the hyperlinksp405 created using the linkp115

element, somewhere within their user interface. The exact interface is not defined by this specification, but it could
include the following information (obtained from the element's attributes, again as defined below), in some form or
another (possibly simplified), for each hyperlink created with each linkp115 element in the document:

• The relationship between this document and the resource (given by the relp116 attribute)

• The title of the resource (given by the titlep118 attribute).

• The address of the resource (given by the hrefp116 attribute).

• The language of the resource (given by the hreflangp117 attribute).

• The optimum media for the resource (given by the mediap117 attribute).

User agents could also include other information, such as the type of the resource (as given by the typep117 attribute).

Note: Hyperlinks created with the linkp115 element and its relp116 attribute apply to the whole
page. This contrasts with the relp404 attribute of ap169 and areap280 elements, which indicates the
type of a link whose context is given by the link's location within the document.

The media attribute says which media the resource applies to. The value must be a valid media queryp54.

If the link is a hyperlinkp116 then the mediap117 attribute is purely advisory, and describes for which media the
document in question was designed.

However, if the link is an external resource linkp116, then the mediap117 attribute is prescriptive. The user agent must
apply the external resource when the mediap117 attribute's value matches the environmentp54 and the other relevant
conditions apply, and must not apply it otherwise.

Note: The external resource might have further restrictions defined within that limit its
applicability. For example, a CSS style sheet might have some @media blocks. This specification
does not override such further restrictions or requirements.

The default, if the mediap117 attribute is omitted, is "all", meaning that by default links apply to all media.

The hreflang attribute on the linkp115 element has the same semantics as the hreflang attribute on hyperlink
elementsp404.

The type attribute gives the MIME typep28 of the linked resource. It is purely advisory. The value must be a valid MIME
typep28.

For external resource linksp116, the typep117 attribute is used as a hint to user agents so that they can avoid fetching
resources they do not support. If the attribute is present, then the user agent must assume that the resource is of the
given type (even if that is not a valid MIME typep28, e.g. the empty string). If the attribute is omitted, but the external
resource link type has a default type defined, then the user agent must assume that the resource is of that type. If the
UA does not support the given MIME typep28 for the given link relationship, then the UA should not obtainp116 the
resource; if the UA does support the given MIME typep28 for the given link relationship, then the UA should obtainp116

the resource. If the attribute is omitted, and the external resource link type does not have a default type defined, but
the user agent would obtainp116 the resource if the type was known and supported, then the user agent should
obtainp116 the resource under the assumption that it will be supported.

User agents must not consider the typep117 attribute authoritative — upon fetching the resource, user agents must not
use the typep117 attribute to determine its actual type. Only the actual type (as defined in the next paragraph) is used
to determine whether to apply the resource, not the aforementioned assumed type.

If the external resource link type defines rules for processing the resource's Content-Type metadatap61, then those
rules apply. Otherwise, if the resource is expected to be an image, user agents may apply the image sniffing rulesp61,
with the official type being the type determined from the resource's Content-Type metadatap61, and use the resulting
sniffed type of the resource as if it was the actual type. Otherwise, if neither of these conditions apply or if the user
agent opts not to apply the image sniffing rules, then the user agent must use the resource's Content-Type

117

metadatap61 to determine the type of the resource. If there is no type metadata, but the external resource link type
has a default type defined, then the user agent must assume that the resource is of that type.

Note: The stylesheetp412 link type defines rules for processing the resource's Content-Type
metadatap61.

Once the user agent has established the type of the resource, the user agent must apply the resource if it is of a
supported type and the other relevant conditions apply, and must ignore the resource otherwise.

If a document contains style sheet links labeled as follows:

<link rel="stylesheet" href="A" type="text/plain">
<link rel="stylesheet" href="B" type="text/css">
<link rel="stylesheet" href="C">

...then a compliant UA that supported only CSS style sheets would fetch the B and C files, and skip the A file
(since text/plain is not the MIME typep28 for CSS style sheets).

For files B and C, it would then check the actual types returned by the server. For those that are sent as text/
css, it would apply the styles, but for those labeled as text/plain, or any other type, it would not.

If one of the two files was returned without a Content-Typep61 metadata, or with a syntactically incorrect type
like Content-Type: "null", then the default type for stylesheetp412 links would kick in. Since that default type
is text/css, the style sheet would nonetheless be applied.

The title attribute gives the title of the link. With one exception, it is purely advisory. The value is text. The exception
is for style sheet links, where the titlep118 attribute defines alternative style sheet sets.

Note: The titlep118 attribute on linkp115 elements differs from the global titlep89 attribute of most
other elements in that a link without a title does not inherit the title of the parent element: it
merely has no title.

The sizesp410 attribute is used with the iconp409 link type. The attribute must not be specified on linkp115 elements
that do not have a relp116 attribute that specifies the iconp409 keyword.

Some versions of HTTP defined a Link: header, to be processed like a series of linkp115 elements. If supported, for the
purposes of ordering links defined by HTTP headers must be assumed to come before any links in the document, in the
order that they were given in the HTTP entity header. (URIs in these headers are to be processed and resolved
according to the rules given in HTTP; the rules of this specification don't apply.) [HTTP]p739 [WEBLINK]p742

The IDL attributes href, rel, media, hreflang, and type, and sizes each must reflectp61 the respective content
attributes of the same name.

The IDL attribute relList must reflectp61 the relp116 content attribute.

The IDL attribute disabled only applies to style sheet links. When the linkp115 element defines a style sheet link, then
the disabledp118 attribute behaves as defined for the alternative style sheets DOMp129. For all other linkp115 elements
it always return false and does nothing on setting.

The LinkStyle interface is also implemented by this element; the styling processing modelp128 defines how.
[CSSOM]p739

Here, a set of linkp115 elements provide some style sheets:

<!-- a persistent style sheet -->
<link rel="stylesheet" href="default.css">

<!-- the preferred alternate style sheet -->
<link rel="stylesheet" href="green.css" title="Green styles">

<!-- some alternate style sheets -->
<link rel="alternate stylesheet" href="contrast.css" title="High contrast">
<link rel="alternate stylesheet" href="big.css" title="Big fonts">
<link rel="alternate stylesheet" href="wide.css" title="Wide screen">

The following example shows how you can specify versions of the page that use alternative formats, are aimed
at other languages, and that are intended for other media:

118

<link rel=alternate href="/en/html" hreflang=en type=text/html title="English HTML">
<link rel=alternate href="/fr/html" hreflang=fr type=text/html title="French HTML">
<link rel=alternate href="/en/html/print" hreflang=en type=text/html media=print
title="English HTML (for printing)">
<link rel=alternate href="/fr/html/print" hreflang=fr type=text/html media=print
title="French HTML (for printing)">
<link rel=alternate href="/en/pdf" hreflang=en type=application/pdf title="English PDF">
<link rel=alternate href="/fr/pdf" hreflang=fr type=application/pdf title="French PDF">

The metap119 element representsp672 various kinds of metadata that cannot be expressed using the titlep113, basep114,
linkp115, stylep126, and scriptp129 elements.

The metap119 element can represent document-level metadata with the namep120 attribute, pragma directives with the
http-equivp122 attribute, and the file's character encoding declarationp125 when an HTML document is serialized to
string form (e.g. for transmission over the network or for disk storage) with the charsetp119 attribute.

Exactly one of the namep120, http-equivp122, charsetp119, and itempropp428 attributes must be specified.

If either namep120, http-equivp122, or itempropp428 is specified, then the contentp120 attribute must also be specified.
Otherwise, it must be omitted.

The charset attribute specifies the character encoding used by the document. This is a character encoding
declarationp125. If the attribute is present in an XML documentp75, its value must be an ASCII case-insensitivep35 match
for the string "UTF-8" (and the document is therefore forced to use UTF-8 as its encoding).

Note: The charsetp119 attribute on the metap119 element has no effect in XML documents, and is only
allowed in order to facilitate migration to and from XHTML.

There must not be more than one metap119 element with a charsetp119 attribute per document.

Categories
Metadata contentp95.
If the itempropp428 attribute is present: flow contentp96.
If the itempropp428 attribute is present: phrasing contentp96.

Contexts in which this element may be used:
If the charsetp119 attribute is present, or if the element's http-equivp122 attribute is in the Encoding
declaration statep123: in a headp112 element.
If the http-equivp122 attribute is present but not in the Encoding declaration statep123: in a headp112 element.
If the http-equivp122 attribute is present but not in the Encoding declaration statep123: in a noscriptp136

element that is a child of a headp112 element.
If the namep120 attribute is present: where metadata contentp95 is expected.
If the itempropp428 attribute is present: where metadata contentp95 is expected.
If the itempropp428 attribute is present: where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

namep120

http-equivp122

contentp120

charsetp119

DOM interface:

interface HTMLMetaElement : HTMLElement {
attribute DOMString name;
attribute DOMString httpEquiv;
attribute DOMString content;

};

4.2.5 The meta element

119

The content attribute gives the value of the document metadata or pragma directive when the element is used for
those purposes. The allowed values depend on the exact context, as described in subsequent sections of this
specification.

If a metap119 element has a name attribute, it sets document metadata. Document metadata is expressed in terms of
name/value pairs, the namep120 attribute on the metap119 element giving the name, and the contentp120 attribute on the
same element giving the value. The name specifies what aspect of metadata is being set; valid names and the
meaning of their values are described in the following sections. If a metap119 element has no contentp120 attribute, then
the value part of the metadata name/value pair is the empty string.

The name and content IDL attributes must reflectp61 the respective content attributes of the same name. The IDL
attribute httpEquiv must reflectp61 the content attribute http-equivp122.

4.2.5.1 Standard metadata names

This specification defines a few names for the namep120 attribute of the metap119 element.

Names are case-insensitive, and must be compared in an ASCII case-insensitivep35 manner.

application-name
The value must be a short free-form string giving the name of the Web application that the page represents. If
the page is not a Web application, the application-namep120 metadata name must not be used. There must not
be more than one metap119 element with its namep120 attribute set to the value application-namep120 per
document. User agents may use the application name in UI in preference to the page's titlep113, since the title
might include status messages and the like relevant to the status of the page at a particular moment in time
instead of just being the name of the application.

author
The value must be a free-form string giving the name of one of the page's authors.

description
The value must be a free-form string that describes the page. The value must be appropriate for use in a
directory of pages, e.g. in a search engine. There must not be more than one metap119 element with its namep120

attribute set to the value descriptionp120 per document.

generator
The value must be a free-form string that identifies one of the software packages used to generate the
document. This value must not be used on hand-authored pages.

Here is what a tool called "Frontweaver" could include in its output, in the page's headp112 element, to
identify itself as the tool used to generate the page:

<meta name=generator content="Frontweaver 8.2">

keywords
The value must be a set of comma-separated tokensp53, each of which is a keyword relevant to the page.

This page about typefaces on British motorways uses a metap119 element to specify some keywords that
users might use to look for the page:

<!DOCTYPE HTML>
<html>
<head>
<title>Typefaces on UK motorways</title>
<meta name="keywords" content="british,type face,font,fonts,highway,highways">

</head>
<body>
...

Note: Many search engines do not consider such keywords, because this feature has
historically been used unreliably and even misleadingly as a way to spam search engine
results in a way that is not helpful for users.

To obtain the list of keywords that the author has specified as applicable to the page, the user agent must run
the following steps:

1. Let keywords be an empty list.

120

2. For each metap119 element with a namep120 attribute and a contentp120 attribute and whose namep120

attribute's value is keywordsp120, run the following substeps:

1. Split the value of the element's content attribute on commasp53.

2. Add the resulting tokens, if any, to keywords.

3. Remove any duplicates from keywords.

4. Return keywords. This is the list of keywords that the author has specified as applicable to the page.

User agents should not use this information when there is insufficient confidence in the reliability of the value.

For instance, it would be reasonable for a content management system to use the keyword information of
pages within the system to populate the index of a site-specific search engine, but a large-scale content
aggregator that used this information would likely find that certain users would try to game its ranking
mechanism through the use of inappropriate keywords.

4.2.5.2 Other metadata names

Extensions to the predefined set of metadata names may be registered in the WHATWG Wiki MetaExtensions
page. [WHATWGWIKI]p743

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a type. These new names must be
specified with the following information:

Keyword
The actual name being defined. The name should not be confusingly similar to any other defined name (e.g.
differing only in case).

Brief description
A short non-normative description of what the metadata name's meaning is, including the format the value is
required to be in.

Specification
A link to a more detailed description of the metadata name's semantics and requirements. It could be another
page on the Wiki, or a link to an external page.

Synonyms
A list of other names that have exactly the same processing requirements. Authors should not use the names
defined to be synonyms, they are only intended to allow user agents to support legacy content. Anyone may
remove synonyms that are not used in practice; only names that need to be processed as synonyms for
compatibility with legacy content are to be registered in this way.

Status
One of the following:

Proposed
The name has not received wide peer review and approval. Someone has proposed it and is, or soon will
be, using it.

Ratified
The name has received wide peer review and approval. It has a specification that unambiguously defines
how to handle pages that use the name, including when they use it in incorrect ways.

Discontinued
The metadata name has received wide peer review and it has been found wanting. Existing pages are using
this metadata name, but new pages should avoid it. The "brief description" and "specification" entries will
give details of what authors should use instead, if anything.

If a metadata name is found to be redundant with existing values, it should be removed and listed as a synonym
for the existing value.

If a metadata name is registered in the "proposed" state for a period of a month or more without being used or
specified, then it may be removed from the registry.

If a metadata name is added with the "proposed" status and found to be redundant with existing values, it
should be removed and listed as a synonym for the existing value. If a metadata name is added with the
"proposed" status and found to be harmful, then it should be changed to "discontinued" status.

121

http://wiki.whatwg.org/wiki/MetaExtensions
http://wiki.whatwg.org/wiki/MetaExtensions

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

Conformance checkers must use the information given on the WHATWG Wiki MetaExtensions page to establish if a
value is allowed or not: values defined in this specification or marked as "proposed" or "ratified" must be accepted,
whereas values marked as "discontinued" or not listed in either this specification or on the aforementioned page must
be rejected as invalid. Conformance checkers may cache this information (e.g. for performance reasons or to avoid the
use of unreliable network connectivity).

When an author uses a new metadata name not defined by either this specification or the Wiki page, conformance
checkers should offer to add the value to the Wiki, with the details described above, with the "proposed" status.

Metadata names whose values are to be URLsp54 must not be proposed or accepted. Links must be represented using
the linkp115 element, not the metap119 element.

4.2.5.3 Pragma directives

When the http-equiv attribute is specified on a metap119 element, the element is a pragma directive.

The http-equivp122 attribute is an enumerated attributep37. The following table lists the keywords defined for this
attribute. The states given in the first cell of the rows with keywords give the states to which those keywords map.

State Keywords Notes

Content Languagep122 content-language Conformance checkers will include a warning

Encoding declarationp123 content-type

Default stylep123 default-style

Refreshp123 refresh

When a metap119 element is inserted into the documentp29, if its http-equivp122 attribute is present and represents one
of the above states, then the user agent must run the algorithm appropriate for that state, as described in the
following list:

Content language state (http-equiv="content-language")
This pragma sets the pragma-set default language. Until the pragma is successfully processed, there is no
pragma-set default languagep122.

Note: Conformance checkers will include a warning if this pragma is used. Authors are
encouraged to use the langp89 attribute instead.

1. If another metap119 element with an http-equivp122 attribute in the Content Language statep122 has
already been successfully processed (i.e. when it was inserted the user agent processed it and reached
the last step of this list of steps), then abort these steps.

2. If the metap119 element has no contentp120 attribute, or if that attribute's value is the empty string, then
abort these steps.

3. If the element's contentp120 attribute contains a U+002C COMMA character (,) then abort these steps.

4. Let input be the value of the element's contentp120 attribute.

5. Let position point at the first character of input.

6. Skip whitespacep36.

7. Collect a sequence of charactersp36 that are not space charactersp36.

8. Let the pragma-set default languagep122 be the string that resulted from the previous step.

For metap119 elements with an http-equivp122 attribute in the Content Language statep122, the contentp120

attribute must have a value consisting of a valid BCP 47 language code. [BCP47]p738

Note: This pragma is not exactly equivalent to the HTTP Content-Language header, for
instance it only supports one language. [HTTP]p739

122

Encoding declaration state (http-equiv="content-type")
The Encoding declaration statep123 is just an alternative form of setting the charset attribute: it is a character
encoding declarationp125. This state's user agent requirements are all handled by the parsing section of the
specification.

For metap119 elements with an http-equivp122 attribute in the Encoding declaration statep123, the contentp120

attribute must have a value that is an ASCII case-insensitivep35 match for a string that consists of: the literal
string "text/html;", optionally followed by any number of space charactersp36, followed by the literal string
"charset=", followed by the character encoding name of the character encoding declarationp125.

If the document contains a metap119 element with an http-equivp122 attribute in the Encoding declaration
statep123, then the document must not contain a metap119 element with the charsetp119 attribute present.

The Encoding declaration statep123 may be used in HTML documentsp75, but elements with an http-equivp122

attribute in that state must not be used in XML documentsp75.

Default style state (http-equiv="default-style")
This pragma sets the name of the default alternative style sheet set.

1. If the metap119 element has no contentp120 attribute, or if that attribute's value is the empty string, then
abort these steps.

2. Set the preferred style sheet set to the value of the element's contentp120 attribute. [CSSOM]p739

Refresh state (http-equiv="refresh")
This pragma acts as timed redirect.

1. If another metap119 element with an http-equivp122 attribute in the Refresh statep123 has already been
successfully processed (i.e. when it was inserted the user agent processed it and reached the last step
of this list of steps), then abort these steps.

2. If the metap119 element has no contentp120 attribute, or if that attribute's value is the empty string, then
abort these steps.

3. Let input be the value of the element's contentp120 attribute.

4. Let position point at the first character of input.

5. Skip whitespacep36.

6. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9),
and parse the resulting string using the rules for parsing non-negative integersp37. If the sequence of
characters collected is the empty string, then no number will have been parsed; abort these steps.
Otherwise, let time be the parsed number.

7. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) and
U+002E FULL STOP (.). Ignore any collected characters.

8. Skip whitespacep36.

9. Let url be the address of the current page.

10. If the character in input pointed to by position is a U+003B SEMICOLON (";"), then advance position to
the next character. Otherwise, jump to the last step.

11. Skip whitespacep36.

12. If the character in input pointed to by position is a U+0055 LATIN CAPITAL LETTER U character (U) or a
U+0075 LATIN SMALL LETTER U character (u), then advance position to the next character. Otherwise,
jump to the last step.

13. If the character in input pointed to by position is a U+0052 LATIN CAPITAL LETTER R character (R) or a
U+0072 LATIN SMALL LETTER R character (r), then advance position to the next character. Otherwise,
jump to the last step.

14. If the character in input pointed to by position is s U+004C LATIN CAPITAL LETTER L character (L) or a
U+006C LATIN SMALL LETTER L character (l), then advance position to the next character. Otherwise,
jump to the last step.

15. Skip whitespacep36.

123

16. If the character in input pointed to by position is a U+003D EQUALS SIGN ("="), then advance position
to the next character. Otherwise, jump to the last step.

17. Skip whitespacep36.

18. If the character in input pointed to by position is either a U+0027 APOSTROPHE character (') or
U+0022 QUOTATION MARK character ("), then let quote be that character, and advance position to the
next character. Otherwise, let quote be the empty string.

19. Let url be equal to the substring of input from the character at position to the end of the string.

20. If quote is not the empty string, and there is a character in url equal to quote, then truncate url at that
character, so that it and all subsequent characters are removed.

21. Strip any trailing space charactersp36 from the end of url.

22. Strip any U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), and U+000D CARRIAGE RETURN
(CR) characters from url.

23. Resolvep55 the url value to an absolute URLp55, relative to the metap119 element. If this fails, abort these
steps.

24. Perform one or more of the following steps:

• Set a timer so that in time seconds, adjusted to take into account user or user agent
preferences, if the user has not canceled the redirect and if the metap119 element's
Documentp33 's browsing contextp463 did not have the sandboxed automatic features browsing
context flagp215 set when the Documentp33 was created, the user agent navigatesp484 the
Documentp33 's browsing contextp463 to url, with replacement enabledp492, and with the
Documentp33 's browsing contextp463 as the source browsing contextp484.

• Provide the user with an interface that, when selected, navigatesp484 a browsing contextp463

to url, with the document's browsing context as the source browsing contextp484.

• Do nothing.

In addition, the user agent may, as with anything, inform the user of any and all aspects of its
operation, including the state of any timers, the destinations of any timed redirects, and so forth.

For metap119 elements with an http-equivp122 attribute in the Refresh statep123, the contentp120 attribute must
have a value consisting either of:

• just a valid non-negative integerp37, or

• a valid non-negative integerp37, followed by a U+003B SEMICOLON character (;), followed by one or
more space charactersp36, followed by either a U+0055 LATIN CAPITAL LETTER U character (U) or a
U+0075 LATIN SMALL LETTER U character (u), a U+0052 LATIN CAPITAL LETTER R character (R) or a
U+0072 LATIN SMALL LETTER R character (r), a U+004C LATIN CAPITAL LETTER L character (L) or a
U+006C LATIN SMALL LETTER L character (l), a U+003D EQUALS SIGN character (=), and then a valid
URLp54.

In the former case, the integer represents a number of seconds before the page is to be reloaded; in the latter
case the integer represents a number of seconds before the page is to be replaced by the page at the given
URLp54.

A news organization's front page could include the following markup in the page's headp112 element, to
ensure that the page automatically reloads from the server every five minutes:

<meta http-equiv="Refresh" content="300">
A sequence of pages could be used as an automated slide show by making each page refresh to the next
page in the sequence, using markup such as the following:

<meta http-equiv="Refresh" content="20; URL=page4.html">

There must not be more than one metap119 element with any particular state in the document at a time.

124

4.2.5.4 Other pragma directives

Extensions to the predefined set of pragma directives may, under certain conditions, be registered in the
WHATWG Wiki PragmaExtensions page. [WHATWGWIKI]p743

Such extensions must use a name that is identical to an HTTP header registered in the Permanent Message Header
Field Registry, and must have behavior identical to that described for the HTTP header. [IANAPERMHEADERS]p739

Pragma directives corresponding to headers describing metadata, or not requiring specific user agent processing,
must not be registered; instead, use metadata namesp121. Pragma directives corresponding to headers that affect the
HTTP processing model (e.g. caching) must not be registered, as they would result in HTTP-level behavior being
different for user agents that implement HTML than for user agents that do not.

Anyone is free to edit the WHATWG Wiki PragmaExtensions page at any time to add a pragma directive satisfying
these conditions. Such registrations must specify the following information:

Keyword
The actual name being defined. The name must match a previously-registered HTTP name with the same
requirements.

Brief description
A short non-normative description of the purpose of the pragma directive.

Specification
A link to the specification defining the corresponding HTTP header.

Conformance checkers must use the information given on the WHATWG Wiki PragmaExtensions page to establish if a
value is allowed or not: values defined in this specification or listed on the aforementioned page must be accepted,
whereas values not listed in either this specification or on the aforementioned page must be rejected as invalid.
Conformance checkers may cache this information (e.g. for performance reasons or to avoid the use of unreliable
network connectivity).

4.2.5.5 Specifying the document's character encoding

A character encoding declaration is a mechanism by which the character encoding used to store or transmit a
document is specified.

The following restrictions apply to character encoding declarations:

• The character encoding name given must be the name of the character encoding used to serialize the file.

• The value must be a valid character encoding name, and must be an ASCII case-insensitivep35 match for the
preferred MIME namep30 for that encoding. [IANACHARSET]p739

• The character encoding declaration must be serialized without the use of character referencesp583 or
character escapes of any kind.

• The element containing the character encoding declaration must be serialized completely within the first
512 bytes of the document.

• There can only be one character encoding declaration in the document.

If an HTML documentp75 does not start with a BOM, and if its encoding is not explicitly given by Content-Type
metadatap61, and the document is not an iframe srcdoc documentp211, then the character encoding used must be an
ASCII-compatible character encodingp30, and, in addition, if that encoding isn't US-ASCII itself, then the encoding must
be specified using a metap119 element with a charsetp119 attribute or a metap119 element with an http-equivp122

attribute in the Encoding declaration statep123.

If the document is an iframe srcdoc documentp211, the document must not have a character encoding declarationp125.
(In this case, the source is already decoded, since it is part of the document that contained the iframep211.)

If an HTML documentp75 contains a metap119 element with a charsetp119 attribute or a metap119 element with an http-
equivp122 attribute in the Encoding declaration statep123, then the character encoding used must be an ASCII-
compatible character encodingp30.

Authors are encouraged to use UTF-8. Conformance checkers may advise authors against using legacy encodings.

Authoring tools should default to using UTF-8 for newly-created documents.

125

http://wiki.whatwg.org/wiki/PragmaExtensions

Encodings in which a series of bytes in the range 0x20 to 0x7E can encode characters other than the corresponding
characters in the range U+0020 to U+007E represent a potential security vulnerability: a user agent that does not
support the encoding (or does not support the label used to declare the encoding, or does not use the same
mechanism to detect the encoding of unlabelled content as another user agent) might end up interpreting technically
benign plain text content as HTML tags and JavaScript. For example, this applies to encodings in which the bytes
corresponding to "<script>" in ASCII can encode a different string. Authors should not use such encodings, which are
known to include JIS_C6226-1983, JIS_X0212-1990, HZ-GB-2312, JOHAB (Windows code page 1361), encodings based
on ISO-2022, and encodings based on EBCDIC. Furthermore, authors must not use the CESU-8, UTF-7, BOCU-1 and
SCSU encodings, which also fall into this category, because these encodings were never intended for use for Web
content. [RFC1345]p740 [RFC1842]p740 [RFC1468]p740 [RFC2237]p741 [RFC1554]p740 [RFC1922]p740 [RFC1557]p740

[CESU8]p738 [UTF7]p742 [BOCU1]p738 [SCSU]p742

Authors should not use UTF-32, as the encoding detection algorithms described in this specification intentionally do
not distinguish it from UTF-16. [UNICODE]p742

Note: Using non-UTF-8 encodings can have unexpected results on form submission and URL
encodings, which use the document's character encodingp79 by default.

In XHTML, the XML declaration should be used for inline character encoding information, if necessary.

In HTML, to declare that the character encoding is UTF-8, the author could include the following markup near the
top of the document (in the headp112 element):

<meta charset="utf-8">

In XML, the XML declaration would be used instead, at the very top of the markup:

<?xml version="1.0" encoding="utf-8"?>

The stylep126 element allows authors to embed style information in their documents. The stylep126 element is one of
several inputs to the styling processing modelp128. The element does not representp672 content for the user.

Categories
Metadata contentp95.
If the scopedp127 attribute is present: flow contentp96.

Contexts in which this element may be used:
If the scopedp127 attribute is absent: where metadata contentp95 is expected.
If the scopedp127 attribute is absent: in a noscriptp136 element that is a child of a headp112 element.
If the scopedp127 attribute is present: where flow contentp96 is expected, but before any other flow contentp96

other than other stylep126 elements and inter-element whitespacep94.

Content model:
Depends on the value of the typep127 attribute, but must match requirements described in prose below.

Content attributes:
Global attributesp87

mediap127

typep127

scopedp127

Also, the titlep127 attribute has special semantics on this element.

DOM interface:

interface HTMLStyleElement : HTMLElement {
attribute boolean disabled;
attribute DOMString media;
attribute DOMString type;
attribute boolean scoped;

};
HTMLStyleElement implements LinkStyle;

4.2.6 The style element

126

The type attribute gives the styling language. If the attribute is present, its value must be a valid MIME typep28 that
designates a styling language. The charset parameter must not be specified. The default, which is used if the
attribute is absent, is "text/css". [RFC2318]p741

When examining types to determine if they support the language, user agents must not ignore unknown MIME
parameters — types with unknown parameters must be assumed to be unsupported. The charset parameter must be
treated as an unknown parameter for the purpose of comparing MIME typesp28 here.

The media attribute says which media the styles apply to. The value must be a valid media queryp54. The user agent
must apply the styles when the mediap127 attribute's value matches the environmentp54 and the other relevant
conditions apply, and must not apply them otherwise.

Note: The styles might be further limited in scope, e.g. in CSS with the use of @media blocks. This
specification does not override such further restrictions or requirements.

The default, if the mediap127 attribute is omitted, is "all", meaning that by default styles apply to all media.

The scoped attribute is a boolean attributep37. If set, it indicates that the styles are intended just for the subtree rooted
at the stylep126 element's parent element, as opposed to the whole Documentp33.

If the scopedp127 attribute is present, then the user agent must apply the specified style information only to the
stylep126 element's parent element (if any), and that element's child nodes. Otherwise, the specified styles must, if
applied, be applied to the entire document.

The title attribute on stylep126 elements defines alternative style sheet sets. If the stylep126 element has no
titlep127 attribute, then it has no title; the titlep89 attribute of ancestors does not apply to the stylep126 element.
[CSSOM]p739

Note: The titlep127 attribute on stylep126 elements, like the titlep118 attribute on linkp115 elements,
differs from the global titlep89 attribute in that a stylep126 block without a title does not inherit
the title of the parent element: it merely has no title.

The textContentp33 of a stylep126 element must match the style production in the following ABNF, the character set
for which is Unicode. [ABNF]p738

style = no-c-start *(c-start no-c-end c-end no-c-start)
no-c-start = <any string that doesn't contain a substring that matches c-start >
c-start = "<!--"
no-c-end = <any string that doesn't contain a substring that matches c-end >
c-end = "-->"

All descendant elements must be processed, according to their semantics, before the stylep126 element itself is
evaluated. For styling languages that consist of pure text, user agents must evaluate stylep126 elements by passing
the concatenation of the contents of all the text nodesp29 that are direct children of the stylep126 element (not any
other nodes such as comments or elements), in tree orderp29, to the style system. For XML-based styling languages,
user agents must pass all the child nodes of the stylep126 element to the style system.

All URLsp54 found by the styling language's processor must be resolvedp55, relative to the element (or as defined by the
styling language), when the processor is invoked.

Once the attempts to obtain the style sheet's critical subresourcesp28, if any, are complete, or, if the style sheet has no
critical subresourcesp28, once the style sheet has been parsed and processed, the user agent must, if the loads were
successful or there were none, queue a taskp517 to fire a simple eventp523 named load at the stylep126 element, or, if
one of the style sheet's critical subresourcesp28 failed to completely load for any reason (e.g. DNS error, HTTP 404
response, a connection being prematurely closed, unsupported Content-Type), queue a taskp517 to fire a simple
eventp523 named error at the stylep126 element. Non-network errors in processing the style sheet or its subresources
(e.g. CSS parse errors, PNG decoding errors) are not failures for the purposes of this paragraph.

The task sourcep517 for these tasksp517 is the DOM manipulation task sourcep518.

The element must delay the load eventp653 of the element's document until all the attempts to obtain the style sheet's
critical subresourcesp28, if any, are complete.

Note: This specification does not specify a style system, but CSS is expected to be supported by
most Web browsers. [CSS]p738

127

The media, type and scoped IDL attributes must reflectp61 the respective content attributes of the same name.

The disabled IDL attribute behaves as defined for the alternative style sheets DOMp129.

The LinkStyle interface is also implemented by this element; the styling processing modelp128 defines how.
[CSSOM]p739

The following document has its emphasis styled as bright red text rather than italics text, while leaving titles of
works and Latin words in their default italics. It shows how using appropriate elements enables easier restyling
of documents.

<!DOCTYPE html>
<html lang="en-US">
<head>
<title>My favorite book</title>
<style>
body { color: black; background: white; }
em { font-style: normal; color: red; }

</style>
</head>
<body>
<p>My favorite book of all time has got to be
<cite>A Cat's Life</cite>. It is a book by P. Rahmel that talks
about the <i lang="la">Felis Catus</i> in modern human society.</p>

</body>
</html>

The linkp115 and stylep126 elements can provide styling information for the user agent to use when rendering the
document. The DOM Styling specification specifies what styling information is to be used by the user agent and how it
is to be used. [CSSOM]p739

The stylep126 and linkp115 elements implement the LinkStyle interface. [CSSOM]p739

For stylep126 elements, if the user agent does not support the specified styling language, then the sheet attribute of
the element's LinkStyle interface must return null. Similarly, linkp115 elements that do not represent external
resource links that contribute to the styling processing modelp412 (i.e. that do not have a stylesheetp412 keyword in
their relp116 attribute), and linkp115 elements whose specified resource has not yet been fetched, or is not in a
supported styling language, must have their LinkStyle interface's sheet attribute return null.

Otherwise, the LinkStyle interface's sheet attribute must return a StyleSheet object with the following properties:
[CSSOM]p739

The style sheet type
The style sheet type must be the same as the style's specified type. For stylep126 elements, this is the same as
the typep127 content attribute's value, or text/css if that is omitted. For linkp115 elements, this is the Content-
Type metadata of the specified resourcep61.

The style sheet location
For linkp115 elements, the location must be the result of resolvingp55 the URLp54 given by the element's hrefp116

content attribute, relative to the element, or the empty string if that fails. For stylep126 elements, there is no
location.

The style sheet media
The media must be the same as the value of the element's media content attribute, or the empty string, if the
attribute is omitted.

The style sheet title
The title must be the same as the value of the element's titlep89 content attribute, if the attribute is present
and has a non-empty value. If the attribute is absent or its value is the empty string, then the style sheet does
not have a title (it is the empty string). The title is used for defining alternative style sheet sets.

The style sheet alternate flag
For linkp115 elements, true if the link is an alternative stylesheetp412. In all other cases, false.

4.2.7 Styling

128

The same object must be returned each time.

The disabled IDL attribute on linkp115 and stylep126 elements must return false and do nothing on setting, if the
sheet attribute of their LinkStyle interface is null. Otherwise, it must return the value of the StyleSheet interface's
disabled attribute on getting, and forward the new value to that same attribute on setting.

The rules for handling alternative style sheets are defined in the CSS object model specification. [CSSOM]p739

Style sheets, whether added by a linkp115 element, a stylep126 element, an <?xml-stylesheet> PI, an HTTP Link:
header, or some other mechanism, have a style sheet ready flag, which is initially unset.

When a style sheet is ready to be applied, its style sheet readyp129 flag must be set. If the style sheet referenced no
other resources (e.g. it was an internal style sheet given by a stylep126 element with no @import rules), then the style
rules must be synchronously made available to script; otherwise, the style rules must only be made available to script
once the event loopp516 reaches its "update the rendering" step.

A style sheet in the context of the Documentp33 of an HTML parserp584 or XML parserp669 is said to be a style sheet
blocking scripts if the element was created by that Documentp33 's parser, and the element is either a stylep126

element or a linkp115 element that was an external resource link that contributes to the styling processing modelp412

when the element was created by the parser, and the element's style sheet was enabled when the element was
created by the parser, and the element's style sheet readyp129 flag is not yet set, and, the last time the event loopp516

reached step 1, the element was in that Documentp29, and the user agent hasn't given up on that particular style sheet
yet. A user agent may give up on a style sheet at any time.

4.3 Scripting

Scripts allow authors to add interactivity to their documents.

Authors are encouraged to use declarative alternatives to scripting where possible, as declarative mechanisms are
often more maintainable, and many users disable scripting.

For example, instead of using script to show or hide a section to show more details, the detailsp387 element
could be used.

Authors are also encouraged to make their applications degrade gracefully in the absence of scripting support.

For example, if an author provides a link in a table header to dynamically resort the table, the link could also be
made to function without scripts by requesting the sorted table from the server.

Categories
Metadata contentp95.
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where metadata contentp95 is expected.
Where phrasing contentp96 is expected.

Content model:
If there is no srcp130 attribute, depends on the value of the typep130 attribute, but must match script content
restrictionsp135.
If there is a srcp130 attribute, the element must be either empty or contain only script documentationp136 that
also matches script content restrictionsp135.

Content attributes:
Global attributesp87

srcp130

asyncp130

deferp130

typep130

charsetp130

4.3.1 The script element

129

The scriptp129 element allows authors to include dynamic script and data blocks in their documents. The element
does not representp672 content for the user.

When used to include dynamic scripts, the scripts may either be embedded inline or may be imported from an
external file using the srcp130 attribute. If the language is not that described by "text/javascript", then the typep130

attribute must be present, as described below.

When used to include data blocks (as opposed to scripts), the data must be embedded inline, the format of the data
must be given using the typep130 attribute, and the srcp130 attribute must not be specified.

The type attribute gives the language of the script or format of the data. If the attribute is present, its value must be a
valid MIME typep28. The charset parameter must not be specified. The default, which is used if the attribute is absent,
is "text/javascript".

The src attribute, if specified, gives the address of the external script resource to use. The value of the attribute must
be a valid non-empty URLp54 identifying a script resource of the type given by the typep130 attribute, if the attribute is
present, or of the type "text/javascript", if the attribute is absent. A resource is a script resource of a given type if
that type identifies a scripting language and the resource conforms with the requirements of that language's
specification.

The charset attribute gives the character encoding of the external script resource. The attribute must not be specified
if the srcp130 attribute is not present. If the attribute is set, its value must be a valid character encoding name, must
be an ASCII case-insensitivep35 match for the preferred MIME namep30 for that encoding, and must match the encoding
given in the charset parameter of the Content-Type metadatap61 of the external file, if any. [IANACHARSET]p739

The async and defer attributes are boolean attributesp37 that indicate how the script should be executed. The
deferp130 and asyncp130 attributes must not be specified if the srcp130 attribute is not present.

There are three possible modes that can be selected using these attributes. If the asyncp130 attribute is present, then
the script will be executed asynchronously, as soon as it is available. If the asyncp130 attribute is not present but the
deferp130 attribute is present, then the script is executed when the page has finished parsing. If neither attribute is
present, then the script is fetched and executed immediately, before the user agent continues parsing the page.

Note: The exact processing details for these attributes are, for mostly historical reasons,
somewhat non-trivial, involving a number of aspects of HTML. The implementation requirements
are therefore by necessity scattered throughout the specification. The algorithms below (in this
section) describe the core of this processing, but these algorithms reference and are referenced
by the parsing rules for scriptp129 startp629 and endp640 tags in HTML, in foreign contentp648, and in
XMLp670, the rules for the document.write()p107 method, the handling of scriptingp514, etc.

The deferp130 attribute may be specified even if the asyncp130 attribute is specified, to cause legacy Web browsers that
only support deferp130 (and not asyncp130) to fall back to the deferp130 behavior instead of the synchronous blocking
behavior that is the default.

Changing the srcp130, typep130, charsetp130, asyncp130, and deferp130 attributes dynamically has no direct effect; these
attribute are only used at specific times described below.

A scriptp129 element has several associated pieces of state.

The first is a flag indicating whether or not the script block has been "already started". Initially, scriptp129 elements
must have this flag unset (script blocks, when created, are not "already started"). When a scriptp129 element is
cloned, the "already started" flag, if set, must be propagated to the clone when it is created.

DOM interface:

interface HTMLScriptElement : HTMLElement {
attribute DOMString src;
attribute boolean async;
attribute boolean defer;
attribute DOMString type;
attribute DOMString charset;
attribute DOMString text;

};

130

The second is a flag indicating whether the element was "parser-inserted". Initially, scriptp129 elements must have
this flag unset. It is set by the HTML parserp584 and the XML parserp669 on scriptp129 elements they insert and affects
the processing of those elements.

The third is a flag indicating whether or not the script block is "ready to be parser-executed". Initially, scriptp129

elements must have this flag unset (script blocks, when created, are not "ready to be parser-executed"). This flag is
used only for elements that are also "parser-inserted"p131, to let the parser know when to execute the script.

The fourth and fifth pieces of state are the script block's type and the script block's character encoding. They
are determined when the script is run, based on the attributes on the element at that time.

When a scriptp129 element that is neither marked as having "already started"p130 nor marked as being "parser-
inserted"p131 experiences one of the events listed in the following list, the user agent must synchronously runp131 the
scriptp129 element:

• The scriptp129 element gets inserted into a documentp29.

• The scriptp129 element is in a Documentp29 and its child nodes are changed.

• The scriptp129 element is in a Documentp29 and has a srcp130 attribute set where previously the element had
no such attribute.

Running a script: When a scriptp129 element is to be run, the user agent must act as follows:

1. If either:

• the scriptp129 element has a typep130 attribute and its value is the empty string, or
• the scriptp129 element has no typep130 attribute but it has a languagep699 attribute and that

attribute's value is the empty string, or
• the scriptp129 element has neither a typep130 attribute nor a languagep699 attribute, then

...let the script block's typep131 for this scriptp129 element be "text/javascript".

Otherwise, if the scriptp129 element has a typep130 attribute, let the script block's typep131 for this scriptp129

element be the value of that attribute with any leading or trailing sequences of space charactersp36

removed.

Otherwise, the element has a non-empty languagep699 attribute; let the script block's typep131 for this
scriptp129 element be the concatenation of the string "text/" followed by the value of the languagep699

attribute.

Note: The languagep699 attribute is never conforming, and is always ignored if there is a
typep130 attribute present.

2. If the scriptp129 element has a charsetp130 attribute, then let the script block's character encodingp131 for
this scriptp129 element be the encoding given by the charsetp130 attribute.

Otherwise, let the script block's character encodingp131 for this scriptp129 element be the same as the
encoding of the document itselfp79.

3. If the scriptp129 element has an eventp699 attribute and a forp699 attribute, then run these substeps:

1. Let for be the value of the forp699 attribute.

2. Let event be the value of the eventp699 attribute.

3. Strip leading and trailing whitespacep36 from event and for.

4. If for is not an ASCII case-insensitivep35 match for the string "window", then the user agent must
abort these steps at this point. The script is not executed.

5. If event is not an ASCII case-insensitivep35 match for either the string "onload" or the string
"onload()", then the user agent must abort these steps at this point. The script is not executed.

4. If scripting is disabledp514 for the scriptp129 element, or if the user agent does not support the scripting
languagep134 given by the script block's typep131 for this scriptp129 element, then the user agent must abort
these steps at this point. The script is not executed.

5. If the element has no srcp130 attribute, and its child nodes consist only of comment nodes and empty text
nodesp29, then the user agent must abort these steps at this point. The script is not executed.

131

6. The user agent must set the element's "already started"p130 flag.

7. If the element has a srcp130 attribute whose value is not the empty string, then the value of that attribute
must be resolvedp55 relative to the element, and if that is successful, the specified resource must then be
fetchedp58, from the originp474 of the element's Documentp33.

If the srcp130 attribute's value is the empty string or if it could not be resolved, then the user agent must
queue a taskp517 to fire a simple eventp523 named error at the element, and abort these steps.

For historical reasons, if the URLp54 is a javascript: URLp518, then the user agent must not, despite the
requirements in the definition of the fetchingp58 algorithm, actually execute the script in the URL; instead the
user agent must act as if it had received an empty HTTP 400 response.

Once the resource's Content Type metadatap61 is available, if it ever is, apply the algorithm for extracting an
encoding from a Content-Typep61 to it. If this returns an encoding, and the user agent supports that
encoding, then let the script block's character encodingp131 be that encoding.

For performance reasons, user agents may start fetching the script as soon as the attribute is set, instead, in
the hope that the element will be inserted into the document. Either way, once the element is inserted into
the documentp29, the load must have started. If the UA performs such prefetching, but the element is never
inserted in the document, or the srcp130 attribute is dynamically changed, then the user agent will not
execute the script, and the fetching process will have been effectively wasted.

8. Then, the first of the following options that describes the situation must be followed:

↪ If the element has a srcp130 attribute, and the element has a deferp130 attribute, and the
element has been flagged as "parser-inserted"p131, and the element does not have an
asyncp130 attribute

The element must be added to the end of the list of scripts that will execute when the
document has finished parsing.

The taskp517 that the networking task sourcep518 places on the task queuep517 once the fetching
algorithmp58 has completed must set the element's "ready to be parser-executed"p131 flag. The
parser will handle executing the script.

↪ If the element has a srcp130 attribute, and the element has been flagged as "parser-
inserted"p131, and the element does not have an asyncp130 attribute

The element is the pending parsing-blocking scriptp132. (There can only be one such script at a
time.)

The taskp517 that the networking task sourcep518 places on the task queuep517 once the fetching
algorithmp58 has completed must set the element's "ready to be parser-executed"p131 flag. The
parser will handle executing the script.

↪ If the element does not have a srcp130 attribute, but there is a style sheet blocking
scriptsp129, and the element has been flagged as "parser-inserted"p131

The element is the pending parsing-blocking scriptp132. (There can only be one such script at a
time.)

Set the element's "ready to be parser-executed"p131 flag. The parser will handle executing the
script.

↪ If the element has a srcp130 attribute
The element must be added to the set of scripts that will execute as soon as possible.

The taskp517 that the networking task sourcep518 places on the task queuep517 once the fetching
algorithmp58 has completed must execute the script blockp133 and then remove the element from
the set of scripts that will execute as soon as possiblep132.

↪ Otherwise
The user agent must immediately execute the script blockp133, even if other scripts are already
executing.

Fetching an external script must delay the load eventp653 of the element's document until the taskp517 that is
queuedp517 by the networking task sourcep518 once the resource has been fetchedp58 (defined above) has been run.

The pending parsing-blocking script is used by the parser.

132

Executing a script block: When the steps above require that the script block be executed, the user agent must act
as follows:

↪ If the load resulted in an error (for example a DNS error, or an HTTP 404 error)
Executing the script block must just consist of firing a simple eventp523 named error at the element.

↪ If the load was successful

1. Initialize the script block's source as follows:

↪ If the script is from an external file and the script block's typep131 is a text-based
language

The contents of that file, interpreted as string of Unicode characters, are the script
source.

For each of the rows in the following table, starting with the first one and going down, if
the file has as many or more bytes available than the number of bytes in the first column,
and the first bytes of the file match the bytes given in the first column, then set the script
block's character encodingp131 to the encoding given in the cell in the second column of
that row, irrespective of any previous value:

Bytes in Hexadecimal Encoding

FE FF UTF-16BE
FF FE UTF-16LE
EF BB BF UTF-8

Note: This step looks for Unicode Byte Order Marks (BOMs).

The file must then be converted to Unicode using the character encoding given by the
script block's character encodingp131.

↪ If the script is from an external file and the script block's typep131 is an XML-based
language

The external file is the script source. When it is later executed, it must be interpreted in a
manner consistent with the specification defining the language given by the script block's
typep131.

↪ If the script is inline and the script block's typep131 is a text-based language
The value of the textp134 IDL attribute at the time the element's "already started"p130 flag
was set is the script source.

↪ If the script is inline and the script block's typep131 is an XML-based language
The child nodes of the scriptp129 element at the time the element's "already started"p130

flag was set are the script source.

2. Create a scriptp516 from the scriptp129 element node, using the script block's sourcep133 and the
script block's typep131.

Note: This is where the script is compiled and actually executed.

3. If the script is from an external file, fire a simple eventp523 named load at the scriptp129 element.

Otherwise, the script is internal; queue a taskp517 to fire a simple eventp523 named load at the
scriptp129 element.

The IDL attributes src, type, charset, async, and defer, each must reflectp61 the respective content attributes of the
same name.

This box is non-normative. Implementation requirements are given below this box.

script . textp134 [= value]
Returns the contents of the element, ignoring child nodes that aren't text nodesp29.
Can be set, to replace the element's children with the given value.

133

The IDL attribute text must return a concatenation of the contents of all the text nodesp29 that are direct children of
the scriptp129 element (ignoring any other nodes such as comments or elements), in tree order. On setting, it must
act the same way as the textContentp33 IDL attribute.

Note: When inserted using the document.write()p107 method, scriptp129 elements execute (typically
synchronously), but when inserted using innerHTMLp108 and outerHTMLp109 attributes, they do not
execute at all.

In this example, two scriptp129 elements are used. One embeds an external script, and the other includes some
data.

<script src="game-engine.js"></script>
<script type="text/x-game-map">
........U.........e
o............A....e
.....A.....AAA....e
.A..AAA...AAAAA...e
</script>

The data in this case might be used by the script to generate the map of a video game. The data doesn't have
to be used that way, though; maybe the map data is actually embedded in other parts of the page's markup,
and the data block here is just used by the site's search engine to help users who are looking for particular
features in their game maps.

The following sample shows how a script element can be used to define a function that is then used by other
parts of the document. It also shows how a scriptp129 element can be used to invoke script while the document
is being parsed, in this case to initialize the form's output.

<script>
function calculate(form) {

var price = 52000;
if (form.elements.brakes.checked)

price += 1000;
if (form.elements.radio.checked)

price += 2500;
if (form.elements.turbo.checked)

price += 5000;
if (form.elements.sticker.checked)

price += 250;
form.elements.result.value = price;

}
</script>
<form name="pricecalc" onsubmit="return false">
<fieldset>
<legend>Work out the price of your car</legend>
<p>Base cost: £52000.</p>
<p>Select additional options:</p>

<label><input type=checkbox name=brakes> Ceramic brakes (£1000)</label>
<label><input type=checkbox name=radio> Satellite radio (£2500)</label>
<label><input type=checkbox name=turbo> Turbo charger (£5000)</label>
<label><input type=checkbox name=sticker> "XZ" sticker (£250)</label>

<p>Total: £<output name=result onformchange="calculate(form)"></output></p>

</fieldset>
<script>
document.forms.pricecalc.dispatchFormChange();

</script>
</form>

4.3.1.1 Scripting languages

A user agent is said to support the scripting language if the script block's typep131 is an ASCII case-insensitivep35

match for the MIME typep28 string of a scripting language that the user agent implements.

The following lists some MIME typep28 strings and the languages to which they refer:

134

"application/ecmascript"
"application/javascript"
"application/x-ecmascript"
"application/x-javascript"
"text/ecmascript"
"text/javascript"
"text/javascript1.0"
"text/javascript1.1"
"text/javascript1.2"
"text/javascript1.3"
"text/javascript1.4"
"text/javascript1.5"
"text/jscript"
"text/livescript"
"text/x-ecmascript"
"text/x-javascript"

JavaScript. [ECMA262]p739

"text/javascript;e4x=1"
JavaScript with ECMAScript for XML. [ECMA357]p739

User agents may support other MIME typesp28 and other languages.

When examining types to determine if they support the language, user agents must not ignore unknown MIME
parameters — types with unknown parameters must be assumed to be unsupported. The charset parameter must be
treated as an unknown parameter for the purpose of comparing MIME typesp28 here.

4.3.1.2 Restrictions for contents of script elements

The textContentp33 of a scriptp129 element must match the script production in the following ABNF, the character
set for which is Unicode. [ABNF]p738

script = data1 *(escape [script-start data3] "-->" data1) [escape]
escape = "<!--" data2 *(script-start data3 script-end data2)

data1 = <any string that doesn't contain a substring that matches not-data1>
not-data1 = "<!--"

data2 = <any string that doesn't contain a substring that matches not-data2>
not-data2 = script-start / "-->"

data3 = <any string that doesn't contain a substring that matches not-data3>
not-data3 = script-end / "-->"

script-start = lt s c r i p t tag-end
script-end = lt slash s c r i p t tag-end

lt = %x003C ; U+003C LESS-THAN SIGN character (<)
slash = %x002F ; U+002F SOLIDUS character (/)

s = %x0053 ; U+0053 LATIN CAPITAL LETTER S
s =/ %x0073 ; U+0073 LATIN SMALL LETTER S
c = %x0043 ; U+0043 LATIN CAPITAL LETTER C
c =/ %x0063 ; U+0063 LATIN SMALL LETTER C
r = %x0052 ; U+0052 LATIN CAPITAL LETTER R
r =/ %x0072 ; U+0072 LATIN SMALL LETTER R
i = %x0049 ; U+0049 LATIN CAPITAL LETTER I
i =/ %x0069 ; U+0069 LATIN SMALL LETTER I
p = %x0050 ; U+0050 LATIN CAPITAL LETTER P
p =/ %x0070 ; U+0070 LATIN SMALL LETTER P
t = %x0054 ; U+0054 LATIN CAPITAL LETTER T
t =/ %x0074 ; U+0074 LATIN SMALL LETTER T

135

tag-end = %x0009 ; U+0009 CHARACTER TABULATION
tag-end =/ %x000A ; U+000A LINE FEED (LF)
tag-end =/ %x000C ; U+000C FORM FEED (FF)
tag-end =/ %x0020 ; U+0020 SPACE
tag-end =/ %x002F ; U+002F SOLIDUS (/)
tag-end =/ %x003E ; U+003E GREATER-THAN SIGN (>)

When a scriptp129 element contains script documentationp136, there are further restrictions on the contents of the
element, as described in the section below.

4.3.1.3 Inline documentation for external scripts

If a scriptp129 element's srcp130 attribute is specified, then the contents of the scriptp129 element, if any, must be
such that the value of the textp134 IDL attribute, which is derived from the element's contents, matches the
documentation production in the following ABNF, the character set for which is Unicode. [ABNF]p738

documentation = *(*(space / tab / comment) [line-comment] newline)
comment = slash star *(not-star / star not-slash) 1*star slash
line-comment = slash slash *not-newline

; characters
tab = %x0009 ; U+0009 TAB
newline = %x000A ; U+000A LINE FEED (LF)
space = %x0020 ; U+0020 SPACE
star = %x002A ; U+002A ASTERISK (*)
slash = %x002F ; U+002F SOLIDUS (/)
not-newline = %x0000-0009 / %x000B-10FFFF

; a Unicode character other than U+000A LINE FEED (LF)
not-star = %x0000-0029 / %x002B-10FFFF

; a Unicode character other than U+002A ASTERISK (*)
not-slash = %x0000-002E / %x0030-10FFFF

; a Unicode character other than U+002F SOLIDUS (/)

Note: This corresponds to putting the contents of the element in JavaScript comments.

Note: This requirement is in addition to the earlier restrictions on the syntax of contents of
scriptp129 elements.

This allows authors to include documentation, such as license information or API information, inside their
documents while still referring to external script files. The syntax is constrained so that authors don't
accidentally include what looks like valid script while also providing a srcp130 attribute.

<script src="cool-effects.js">
// create new instances using:
// var e = new Effect();
// start the effect using .play, stop using .stop:
// e.play();
// e.stop();

</script>

Categories
Metadata contentp95.
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
In a headp112 element of an HTML documentp75, if there are no ancestor noscriptp136 elements.
Where phrasing contentp96 is expected in HTML documentsp75, if there are no ancestor noscriptp136

elements.

4.3.2 The noscript element

136

The noscriptp136 element representsp672 nothing if scripting is enabledp514, and representsp672 its children if scripting is
disabledp514. It is used to present different markup to user agents that support scripting and those that don't support
scripting, by affecting how the document is parsed.

When used in HTML documentsp75, the allowed content model is as follows:

In a headp112 element, if scripting is disabledp514 for the noscriptp136 element
The noscriptp136 element must contain only linkp115, stylep126, and metap119 elements.

In a headp112 element, if scripting is enabledp514 for the noscriptp136 element
The noscriptp136 element must contain only text, except that invoking the HTML fragment parsing algorithmp661

with the noscriptp136 element as the context element and the text contents as the input must result in a list of
nodes that consists only of linkp115, stylep126, and metap119 elements that would be conforming if they were
children of the noscriptp136 element, and no parse errorsp585.

Outside of headp112 elements, if scripting is disabledp514 for the noscriptp136 element
The noscriptp136 element's content model is transparentp98, with the additional restriction that a noscriptp136

element must not have a noscriptp136 element as an ancestor (that is, noscriptp136 can't be nested).

Outside of headp112 elements, if scripting is enabledp514 for the noscriptp136 element
The noscriptp136 element must contain only text, except that the text must be such that running the following
algorithm results in a conforming document with no noscriptp136 elements and no scriptp129 elements, and
such that no step in the algorithm causes an HTML parserp584 to flag a parse errorp585:

1. Remove every scriptp129 element from the document.

2. Make a list of every noscriptp136 element in the document. For every noscriptp136 element in that list,
perform the following steps:

1. Let the parent element be the parent element of the noscriptp136 element.

2. Take all the children of the parent element that come before the noscriptp136 element, and
call these elements the before children.

3. Take all the children of the parent element that come after the noscriptp136 element, and
call these elements the after children.

4. Let s be the concatenation of all the text nodep29 children of the noscriptp136 element.

5. Set the innerHTMLp108 attribute of the parent element to the value of s. (This, as a side-effect,
causes the noscriptp136 element to be removed from the document.)

6. Insert the before children at the start of the parent element, preserving their original relative
order.

7. Insert the after children at the end of the parent element, preserving their original relative
order.

Note: All these contortions are required because, for historical reasons, the noscriptp136 element
is handled differently by the HTML parserp584 based on whether scripting was enabled or notp597

when the parser was invoked.

Content model:
When scripting is disabledp514, in a headp112 element: in any order, zero or more linkp115 elements, zero or
more stylep126 elements, and zero or more metap119 elements.
When scripting is disabledp514, not in a headp112 element: transparentp98, but there must be no noscriptp136

element descendants.
Otherwise: text that conforms to the requirements given in the prose.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

137

The noscriptp136 element must not be used in XML documentsp75.

Note: The noscriptp136 element is only effective in the HTML syntaxp577, it has no effect in the
XHTML syntaxp669.

The noscriptp136 element has no other requirements. In particular, children of the noscriptp136 element are not
exempt from form submissionp380, scripting, and so forth, even when scripting is enabledp514 for the element.

In the following example, a noscriptp136 element is used to provide fallback for a script.

<form action="calcSquare.php">
<p>
<label for=x>Number</label>:
<input id="x" name="x" type="number">

</p>
<script>
var x = document.getElementById('x');
var output = document.createElement('p');
output.textContent = 'Type a number; it will be squared right then!';
x.form.appendChild(output);
x.form.onsubmit = function () { return false; }
x.oninput = function () {

var v = x.valueAsNumber;
output.textContent = v + ' squared is ' + v * v;

};
</script>
<noscript>
<input type=submit value="Calculate Square">

</noscript>
</form>

When script is disabled, a button appears to do the calculation on the server side. When script is enabled, the
value is computed on-the-fly instead.

The noscriptp136 element is a blunt instrument. Sometimes, scripts might be enabled, but for some reason the
page's script might fail. For this reason, it's generally better to avoid using noscriptp136, and to instead design
the script to change the page from being a scriptless page to a scripted page on the fly, as in the next example:

<form action="calcSquare.php">
<p>
<label for=x>Number</label>:
<input id="x" name="x" type="number">

</p>
<input id="submit" type=submit value="Calculate Square">
<script>
var x = document.getElementById('x');
var output = document.createElement('p');
output.textContent = 'Type a number; it will be squared right then!';
x.form.appendChild(output);
x.form.onsubmit = function () { return false; }
x.oninput = function () {

var v = x.valueAsNumber;
output.textContent = v + ' squared is ' + v * v;

};
var submit = document.getElementById('submit');
submit.parentNode.removeChild(submit);

</script>
</form>

The above technique is also useful in XHTML, since noscriptp136 is not supported in the XHTML syntaxp669.

4.4 Sections

4.4.1 The body element

138

The bodyp138 element representsp672 the main content of the document.

In conforming documents, there is only one bodyp138 element. The document.bodyp81 IDL attribute provides scripts with
easy access to a document's bodyp138 element.

Categories
Sectioning rootp152.

Contexts in which this element may be used:
As the second element in an htmlp112 element.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

onafterprintp523

onbeforeprintp523

onbeforeunloadp523

onblurp523

onerrorp523

onfocusp523

onhashchangep523

onloadp523

onmessagep523

onofflinep523

ononlinep523

onpagehidep523

onpageshowp523

onpopstatep523

onredop523

onresizep523

onstoragep523

onundop523

onunloadp523

DOM interface:

interface HTMLBodyElement : HTMLElement {
attribute Function onafterprint;
attribute Function onbeforeprint;
attribute Function onbeforeunload;
attribute Function onblur;
attribute Function onerror;
attribute Function onfocus;
attribute Function onhashchange;
attribute Function onload;
attribute Function onmessage;
attribute Function onoffline;
attribute Function ononline;
attribute Function onpopstate;
attribute Function onpagehide;
attribute Function onpageshow;
attribute Function onredo;
attribute Function onresize;
attribute Function onstorage;
attribute Function onundo;
attribute Function onunload;

};

139

Note: Some DOM operations (for example, parts of the drag and dropp551 model) are defined in
terms of "the body elementp81". This refers to a particular element in the DOM, as per the
definition of the term, and not any arbitrary bodyp138 element.

The bodyp138 element exposes as event handler content attributesp520 a number of the event handlersp519 of the
Windowp467 object. It also mirrors their event handler IDL attributesp520.

The onblurp523, onerrorp523, onfocusp523, and onloadp523 event handlersp519 of the Windowp467 object, exposed on the
bodyp138 element, shadow the generic event handlersp519 with the same names normally supported by HTML
elementsp28.

Thus, for example, a bubbling error event fired on a child of the body elementp81 of a Documentp33 would first
trigger the onerrorp523 event handler content attributesp520 of that element, then that of the root htmlp112

element, and only then would it trigger the onerrorp523 event handler content attributep520 on the bodyp138

element. This is because the event would bubble from the target, to the bodyp138, to the htmlp112, to the
Documentp33, to the Windowp467, and the event handlerp519 on the bodyp138 is watching the Windowp467 not the
bodyp138. A regular event listener attached to the bodyp138 using addEventListener(), however, would fire when
the event bubbled through the bodyp138 and not when it reaches the Windowp467 object.

This page updates an indicator to show whether or not the user is online:

<!DOCTYPE HTML>
<html>
<head>
<title>Online or offline?</title>
<script>
function update(online) {

document.getElementById('status').textContent =
online ? 'Online' : 'Offline';

}
</script>

</head>
<body ononline="update(true)"

onoffline="update(false)"
onload="update(navigator.onLine)">

<p>You are: (Unknown)</p>
</body>

</html>

The sectionp140 element representsp672 a generic document or application section. A section, in this context, is a
thematic grouping of content, typically with a heading.

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or the numbered
sections of a thesis. A Web site's home page could be split into sections for an introduction, news items, contact
information.

Categories
Flow contentp96.
Sectioning contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.4.2 The section element

140

Note: Authors are encouraged to use the articlep144 element instead of the sectionp140 element
when it would make sense to syndicate the contents of the element.

Note: The sectionp140 element is not a generic container element. When an element is needed for
styling purposes or as a convenience for scripting, authors are encouraged to use the divp168

element instead. A general rule is that the sectionp140 element is appropriate only if the element's
contents would be listed explicitly in the document's outlinep153.

In the following example, we see an article (part of a larger Web page) about apples, containing two short
sections.

<article>
<hgroup>
<h1>Apples</h1>
<h2>Tasty, delicious fruit!</h2>

</hgroup>
<p>The apple is the pomaceous fruit of the apple tree.</p>
<section>
<h1>Red Delicious</h1>
<p>These bright red apples are the most common found in many
supermarkets.</p>

</section>
<section>
<h1>Granny Smith</h1>
<p>These juicy, green apples make a great filling for
apple pies.</p>

</section>
</article>

Notice how the use of sectionp140 means that the author can use h1p147 elements throughout, without having to
worry about whether a particular section is at the top level, the second level, the third level, and so on.

Here is a graduation programme with two sections, one for the list of people graduating, and one for the
description of the ceremony.

<!DOCTYPE Html>
<Html
><Head

><Title
>Graduation Ceremony Summer 2022</Title

></Head
><Body

><H1
>Graduation</H1

><Section
><H1

>Ceremony</H1
><P

>Opening Procession</P
><P

>Speech by Validactorian</P
><P

>Speech by Class President</P
><P

>Presentation of Diplomas</P
><P

>Closing Speech by Headmaster</P
></Section
><Section

><H1
>Graduates</H1

>Molly CarpenterAnastasia Luccio</Li

141

>Ebenezar McCoyKarrin MurphyThomas RaithSusan Rodriguez</Section

></Body
></Html>

The navp142 element representsp672 a section of a page that links to other pages or to parts within the page: a section
with navigation links.

Not all groups of links on a page need to be in a navp142 element — only sections that consist of major navigation
blocks are appropriate for the navp142 element. In particular, it is common for footers to have a short list of links to
various pages of a site, such as the terms of service, the home page, and a copyright page. The footerp150 element
alone is sufficient for such cases, without a navp142 element.

Note: User agents (such as screen readers) that are targeted at users who can benefit from
navigation information being omitted in the initial rendering, or who can benefit from navigation
information being immediately available, can use this element as a way to determine what
content on the page to initially skip and/or provide on request.

In the following example, the page has several places where links are present, but only one of those places is
considered a navigation section.

<body>
<header>
<h1>Wake up sheeple!</h1>
<p>News -

Blog -
Forums</p>

<p>Last Modified: <time>2009-04-01</time></p>
<nav>
<h1>Navigation</h1>

Index of all articles
Things sheeple need to wake up for today
Sheeple we have managed to wake

</nav>

</header>
<div>
<article>

Categories
Flow contentp96.
Sectioning contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.4.3 The nav element

142

<header>
<h1>My Day at the Beach</h1>

</header>
<div>
<p>Today I went to the beach and had a lot of fun.</p>
...more content...

</div>
<footer>
<p>Posted <time pubdate datetime="2009-10-10T14:36-08:00">Thursday</time>.</p>

</footer>
</article>
...more blog posts...

</div>
<footer>
<p>Copyright © 2006 The Example Company</p>
<p>About -

Privacy Policy -
Contact Us</p>

</footer>
</body>

Notice the divp168 elements being used to wrap all the contents of the page other than the header and footer,
and all the contents of the blog entry other than its header and footer.

In the following example, there are two navp142 elements, one for primary navigation around the site, and one
for secondary navigation around the page itself.

<body>
<h1>The Wiki Center Of Exampland</h1>
<nav>

Home
Current Events
...more...

</nav>
<article>
<header>
<h1>Demos in Exampland</h1>
<p>Written by A. N. Other.</p>

</header>
<nav>

Public demonstrations
Demolitions
...more...

</nav>
<div>
<section id="public">
<h1>Public demonstrations</h1>
<p>...more...</p>

</section>
<section id="destroy">
<h1>Demolitions</h1>
<p>...more...</p>

</section>
...more...

</div>
<footer>
<p>Edit | Delete | Rename</p>
</footer>

</article>
<footer>
<p><small>© copyright 1998 Exampland Emperor</small></p>

143

</footer>
</body>

The articlep144 element representsp672 a component of a page that consists of a self-contained composition in a
document, page, application, or site and that is intended to be independently distributable or reusable, e.g. in
syndication. This could be a forum post, a magazine or newspaper article, a blog entry, a user-submitted comment, an
interactive widget or gadget, or any other independent item of content.

When articlep144 elements are nested, the inner articlep144 elements represent articles that are in principle related
to the contents of the outer article. For instance, a blog entry on a site that accepts user-submitted comments could
represent the comments as articlep144 elements nested within the articlep144 element for the blog entry.

Author information associated with an articlep144 element (q.v. the addressp151 element) does not apply to nested
articlep144 elements.

Note: When used specifically with content to be redistributed in syndication, the articlep144

element is similar in purpose to the entry element in Atom. [ATOM]p738

Note: The timep178 element's pubdatep179 attribute can be used to provide the publication date for
an articlep144 element.

This example shows a blog post using the articlep144 element:

<article>
<header>
<h1>The Very First Rule of Life</h1>
<p><time pubdate datetime="2009-10-09T14:28-08:00"></time></p>

</header>
<p>If there's a microphone anywhere near you, assume it's hot and
sending whatever you're saying to the world. Seriously.</p>
<p>...</p>
<footer>
Show comments...

</footer>
</article>

Here is that same blog post, but showing some of the comments:

<article>
<header>
<h1>The Very First Rule of Life</h1>
<p><time pubdate datetime="2009-10-09T14:28-08:00"></time></p>

</header>
<p>If there's a microphone anywhere near you, assume it's hot and
sending whatever you're saying to the world. Seriously.</p>
<p>...</p>
<section>

Categories
Flow contentp96.
Sectioning contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.4.4 The article element

144

<h1>Comments</h1>
<article>
<footer>
<p>Posted by: George Washington</p>
<p><time pubdate datetime="2009-10-10T19:10-08:00"></time></p>

</footer>
<p>Yeah! Especially when talking about your lobbyist friends!</p>

</article>
<article>
<footer>
<p>Posted by: George Hammond</p>
<p><time pubdate datetime="2009-10-10T19:15-08:00"></time></p>

</footer>
<p>Hey, you have the same first name as me.</p>

</article>
</section>

</article>

Notice the use of footerp150 to give the information each comment (such as who wrote it and when): the
footerp150 element can appear at the start of its section when appropriate, such as in this case. (Using
headerp148 in this case wouldn't be wrong either; it's mostly a matter of authoring preference.)

The asidep145 element representsp672 a section of a page that consists of content that is tangentially related to the
content around the asidep145 element, and which could be considered separate from that content. Such sections are
often represented as sidebars in printed typography.

The element can be used for typographical effects like pull quotes or sidebars, for advertising, for groups of navp142

elements, and for other content that is considered separate from the main content of the page.

Note: It's not appropriate to use the asidep145 element just for parentheticals, since those are part
of the main flow of the document.

The following example shows how an aside is used to mark up background material on Switzerland in a much
longer news story on Europe.

<aside>
<h1>Switzerland</h1>
<p>Switzerland, a land-locked country in the middle of geographic
Europe, has not joined the geopolitical European Union, though it is
a signatory to a number of European treaties.</p>

</aside>

The following example shows how an aside is used to mark up a pull quote in a longer article.

...

<p>He later joined a large company, continuing on the same work.
<q>I love my job. People ask me what I do for fun when I'm not at

Categories
Flow contentp96.
Sectioning contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.4.5 The aside element

145

work. But I'm paid to do my hobby, so I never know what to
answer. Some people wonder what they would do if they didn't have to
work... but I know what I would do, because I was unemployed for a
year, and I filled that time doing exactly what I do now.</q></p>

<aside>
<q> People ask me what I do for fun when I'm not at work. But I'm
paid to do my hobby, so I never know what to answer. </q>

</aside>

<p>Of course his work — or should that be hobby? —
isn't his only passion. He also enjoys other pleasures.</p>

...

The following extract shows how asidep145 can be used for blogrolls and other side content on a blog:

<body>
<header>
<h1>My wonderful blog</h1>
<p>My tagline</p>

</header>
<aside>
<!-- this aside contains two sections that are tangentially related
to the page, namely, links to other blogs, and links to blog posts
from this blog -->
<nav>
<h1>My blogroll</h1>

Example Blog

</nav>
<nav>
<h1>Archives</h1>
<ol reversed>
My last post
My first post

</nav>

</aside>
<aside>
<!-- this aside is tangentially related to the page also, it
contains twitter messages from the blog author -->
<h1>Twitter Feed</h1>
<blockquote cite="http://twitter.example.net/t31351234">
I'm on vacation, writing my blog.

</blockquote>
<blockquote cite="http://twitter.example.net/t31219752">
I'm going to go on vacation soon.

</blockquote>
</aside>
<article>
<!-- this is a blog post -->
<h1>My last post</h1>
<p>This is my last post.</p>
<footer>
<p>Permalink

</footer>
</article>
<article>
<!-- this is also a blog post -->
<h1>My first post</h1>
<p>This is my first post.</p>
<aside>
<!-- this aside is about the blog post, since it's inside the
<article> element; it would be wrong, for instance, to put the
blogroll here, since the blogroll isn't really related to this post

146

specifically, only to the page as a whole -->
<h1>Posting</h1>
<p>While I'm thinking about it, I wanted to say something about
posting. Posting is fun!</p>

</aside>
<footer>
<p>Permalink

</footer>
</article>
<footer>
<nav>
Archives —
About me —
Copyright

</nav>
</footer>

</body>

These elements representp672 headings for their sections.

The semantics and meaning of these elements are defined in the section on headings and sectionsp152.

These elements have a rank given by the number in their name. The h1p147 element is said to have the highest rank,
the h6p147 element has the lowest rank, and two elements with the same name have equal rank.

These two snippets are equivalent:

<body>
<h1>Let's call it a draw(ing surface)</h1>
<h2>Diving in</h2>
<h2>Simple shapes</h2>
<h2>Canvas coordinates</h2>
<h3>Canvas coordinates diagram</h3>
<h2>Paths</h2>
</body>
<body>
<h1>Let's call it a draw(ing surface)</h1>
<section>
<h1>Diving in</h1>

</section>
<section>
<h1>Simple shapes</h1>

</section>
<section>
<h1>Canvas coordinates</h1>
<section>

Categories
Flow contentp96.
Heading contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
As a child of an hgroupp148 element.
Where flow contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLHeadingElement : HTMLElement {};

4.4.6 The h1, h2, h3, h4, h5, and h6 elements

147

<h1>Canvas coordinates diagram</h1>
</section>

</section>
<section>
<h1>Paths</h1>

</section>
</body>

The hgroupp148 element representsp672 the heading of a section. The element is used to group a set of h1p147–h6p147

elements when the heading has multiple levels, such as subheadings, alternative titles, or taglines.

For the purposes of document summaries, outlines, and the like, the text of hgroupp148 elements is defined to be the
text of the highest rankedp147 h1p147–h6p147 element descendant of the hgroupp148 element, if there are any such
elements, and the first such element if there are multiple elements with that rankp147. If there are no such elements,
then the text of the hgroupp148 element is the empty string.

Other elements of heading contentp96 in the hgroupp148 element indicate subheadings or subtitles.

The rankp147 of an hgroupp148 element is the rank of the highest-ranked h1p147–h6p147 element descendant of the
hgroupp148 element, if there are any such elements, or otherwise the same as for an h1p147 element (the highest rank).

The section on headings and sectionsp152 defines how hgroupp148 elements are assigned to individual sections.

Here are some examples of valid headings. In each case, the emphasized text represents the text that would be
used as the heading in an application extracting heading data and ignoring subheadings.

<hgroup>
<h1>The reality dysfunction</h1>
<h2>Space is not the only void</h2>

</hgroup>
<hgroup>
<h1>Dr. Strangelove</h1>
<h2>Or: How I Learned to Stop Worrying and Love the Bomb</h2>

</hgroup>

The point of using hgroupp148 in these examples is to mask the h2p147 element (which acts as a secondary title)
from the outlinep153 algorithm.

Categories
Flow contentp96.
Heading contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
One or more h1p147, h2p147, h3p147, h4p147, h5p147, and/or h6p147 elements.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

4.4.7 The hgroup element

4.4.8 The header element

148

The headerp148 element representsp672 a group of introductory or navigational aids.

Note: A headerp148 element is intended to usually contain the section's heading (an h1p147–h6p147

element or an hgroupp148 element), but this is not required. The headerp148 element can also be used
to wrap a section's table of contents, a search form, or any relevant logos.

Here are some sample headers. This first one is for a game:

<header>
<p>Welcome to...</p>
<h1>Voidwars!</h1>

</header>

The following snippet shows how the element can be used to mark up a specification's header:

<header>
<hgroup>
<h1>Scalable Vector Graphics (SVG) 1.2</h1>
<h2>W3C Working Draft 27 October 2004</h2>

</hgroup>
<dl>
<dt>This version:</dt>
<dd>http://www.w3.org/TR/2004/

WD-SVG12-20041027/</dd>
<dt>Previous version:</dt>
<dd>http://www.w3.org/TR/2004/

WD-SVG12-20040510/</dd>
<dt>Latest version of SVG 1.2:</dt>
<dd>http://www.w3.org/TR/SVG12/</dd>
<dt>Latest SVG Recommendation:</dt>
<dd>http://www.w3.org/TR/SVG/</dd>
<dt>Editor:</dt>
<dd>Dean Jackson, W3C, dean@w3.org</dd>
<dt>Authors:</dt>
<dd>See Author List</dd>

</dl>
<p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notic ...

</header>

Note: The headerp148 element is not sectioning contentp96; it doesn't introduce a new section.

In this example, the page has a page heading given by the h1p147 element, and two subsections whose headings
are given by h2p147 elements. The content after the headerp148 element is still part of the last subsection started
in the headerp148 element, because the headerp148 element doesn't take part in the outlinep153 algorithm.

<body>
<header>
<h1>Little Green Guys With Guns</h1>
<nav>

Games
Forum
Download

</nav>
<h2>Important News</h2> <!-- this starts a second subsection -->

Content model:
Flow contentp96, but with no headerp148 or footerp150 element descendants.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

149

<!-- this is part of the subsection entitled "Important News" -->
<p>To play today's games you will need to update your client.</p>
<h2>Games</h2> <!-- this starts a third subsection -->

</header>
<p>You have three active games:</p>
<!-- this is still part of the subsection entitled "Games" -->
...

The footerp150 element representsp672 a footer for its nearest ancestor sectioning contentp96 or sectioning rootp152

element. A footer typically contains information about its section such as who wrote it, links to related documents,
copyright data, and the like.

Note: Contact information for the author or editor of a section belongs in an addressp151 element,
possibly itself inside a footerp150.

Footers don't necessarily have to appear at the end of a section, though they usually do.

When the footerp150 element contains entire sections, they representp672 appendices, indexes, long colophons,
verbose license agreements, and other such content.

Note: The footerp150 element is not sectioning contentp96; it doesn't introduce a new section.

When the nearest ancestor sectioning contentp96 or sectioning rootp152 element is the body elementp81, then it applies
to the whole page.

Here is a page with two footers, one at the top and one at the bottom, with the same content:

<body>
<footer>Back to index...</footer>
<hgroup>
<h1>Lorem ipsum</h1>
<h2>The ipsum of all lorems</h2>

</hgroup>
<p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.</p>
<footer>Back to index...</footer>

</body>

Here is an example which shows the footerp150 element being used both for a site-wide footer and for a section
footer.

<!DOCTYPE HTML>
<HTML><HEAD>
<TITLE>The Ramblings of a Scientist</TITLE>

Categories
Flow contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96, but with no headerp148 or footerp150 element descendants.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.4.9 The footer element

150

<BODY>
<H1>The Ramblings of a Scientist</H1>
<ARTICLE>
<H1>Episode 15</H1>
<VIDEO SRC="/fm/015.ogv" CONTROLS PRELOAD>
<P>Download video.</P>

</VIDEO>
<FOOTER> <!-- footer for article -->
<P>Published <TIME PUBDATE DATETIME="2009-10-21T18:26-07:00"></TIME></P>

</FOOTER>
</ARTICLE>
<ARTICLE>
<H1>My Favorite Trains</H1>
<P>I love my trains. My favorite train of all time is a Köf.</P>
<P>It is fun to see them pull some coal cars because they look so
dwarfed in comparison.</P>
<FOOTER> <!-- footer for article -->
<P>Published <TIME PUBDATE DATETIME="2009-09-15T14:54-07:00"></TIME></P>

</FOOTER>
</ARTICLE>
<FOOTER> <!-- site wide footer -->
<NAV>
<P>Credits —

Terms of Service —
Blog Index</P>

</NAV>
<P>Copyright © 2009 Gordon Freeman</P>

</FOOTER>
</BODY>
</HTML>

The addressp151 element representsp672 the contact information for its nearest articlep144 or bodyp138 element
ancestor. If that is the body elementp81, then the contact information applies to the document as a whole.

For example, a page at the W3C Web site related to HTML might include the following contact information:

<ADDRESS>
Dave Raggett,
Arnaud Le Hors,
contact persons for the W3C HTML Activity

</ADDRESS>

The addressp151 element must not be used to represent arbitrary addresses (e.g. postal addresses), unless those
addresses are in fact the relevant contact information. (The pp157 element is the appropriate element for marking up
postal addresses in general.)

The addressp151 element must not contain information other than contact information.

Categories
Flow contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96, but with no heading contentp96 descendants, no sectioning contentp96 descendants, and no
headerp148, footerp150, or addressp151 element descendants.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.4.10 The address element

151

For example, the following is non-conforming use of the addressp151 element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Typically, the addressp151 element would be included along with other information in a footerp150 element.

The contact information for a node node is a collection of addressp151 elements defined by the first applicable entry
from the following list:

↪ If node is an articlep144 element
↪ If node is a bodyp138 element

The contact information consists of all the addressp151 elements that have node as an ancestor and do not
have another bodyp138 or articlep144 element ancestor that is a descendant of node.

↪ If node has an ancestor element that is an articlep144 element
↪ If node has an ancestor element that is a bodyp138 element

The contact information of node is the same as the contact information of the nearest articlep144 or bodyp138

element ancestor, whichever is nearest.

↪ If node's Documentp33 has a body elementp81

The contact information of node is the same as the contact information the body elementp81 of the
Documentp33.

↪ Otherwise
There is no contact information for node.

User agents may expose the contact information of a node to the user, or use it for other purposes, such as indexing
sections based on the sections' contact information.

The h1p147–h6p147 elements and the hgroupp148 element are headings.

The first element of heading contentp96 in an element of sectioning contentp96 representsp672 the heading for that
section. Subsequent headings of equal or higher rankp147 start new (implied) sections, headings of lower rankp147 start
implied subsections that are part of the previous one. In both cases, the element representsp672 the heading of the
implied section.

Certain elements are said to be sectioning roots, including blockquotep159 and tdp298 elements. These elements can
have their own outlines, but the sections and headings inside these elements do not contribute to the outlines of their
ancestors.

⇒ blockquotep159, bodyp138, detailsp387, fieldsetp317, figurep167, tdp298

Sectioning contentp96 elements are always considered subsections of their nearest ancestor sectioning rootp152 or their
nearest ancestor element of sectioning contentp96, whichever is nearest, regardless of what implied sections other
headings may have created.

For the following fragment:

<body>
<h1>Foo</h1>
<h2>Bar</h2>
<blockquote>
<h3>Bla</h3>

</blockquote>
<p>Baz</p>
<h2>Quux</h2>
<section>
<h3>Thud</h3>

</section>
<p>Grunt</p>

</body>

...the structure would be:

1. Foo (heading of explicit bodyp138 section, containing the "Grunt" paragraph)

4.4.11 Headings and sections

152

1. Bar (heading starting implied section, containing a block quote and the "Baz" paragraph)
2. Quux (heading starting implied section with no content other than the heading itself)
3. Thud (heading of explicit sectionp140 section)

Notice how the sectionp140 ends the earlier implicit section so that a later paragraph ("Grunt") is back at the top
level.

Sections may contain headings of any rankp147, but authors are strongly encouraged to either use only h1p147 elements,
or to use elements of the appropriate rankp147 for the section's nesting level.

Authors are also encouraged to explicitly wrap sections in elements of sectioning contentp96, instead of relying on the
implicit sections generated by having multiple headings in one element of sectioning contentp96.

For example, the following is correct:

<body>
<h4>Apples</h4>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>
<h6>Sweet</h6>
<p>Red apples are sweeter than green ones.</p>
<h1>Color</h1>
<p>Apples come in various colors.</p>

</section>
</body>

However, the same document would be more clearly expressed as:

<body>
<h1>Apples</h1>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>
<section>
<h3>Sweet</h3>
<p>Red apples are sweeter than green ones.</p>

</section>
</section>
<section>
<h2>Color</h2>
<p>Apples come in various colors.</p>

</section>
</body>

Both of the documents above are semantically identical and would produce the same outline in compliant user
agents.

4.4.11.1 Creating an outline

This section defines an algorithm for creating an outline for a sectioning contentp96 element or a sectioning rootp152

element. It is defined in terms of a walk over the nodes of a DOM tree, in tree order, with each node being visited
when it is entered and when it is exited during the walk.

The outline for a sectioning contentp96 element or a sectioning rootp152 element consists of a list of one or more
potentially nested sectionsp153. A section is a container that corresponds to some nodes in the original DOM tree. Each
section can have one heading associated with it, and can contain any number of further nested sections. The
algorithm for the outline also associates each node in the DOM tree with a particular section and potentially a heading.
(The sections in the outline aren't sectionp140 elements, though some may correspond to such elements — they are
merely conceptual sections.)

The following markup fragment:

<body>
<h1>A</h1>
<p>B</p>

153

<h2>C</h2>
<p>D</p>
<h2>E</h2>
<p>F</p>

</body>

...results in the following outline being created for the bodyp138 node (and thus the entire document):

1. Section created for bodyp138 node.
Associated with heading "A".
Also associated with paragraph "B".
Nested sections:

1. Section implied for first h2p147 element.
Associated with heading "C".
Also associated with paragraph "D".
No nested sections.

2. Section implied for second h2p147 element.
Associated with heading "E".
Also associated with paragraph "F".
No nested sections.

The algorithm that must be followed during a walk of a DOM subtree rooted at a sectioning contentp96 element or a
sectioning rootp152 element to determine that element's outlinep153 is as follows:

1. Let current outlinee be null. (It holds the element whose outlinep153 is being created.)

2. Let current section be null. (It holds a pointer to a sectionp153, so that elements in the DOM can all be
associated with a section.)

3. Create a stack to hold elements, which is used to handle nesting. Initialize this stack to empty.

4. As you walk over the DOM in tree orderp29, trigger the first relevant step below for each element as you
enter and exit it.

↪ If the top of the stack is an element, and you are exiting that element

Note: The element being exited is a heading contentp96 element.

Pop that element from the stack.

↪ If the top of the stack is a heading contentp96 element
Do nothing.

↪ When entering a sectioning contentp96 element or a sectioning rootp152 element
If current outlinee is not null, and the current section has no heading, create an implied heading
and let that be the heading for the current section.

If current outlinee is not null, push current outlinee onto the stack.

Let current outlinee be the element that is being entered.

Let current section be a newly created sectionp153 for the current outlinee element.

Let there be a new outlinep153 for the new current outlinee, initialized with just the new current
section as the only sectionp153 in the outline.

↪ When exiting a sectioning contentp96 element, if the stack is not empty
Pop the top element from the stack, and let the current outlinee be that element.

Let current section be the last section in the outlinep153 of the current outlinee element.

Append the outlinep153 of the sectioning contentp96 element being exited to the current section.
(This does not change which section is the last section in the outlinep153.)

↪ When exiting a sectioning rootp152 element, if the stack is not empty
Run these steps:

1. Pop the top element from the stack, and let the current outlinee be that element.

2. Let current section be the last section in the outlinep153 of the current outlinee element.

154

3. Finding the deepest child: If current section has no child sections, stop these steps.

4. Let current section be the last child sectionp153 of the current current section.

5. Go back to the substep labeled finding the deepest child.

↪ When exiting a sectioning contentp96 element or a sectioning rootp152 element

Note: The current outlinee is the element being exited.

Let current section be the first sectionp153 in the outlinep153 of the current outlinee element.

Skip to the next step in the overall set of steps. (The walk is over.)

↪ If the current outlinee is null
Do nothing.

↪ When entering a heading contentp96 element
If the current section has no heading, let the element being entered be the heading for the current
section.

Otherwise, if the element being entered has a rankp147 equal to or greater than the heading of the
last section of the outlinep153 of the current outlinee, then create a new sectionp153 and append it to
the outlinep153 of the current outlinee element, so that this new section is the new last section of
that outline. Let current section be that new section. Let the element being entered be the new
heading for the current section.

Otherwise, run these substeps:

1. Let candidate section be current section.

2. If the element being entered has a rankp147 lower than the rankp147 of the heading of the
candidate section, then create a new sectionp153, and append it to candidate section.
(This does not change which section is the last section in the outline.) Let current section
be this new section. Let the element being entered be the new heading for the current
section. Abort these substeps.

3. Let new candidate section be the sectionp153 that contains candidate section in the
outlinep153 of current outlinee.

4. Let candidate section be new candidate section.

5. Return to step 2.

Push the element being entered onto the stack. (This causes the algorithm to skip any descendants
of the element.)

Note: Recall that h1p147 has the highest rank, and h6p147 has the lowest rank.

↪ Otherwise
Do nothing.

In addition, whenever you exit a node, after doing the steps above, if current section is not null, associate
the node with the sectionp153 current section.

5. If the current outlinee is null, then there was no sectioning contentp96 element or sectioning rootp152 element
in the DOM. There is no outlinep153. Abort these steps.

6. Associate any nodes that were not associated with a sectionp153 in the steps above with current outlinee as
their section.

7. Associate all nodes with the heading of the sectionp153 with which they are associated, if any.

8. If current outlinee is the body elementp81, then the outline created for that element is the outlinep153 of the
entire document.

The tree of sections created by the algorithm above, or a proper subset thereof, must be used when generating
document outlines, for example when generating tables of contents.

155

When creating an interactive table of contents, entries should jump the user to the relevant sectioning contentp96

element, if the sectionp153 was created for a real element in the original document, or to the relevant heading
contentp96 element, if the sectionp153 in the tree was generated for a heading in the above process.

Note: Selecting the first sectionp153 of the document therefore always takes the user to the top of
the document, regardless of where the first heading in the bodyp138 is to be found.

The outline depth of a heading contentp96 element associated with a sectionp153 section is the number of sectionsp153

that are ancestors of section in the outlinep153 that section finds itself in when the outlinesp153 of its Documentp33 's
elements are created, plus 1. The outline depthp156 of a heading contentp96 element not associated with a sectionp153 is
1.

User agents should provide default headings for sections that do not have explicit section headings.

Consider the following snippet:

<body>
<nav>
<p>Home</p>

</nav>
<p>Hello world.</p>
<aside>
<p>My cat is cute.</p>

</aside>
</body>

Although it contains no headings, this snippet has three sections: a document (the bodyp138) with two
subsections (a navp142 and an asidep145). A user agent could present the outline as follows:

1. Untitled document
1. Navigation
2. Sidebar

These default headings ("Untitled document", "Navigation", "Sidebar") are not specified by this specification,
and might vary with the user's language, the page's language, the user's preferences, the user agent
implementor's preferences, etc.

The following JavaScript function shows how the tree walk could be implemented. The root
argument is the root of the tree to walk, and the enter and exit arguments are callbacks that are
called with the nodes as they are entered and exited. [ECMA262]p739

function (root, enter, exit) {
var node = root;
start: while (node) {

enter(node);
if (node.firstChild) {

node = node.firstChild;
continue start;

}
while (node) {

exit(node);
if (node.nextSibling) {

node = node.nextSibling;
continue start;

}
if (node == root)

node = null;
else

node = node.parentNode;
}

}
}

156

4.5 Grouping content

The pp157 element representsp672 a paragraphp98.

The following examples are conforming HTML fragments:

<p>The little kitten gently seated himself on a piece of
carpet. Later in his life, this would be referred to as the time the
cat sat on the mat.</p>
<fieldset>
<legend>Personal information</legend>
<p>

<label>Name: <input name="n"></label>
<label><input name="anon" type="checkbox"> Hide from other users</label>

</p>
<p><label>Address: <textarea name="a"></textarea></label></p>

</fieldset>
<p>There was once an example from Femley,

Whose markup was of dubious quality.

The validator complained,

So the author was pained,

To move the error from the markup to the rhyming.</p>

The pp157 element should not be used when a more specific element is more appropriate.

The following example is technically correct:

<section>
<!-- ... -->
<p>Last modified: 2001-04-23</p>
<p>Author: fred@example.com</p>

</section>

However, it would be better marked-up as:

<section>
<!-- ... -->
<footer>Last modified: 2001-04-23</footer>
<address>Author: fred@example.com</address>

</section>

Or:

<section>
<!-- ... -->
<footer>
<p>Last modified: 2001-04-23</p>
<address>Author: fred@example.com</address>

</footer>
</section>

Categories
Flow contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLParagraphElement : HTMLElement {};

4.5.1 The p element

157

The hrp158 element representsp672 a paragraphp98-level thematic break, e.g. a scene change in a story, or a transition
to another topic within a section of a reference book.

The following extract from Pandora's Star by Peter F. Hamilton shows two paragraphs that precede a scene
change and the paragraph that follows it. The scene change, represented in the printed book by a gap
containing a solitary centered star between the second and third paragraphs, is here represented using the
hrp158 element.

<p>Dudley was ninety-two, in his second life, and fast approaching
time for another rejuvenation. Despite his body having the physical
age of a standard fifty-year-old, the prospect of a long degrading
campaign within academia was one he regarded with dread. For a
supposedly advanced civilization, the Intersolar Commonwearth could be
appallingly backward at times, not to mention cruel.</p>
<p><i>Maybe it won't be that bad</i>, he told himself. The lie was
comforting enough to get him through the rest of the night's
shift.</p>
<hr>
<p>The Carlton AllLander drove Dudley home just after dawn. Like the
astronomer, the vehicle was old and worn, but perfectly capable of
doing its job. It had a cheap diesel engine, common enough on a
semi-frontier world like Gralmond, although its drive array was a
thoroughly modern photoneural processor. With its high suspension and
deep-tread tyres it could plough along the dirt track to the
observatory in all weather and seasons, including the metre-deep snow
of Gralmond's winters.</p>

The prep158 element representsp672 a block of preformatted text, in which structure is represented by typographic
conventions rather than by elements.

Categories
Flow contentp96.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLHRElement : HTMLElement {};

Categories
Flow contentp96.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLPreElement : HTMLElement {};

4.5.2 The hr element

4.5.3 The pre element

158

Note: In the HTML syntaxp577, a leading newline character immediately following the prep158

element start tag is stripped.

Some examples of cases where the prep158 element could be used:

• Including an e-mail, with paragraphs indicated by blank lines, lists indicated by lines prefixed with a bullet,
and so on.

• Including fragments of computer code, with structure indicated according to the conventions of that
language.

• Displaying ASCII art.

Note: Authors are encouraged to consider how preformatted text will be experienced when the
formatting is lost, as will be the case for users of speech synthesizers, braille displays, and the
like. For cases like ASCII art, it is likely that an alternative presentation, such as a textual
description, would be more universally accessible to the readers of the document.

To represent a block of computer code, the prep158 element can be used with a codep181 element; to represent a block
of computer output the prep158 element can be used with a sampp182 element. Similarly, the kbdp183 element can be
used within a prep158 element to indicate text that the user is to enter.

In the following snippet, a sample of computer code is presented.

<p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {

this.element = element;
this.canClose = canClose;
this.closeHandler = function () { if (closeHandler) closeHandler() };

}</code></pre>

In the following snippet, sampp182 and kbdp183 elements are mixed in the contents of a prep158 element to show a
session of Zork I.

<pre><samp>You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

The following shows a contemporary poem that uses the prep158 element to preserve its unusual formatting,
which forms an intrinsic part of the poem itself.

<pre> maxling

it is with a heart
heavy

that i admit loss of a feline
so loved

a friend lost to the
unknown

(night)

~cdr 11dec07</pre>

4.5.4 The blockquote element

159

The blockquotep159 element representsp672 a section that is quoted from another source.

Content inside a blockquotep159 must be quoted from another source, whose address, if it has one, should be cited in
the cite attribute.

If the citep160 attribute is present, it must be a valid URLp54. To obtain the corresponding citation link, the value of the
attribute must be resolvedp55 relative to the element. User agents should allow users to follow such citation links.

The cite IDL attribute must reflectp61 the element's cite content attribute.

This next example shows the use of citep174 alongside blockquotep159:

<p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p>
<blockquote cite="http://quotes.example.org/s/sonnet130.html">

<p>My mistress' eyes are nothing like the sun,

Coral is far more red, than her lips red,

...

This example shows how a forum post could use blockquotep159 to show what post a user is replying to. The
articlep144 element is used for each post, to mark up the threading.

<article>
<h1>Bacon on a crowbar</h1>
<article>
<header>t3yw 12 points 1 hour ago</header>
<p>I bet a narwhal would love that.</p>
<footer>permalink</footer>
<article>
<header>greg 8 points 1 hour ago</header>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>Dude narwhals don't eat bacon.</p>
<footer>permalink</footer>
<article>
<header>t3yw 15 points 1 hour ago</header>
<blockquote>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>Dude narwhals don't eat bacon.</p>

</blockquote>
<p>Next thing you'll be saying they don't get capes and wizard
hats either!</p>
<footer>permalink</footer>
<article>
<article>

Categories
Flow contentp96.
Sectioning rootp152.
formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

citep160

DOM interface:

interface HTMLQuoteElement : HTMLElement {
attribute DOMString cite;

};

Note: The HTMLQuoteElementp160 interface is also used by the qp175 element.

160

<header>boing -5 points 1 hour ago</header>
<p>narwhals are worse than ceiling cat</p>
<footer>permalink</footer>

</article>
</article>

</article>
</article>
<article>
<header>fred 1 points 23 minutes ago</header>
<blockquote><p>I bet a narwhal would love that.</p></blockquote>
<p>I bet they'd love to peel a banana too.</p>
<footer>permalink</footer>

</article>
</article>

</article>

Note: Examples of how to represent a conversationp416 are shown in a later section; it is not
appropriate to use the citep174 and blockquotep159 elements for this purpose.

The olp161 element representsp672 a list of items, where the items have been intentionally ordered, such that changing
the order would change the meaning of the document.

The items of the list are the lip163 element child nodes of the olp161 element, in tree orderp29.

The reversed attribute is a boolean attributep37. If present, it indicates that the list is a descending list (..., 3, 2, 1). If
the attribute is omitted, the list is an ascending list (1, 2, 3, ...).

The start attribute, if present, must be a valid integerp38 giving the ordinal value of the first list item.

If the startp161 attribute is present, user agents must parse it as an integerp38, in order to determine the attribute's
value. The default value, used if the attribute is missing or if the value cannot be converted to a number according to
the referenced algorithm, is 1 if the element has no reversedp161 attribute, and is the number of child lip163 elements
otherwise.

The first item in the list has the ordinal value given by the olp161 element's startp161 attribute, unless that lip163

element has a valuep163 attribute with a value that can be successfully parsed, in which case it has the ordinal value
given by that valuep163 attribute.

Each subsequent item in the list has the ordinal value given by its valuep163 attribute, if it has one, or, if it doesn't, the
ordinal value of the previous item, plus one if the reversedp161 is absent, or minus one if it is present.

The reversed IDL attribute must reflectp61 the value of the reversedp161 content attribute.

Categories
Flow contentp96.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Zero or more lip163 elements.

Content attributes:
Global attributesp87

reversedp161

startp161

DOM interface:

interface HTMLOListElement : HTMLElement {
attribute boolean reversed;
attribute long start;

};

4.5.5 The ol element

161

The start IDL attribute must reflectp61 the value of the startp161 content attribute.

The following markup shows a list where the order matters, and where the olp161 element is therefore
appropriate. Compare this list to the equivalent list in the ulp162 section to see an example of the same items
using the ulp162 element.

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

Switzerland
United Kingdom
United States
Norway

Note how changing the order of the list changes the meaning of the document. In the following example,
changing the relative order of the first two items has changed the birthplace of the author:

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

United Kingdom
Switzerland
United States
Norway

The ulp162 element representsp672 a list of items, where the order of the items is not important — that is, where
changing the order would not materially change the meaning of the document.

The items of the list are the lip163 element child nodes of the ulp162 element.

The following markup shows a list where the order does not matter, and where the ulp162 element is therefore
appropriate. Compare this list to the equivalent list in the olp161 section to see an example of the same items
using the olp161 element.

<p>I have lived in the following countries:</p>

Norway
Switzerland
United Kingdom
United States

Note that changing the order of the list does not change the meaning of the document. The items in the snippet
above are given in alphabetical order, but in the snippet below they are given in order of the size of their current
account balance in 2007, without changing the meaning of the document whatsoever:

<p>I have lived in the following countries:</p>

Categories
Flow contentp96.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Zero or more lip163 elements.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLUListElement : HTMLElement {};

4.5.6 The ul element

162

Switzerland
Norway
United Kingdom
United States

The lip163 element representsp672 a list item. If its parent element is an olp161, ulp162, or menup393 element, then the
element is an item of the parent element's list, as defined for those elements. Otherwise, the list item has no defined
list-related relationship to any other lip163 element.

The value attribute, if present, must be a valid integerp38 giving the ordinal value of the list item.

If the valuep163 attribute is present, user agents must parse it as an integerp38, in order to determine the attribute's
value. If the attribute's value cannot be converted to a number, the attribute must be treated as if it was absent. The
attribute has no default value.

The valuep163 attribute is processed relative to the element's parent olp161 element (q.v.), if there is one. If there is
not, the attribute has no effect.

The value IDL attribute must reflectp61 the value of the valuep163 content attribute.

The following example, the top ten movies are listed (in reverse order). Note the way the list is given a title by
using a figurep167 element and its figcaptionp168 element.

<figure>
<figcaption>The top 10 movies of all time</figcaption>

<li value="10"><cite>Josie and the Pussycats</cite>, 2001
<li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998
<li value="8"><cite>A Bug's Life</cite>, 1998
<li value="7"><cite>Toy Story</cite>, 1995
<li value="6"><cite>Monsters, Inc</cite>, 2001
<li value="5"><cite>Cars</cite>, 2006
<li value="4"><cite>Toy Story 2</cite>, 1999
<li value="3"><cite>Finding Nemo</cite>, 2003
<li value="2"><cite>The Incredibles</cite>, 2004
<li value="1"><cite>Ratatouille</cite>, 2007

</figure>

The markup could also be written as follows, using the reversedp161 attribute on the olp161 element:

<figure>
<figcaption>The top 10 movies of all time</figcaption>
<ol reversed>

Categories
None.

Contexts in which this element may be used:
Inside olp161 elements.
Inside ulp162 elements.
Inside menup393 elements.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

If the element is a child of an olp161 element: valuep163

DOM interface:

interface HTMLLIElement : HTMLElement {
attribute long value;

};

4.5.7 The li element

163

<cite>Josie and the Pussycats</cite>, 2001
<cite lang="sh">Црна мачка, бели мачор</cite>, 1998
<cite>A Bug's Life</cite>, 1998
<cite>Toy Story</cite>, 1995
<cite>Monsters, Inc</cite>, 2001
<cite>Cars</cite>, 2006
<cite>Toy Story 2</cite>, 1999
<cite>Finding Nemo</cite>, 2003
<cite>The Incredibles</cite>, 2004
<cite>Ratatouille</cite>, 2007

</figure>

Note: If the lip163 element is the child of a menup393 element and itself has a child that defines a
commandp396, then the lip163 element will match the :enabledp419 and :disabledp419 pseudo-classes
in the same way as the first such child element does.

The dlp164 element representsp672 an association list consisting of zero or more name-value groups (a description list).
Each group must consist of one or more names (dtp166 elements) followed by one or more values (ddp166 elements).
Within a single dlp164 element, there should not be more than one dtp166 element for each name.

Name-value groups may be terms and definitions, metadata topics and values, or any other groups of name-value
data.

The values within a group are alternatives; multiple paragraphs forming part of the same value must all be given
within the same ddp166 element.

The order of the list of groups, and of the names and values within each group, may be significant.

If a dlp164 element is empty, it contains no groups.

If a dlp164 element contains non-whitespacep94 text nodesp29, or elements other than dtp166 and ddp166, then those
elements or text nodesp29 do not form part of any groups in that dlp164.

If a dlp164 element contains only dtp166 elements, then it consists of one group with names but no values.

If a dlp164 element contains only ddp166 elements, then it consists of one group with values but no names.

If a dlp164 element starts with one or more ddp166 elements, then the first group has no associated name.

If a dlp164 element ends with one or more dtp166 elements, then the last group has no associated value.

Note: When a dlp164 element doesn't match its content model, it is often due to accidentally using
ddp166 elements in the place of dtp166 elements and vice versa. Conformance checkers can spot such
mistakes and might be able to advise authors how to correctly use the markup.

In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").

Categories
Flow contentp96.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Zero or more groups each consisting of one or more dtp166 elements followed by one or more ddp166

elements.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLDListElement : HTMLElement {};

4.5.8 The dl element

164

<dl>
<dt> Authors
<dd> John
<dd> Luke
<dt> Editor
<dd> Frank

</dl>

In the following example, one definition is linked to two terms.

<dl>
<dt lang="en-US"> <dfn>color</dfn> </dt>
<dt lang="en-GB"> <dfn>colour</dfn> </dt>
<dd> A sensation which (in humans) derives from the ability of
the fine structure of the eye to distinguish three differently
filtered analyses of a view. </dd>

</dl>

The following example illustrates the use of the dlp164 element to mark up metadata of sorts. At the end of the
example, one group has two metadata labels ("Authors" and "Editors") and two values ("Robert Rothman" and
"Daniel Jackson").

<dl>
<dt> Last modified time </dt>
<dd> 2004-12-23T23:33Z </dd>
<dt> Recommended update interval </dt>
<dd> 60s </dd>
<dt> Authors </dt>
<dt> Editors </dt>
<dd> Robert Rothman </dd>
<dd> Daniel Jackson </dd>

</dl>

The following example shows the dlp164 element used to give a set of instructions. The order of the instructions
here is important (in the other examples, the order of the blocks was not important).

<p>Determine the victory points as follows (use the
first matching case):</p>
<dl>
<dt> If you have exactly five gold coins </dt>
<dd> You get five victory points </dd>
<dt> If you have one or more gold coins, and you have one or more silver coins </dt>
<dd> You get two victory points </dd>
<dt> If you have one or more silver coins </dt>
<dd> You get one victory point </dd>
<dt> Otherwise </dt>
<dd> You get no victory points </dd>

</dl>

The following snippet shows a dlp164 element being used as a glossary. Note the use of dfnp176 to indicate the
word being defined.

<dl>
<dt><dfn>Apartment</dfn>, n.</dt>
<dd>An execution context grouping one or more threads with one or
more COM objects.</dd>
<dt><dfn>Flat</dfn>, n.</dt>
<dd>A deflated tire.</dd>
<dt><dfn>Home</dfn>, n.</dt>
<dd>The user's login directory.</dd>

</dl>

Note: The dlp164 element is inappropriate for marking up dialogue. Examples of how to mark up
dialoguep416 are shown below.

165

The dtp166 element representsp672 the term, or name, part of a term-description group in a description list (dlp164

element).

Note: The dtp166 element itself, when used in a dlp164 element, does not indicate that its contents
are a term being defined, but this can be indicated using the dfnp176 element.

This example shows a list of frequently asked questions (a FAQ) marked up using the dtp166 element for
questions and the ddp166 element for answers.

<article>
<h1>FAQ</h1>
<dl>
<dt>What do we want?</dt>
<dd>Our data.</dd>
<dt>When do we want it?</dt>
<dd>Now.</dd>
<dt>Where is it?</dt>
<dd>We are not sure.</dd>

</dl>
</article>

The ddp166 element representsp672 the description, definition, or value, part of a term-description group in a description
list (dlp164 element).

A dlp164 can be used to define a vocabulary list, like in a dictionary. In the following example, each entry, given
by a dtp166 with a dfnp176, has several ddp166s, showing the various parts of the definition.

<dl>
<dt><dfn>happiness</dfn></dt>
<dd class="pronunciation">/'hæ p. nes/</dd>
<dd class="part-of-speech"><i><abbr>n.</abbr></i></dd>
<dd>The state of being happy.</dd>
<dd>Good fortune; success. <q>Oh happiness! It worked!</q></dd>

Categories
None.

Contexts in which this element may be used:
Before ddp166 or dtp166 elements inside dlp164 elements.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
None.

Contexts in which this element may be used:
After dtp166 or ddp166 elements inside dlp164 elements.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.5.9 The dt element

4.5.10 The dd element

166

<dt><dfn>rejoice</dfn></dt>
<dd class="pronunciation">/ri jois'/</dd>
<dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted oneself.</dd>
<dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be delighted.</dd>

</dl>

The figurep167 element representsp672 some flow contentp96, optionally with a caption, that is self-contained and is
typically referenced as a single unit from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams, photos, code listings, etc, that are referred to from
the main content of the document, but that could, without affecting the flow of the document, be moved away from
that primary content, e.g. to the side of the page, to dedicated pages, or to an appendix.

The first figcaptionp168 element child of the element, if any, represents the caption of the figurep167 element's
contents. If there is no child figcaptionp168 element, then there is no caption.

This example shows the figurep167 element to mark up a code listing.

<p>In listing 4 we see the primary core interface
API declaration.</p>
<figure id="l4">
<figcaption>Listing 4. The primary core interface API declaration.</figcaption>
<pre><code>interface PrimaryCore {
boolean verifyDataLine();
void sendData(in sequence<byte> data);
void initSelfDestruct();

}</code></pre>
</figure>
<p>The API is designed to use UTF-8.</p>

Here we see a figurep167 element to mark up a photo.

<figure>
<img src="bubbles-work.jpeg"

alt="Bubbles, sitting in his office chair, works on his
latest project intently.">

<figcaption>Bubbles at work</figcaption>
</figure>

In this example, we see an image that is not a figure, as well as an image and a video that are.

<h2>Malinko's comics</h2>

<p>This case centered on some sort of "intellectual property"
infringement related to a comic (see Exhibit A). The suit started
after a trailer ending with these words:

<blockquote>

Categories
Flow contentp96.
Sectioning rootp152.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Either: One figcaptionp168 element followed by flow contentp96.
Or: Flow contentp96 followed by one figcaptionp168 element.
Or: Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.5.11 The figure element

167

</blockquote>

<p>...was aired. A lawyer, armed with a Bigger Notebook, launched a
preemptive strike using snowballs. A complete copy of the trailer is
included with Exhibit B.

<figure>

<figcaption>Exhibit A. The alleged <cite>rough copy</cite> comic.</figcaption>

</figure>

<figure>
<video src="ex-b.mov"></video>
<figcaption>Exhibit B. The <cite>Rough Copy</cite> trailer.</figcaption>

</figure>

<p>The case was resolved out of court.

Here, a part of a poem is marked up using figurep167.

<figure>
<p>'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.</p>
<figcaption><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-98</figcaption>

</figure>

In this example, which could be part of a much larger work discussing a castle, the figure has three images in it.

<figure>
<img src="castle1423.jpeg" title="Etching. Anonymous, ca. 1423."

alt="The castle has one tower, and a tall wall around it.">
<img src="castle1858.jpeg" title="Oil-based paint on canvas. Maria Towle, 1858."

alt="The castle now has two towers and two walls.">
<img src="castle1999.jpeg" title="Film photograph. Peter Jankle, 1999."

alt="The castle lies in ruins, the original tower all that remains in one piece.">
<figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>

</figure>

The figcaptionp168 element representsp672 a caption or legend for the rest of the contents of the figcaptionp168

element's parent figurep167 element, if any.

Categories
None.

Contexts in which this element may be used:
As the first or last child of a figurep167 element.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.

4.5.12 The figcaption element

4.5.13 The div element

168

The divp168 element has no special meaning at all. It representsp672 its children. It can be used with the classp91,
langp89, and titlep89 attributes to mark up semantics common to a group of consecutive elements.

Note: Authors are strongly encouraged to view the divp168 element as an element of last resort, for
when no other element is suitable. Use of the divp168 element instead of more appropriate
elements leads to poor accessibility for readers and poor maintainability for authors.

For example, a blog post would be marked up using articlep144, a chapter using sectionp140, a page's
navigation aids using navp142, and a group of form controls using fieldsetp317.

On the other hand, divp168 elements can be useful for stylistic purposes or to wrap multiple paragraphs within a
section that are all to be annotated in a similar way. In the following example, we see divp168 elements used as
a way to set the language of two paragraphs at once, instead of setting the language on the two paragraph
elements separately:

<article lang="en-US">
<h1>My use of language and my cats</h1>
<p>My cat's behavior hasn't changed much since her absence, except
that she plays her new physique to the neighbors regularly, in an
attempt to get pets.</p>
<div lang="en-GB">
<p>My other cat, coloured black and white, is a sweetie. He followed
us to the pool today, walking down the pavement with us. Yesterday
he apparently visited our neighbours. I wonder if he recognises that
their flat is a mirror image of ours.</p>
<p>Hm, I just noticed that in the last paragraph I used British
English. But I'm supposed to write in American English. So I
shouldn't say "pavement" or "flat" or "colour"...</p>

</div>
<p>I should say "sidewalk" and "apartment" and "color"!</p>

</article>

4.6 Text-level semantics

formatBlock candidatep566.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLDivElement : HTMLElement {};

Categories
Flow contentp96.
When the element only contains phrasing contentp96: phrasing contentp96.
Interactive contentp97.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Transparentp98, but there must be no interactive contentp97 descendant.

Content attributes:
Global attributesp87

4.6.1 The a element

169

If the ap169 element has an hrefp404 attribute, then it representsp672 a hyperlinkp404 (a hypertext anchor).

If the ap169 element has no hrefp404 attribute, then the element representsp672 a placeholder for where a link might
otherwise have been placed, if it had been relevant.

The targetp404, pingp404, relp404, mediap404, hreflangp404, and typep405 attributes must be omitted if the hrefp404

attribute is not present.

If a site uses a consistent navigation toolbar on every page, then the link that would normally link to the page
itself could be marked up using an ap169 element:

<nav>

 Home
 News
 <a>Examples
 Legal

</nav>

The hrefp404, targetp404 and pingp404 attributes affect what happens when users follow hyperlinksp405 created using
the ap169 element. The relp404, mediap404, hreflangp404, and typep405 attributes may be used to indicate to the user the
likely nature of the target resource before the user follows the link.

The activation behaviorp98 of ap169 elements that represent hyperlinksp404 is to run the following steps:

1. If the DOMActivatep33 event in question is not trustedp29 (i.e. a click()p537 method call was the reason for
the event being dispatched), and the ap169 element's targetp404 attribute is such that applying the rules for
choosing a browsing context given a browsing context namep466, using the value of the targetp404 attribute
as the browsing context name, would result in there not being a chosen browsing context, then raise an
INVALID_ACCESS_ERRp74 exception and abort these steps.

hrefp404

targetp404

pingp404

relp404

mediap404

hreflangp404

typep405

DOM interface:

interface HTMLAnchorElement : HTMLElement {
stringifier attribute DOMString href;

attribute DOMString target;

attribute DOMString ping;

attribute DOMString rel;
readonly attribute DOMTokenList relList;

attribute DOMString media;
attribute DOMString hreflang;
attribute DOMString type;

attribute DOMString text;

// URL decomposition IDL attributes
attribute DOMString protocol;
attribute DOMString host;
attribute DOMString hostname;
attribute DOMString port;
attribute DOMString pathname;
attribute DOMString search;
attribute DOMString hash;

};

170

2. If the target of the clickp33 event is an imgp196 element with an ismapp199 attribute specified, then server-
side image map processing must be performed, as follows:

1. If the DOMActivatep33 event was dispatched as the result of a real pointing-device-triggered
clickp33 event on the imgp196 element, then let x be the distance in CSS pixels from the left edge
of the image's left border, if it has one, or the left edge of the image otherwise, to the location of
the click, and let y be the distance in CSS pixels from the top edge of the image's top border, if it
has one, or the top edge of the image otherwise, to the location of the click. Otherwise, let x and y
be zero.

2. Let the hyperlink suffix be a U+003F QUESTION MARK character, the value of x expressed as a
base-ten integer using ASCII digits, a U+002C COMMA character (,), and the value of y expressed
as a base-ten integer using ASCII digits. ASCII digits are the characters in the range U+0030 DIGIT
ZERO (0) to U+0039 DIGIT NINE (9).

3. Finally, the user agent must follow the hyperlinkp405 defined by the ap169 element. If the steps above defined
a hyperlink suffixp171, then take that into account when following the hyperlink.

This box is non-normative. Implementation requirements are given below this box.

a . textp171

Same as textContentp33.

The IDL attributes href, ping, target, rel, media, hreflang, and type, must reflectp61 the respective content
attributes of the same name.

The IDL attribute relList must reflectp61 the relp404 content attribute.

The text IDL attribute, on getting, must return the same value as the textContentp33 IDL attribute on the element,
and on setting, must act as if the textContentp33 IDL attribute on the element had been set to the new value.

The ap169 element also supports the complement of URL decomposition IDL attributesp56, protocol, host, port,
hostname, pathname, search, and hash. These must follow the rules given for URL decomposition IDL attributes, with
the inputp57 being the result of resolvingp55 the element's hrefp404 attribute relative to the element, if there is such an
attribute and resolving it is successful, or the empty string otherwise; and the common setter actionp57 being the same
as setting the element's hrefp404 attribute to the new output value.

The ap169 element may be wrapped around entire paragraphs, lists, tables, and so forth, even entire sections, so
long as there is no interactive content within (e.g. buttons or other links). This example shows how this can be
used to make an entire advertising block into a link:

<aside class="advertising">
<h1>Advertising</h1>

<section>
<h1>Mellblomatic 9000!</h1>
<p>Turn all your widgets into mellbloms!</p>
<p>Only $9.99 plus shipping and handling.</p>

</section>

<section>
<h1>The Mellblom Browser</h1>
<p>Web browsing at the speed of light.</p>
<p>No other browser goes faster!</p>

</section>

</aside>

Categories
Flow contentp96.
Phrasing contentp96.

4.6.2 The em element

171

The emp171 element representsp672 stress emphasis of its contents.

The level of emphasis that a particular piece of content has is given by its number of ancestor emp171 elements.

The placement of emphasis changes the meaning of the sentence. The element thus forms an integral part of the
content. The precise way in which emphasis is used in this way depends on the language.

These examples show how changing the emphasis changes the meaning. First, a general statement of fact, with
no emphasis:

<p>Cats are cute animals.</p>

By emphasizing the first word, the statement implies that the kind of animal under discussion is in question
(maybe someone is asserting that dogs are cute):

<p>Cats are cute animals.</p>

Moving the emphasis to the verb, one highlights that the truth of the entire sentence is in question (maybe
someone is saying cats are not cute):

<p>Cats are cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone suggested cats were
mean animals):

<p>Cats are cute animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this might emphasize the last
word:

<p>Cats are cute animals.</p>

By emphasizing the entire sentence, it becomes clear that the speaker is fighting hard to get the point across.
This kind of emphasis also typically affects the punctuation, hence the exclamation mark here.

<p>Cats are cute animals!</p>

Anger mixed with emphasizing the cuteness could lead to markup such as:

<p>Cats are cute animals!</p>

The emp171 element isn't a generic "italics" element. Sometimes, text is intended to stand out from
the rest of the paragraph, as if it was in a different mood or voice. For this, the ip184 element is
more appropriate.

The emp171 element also isn't intended to convey importance; for that purpose, the strongp172

element is more appropriate.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

4.6.3 The strong element

172

The strongp172 element representsp672 strong importance for its contents.

The relative level of importance of a piece of content is given by its number of ancestor strongp172 elements; each
strongp172 element increases the importance of its contents.

Changing the importance of a piece of text with the strongp172 element does not change the meaning of the sentence.

Here is an example of a warning notice in a game, with the various parts marked up according to how important
they are:

<p>Warning. This dungeon is dangerous.
Avoid the ducks. Take any gold you find.
Do not take any of the diamonds,
they are explosive and will destroy anything within
ten meters. You have been warned.</p>

The smallp173 element representsp672 side comments such as small print.

Note: Small print typically features disclaimers, caveats, legal restrictions, or copyrights. Small
print is also sometimes used for attribution, or for satisfying licensing requirements.

Note: The smallp173 element does not "de-emphasize" or lower the importance of text emphasized
by the emp171 element or marked as important with the strongp172 element. To mark text as not
emphasized or important, simply do not mark it up with the emp171 or strongp172 elements
respectively.

The smallp173 element should not be used for extended spans of text, such as multiple paragraphs, lists, or sections of
text. It is only intended for short runs of text. The text of a page listing terms of use, for instance, would not be a
suitable candidate for the smallp173 element: in such a case, the text is not a side comment, it is the main content of
the page.

In this example the footer contains contact information and a copyright notice.

<footer>
<address>

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.4 The small element

173

For more details, contact
John Smith.

</address>
<p><small>© copyright 2038 Example Corp.</small></p>

</footer>

In this second example, the smallp173 element is used for a side comment in an article.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

This is distinct from a sidebar, which might be multiple paragraphs long and is removed from the main flow of
text. In the following example, we see a sidebar from the same article. This sidebar also has small print,
indicating the source of the information in the sidebar.

<aside>
<h1>Example Corp</h1>
<p>This company mostly creates small software and Web
sites.</p>
<p>The Example Corp company mission is "To provide entertainment
and news on a sample basis".</p>
<p><small>Information obtained from example.com home
page.</small></p>

</aside>

In this last example, the smallp173 element is marked as being important small print.

<p><small>Continued use of this service will result in a
kiss.</small></p>

The citep174 element representsp672 the title of a work (e.g. a book, a paper, an essay, a poem, a score, a song, a
script, a film, a TV show, a game, a sculpture, a painting, a theatre production, a play, an opera, a musical, an
exhibition, a legal case report, etc). This can be a work that is being quoted or referenced in detail (i.e. a citation), or it
can just be a work that is mentioned in passing.

A person's name is not the title of a work — even if people call that person a piece of work — and the element must
therefore not be used to mark up people's names. (In some cases, the bp185 element might be appropriate for names;
e.g. in a gossip article where the names of famous people are keywords rendered with a different style to draw
attention to them. In other cases, if an element is really needed, the spanp191 element can be used.)

This next example shows a typical use of the citep174 element:

<p>My favorite book is <cite>The Reality Dysfunction</cite> by
Peter F. Hamilton. My favorite comic is <cite>Pearls Before
Swine</cite> by Stephan Pastis. My favorite track is <cite>Jive
Samba</cite> by the Cannonball Adderley Sextet.</p>

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.5 The cite element

174

This is correct usage:

<p>According to the Wikipedia article <cite>HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The following, however, is incorrect usage, as the citep174 element here is containing far more than the title of
the work:

<!-- do not copy this example, it is an example of bad usage! -->
<p>According to <cite>the Wikipedia article on HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The citep174 element is obviously a key part of any citation in a bibliography, but it is only used to mark the
title:

<p><cite>Universal Declaration of Human Rights</cite>, United Nations,
December 1948. Adopted by General Assembly resolution 217 A (III).</p>

Note: A citation is not a quote (for which the qp175 element is appropriate).

This is incorrect usage, because citep174 is not for quotes:

<p><cite>This is wrong!</cite>, said Ian.</p>

This is also incorrect usage, because a person is not a work:

<p><q>This is still wrong!</q>, said <cite>Ian</cite>.</p>

The correct usage does not use a citep174 element:

<p><q>This is correct</q>, said Ian.</p>

As mentioned above, the bp185 element might be relevant for marking names as being keywords in certain kinds
of documents:

<p>And then Ian said <q>this might be right, in a
gossip column, maybe!</q>.</p>

The qp175 element representsp672 some phrasing contentp96 quoted from another source.

Quotation punctuation (such as quotation marks) that is quoting the contents of the element must not appear
immediately before, after, or inside qp175 elements; they will be inserted into the rendering by the user agent.

Content inside a qp175 element must be quoted from another source, whose address, if it has one, should be cited in
the cite attribute. The source may be fictional, as when quoting characters in a novel or screenplay.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

citep175

DOM interface:
Uses HTMLQuoteElementp160.

4.6.6 The q element

175

If the citep175 attribute is present, it must be a valid URLp54. To obtain the corresponding citation link, the value of the
attribute must be resolvedp55 relative to the element. User agents should allow users to follow such citation links.

The qp175 element must not be used in place of quotation marks that do not represent quotes; for example, it is
inappropriate to use the qp175 element for marking up sarcastic statements.

The use of qp175 elements to mark up quotations is entirely optional; using explicit quotation punctuation without qp175

elements is just as correct.

Here is a simple example of the use of the qp175 element:

<p>The man said <q>Things that are impossible just take
longer</q>. I disagreed with him.</p>

Here is an example with both an explicit citation link in the qp175 element, and an explicit citation outside:

<p>The W3C page <cite>About W3C</cite> says the W3C's
mission is <q cite="http://www.w3.org/Consortium/">To lead the
World Wide Web to its full potential by developing protocols and
guidelines that ensure long-term growth for the Web</q>. I
disagree with this mission.</p>

In the following example, the quotation itself contains a quotation:

<p>In <cite>Example One</cite>, he writes <q>The man
said <q>Things that are impossible just take longer</q>. I
disagreed with him</q>. Well, I disagree even more!</p>

In the following example, quotation marks are used instead of the qp175 element:

<p>His best argument was ❝I disagree❞, which
I thought was laughable.</p>

In the following example, there is no quote — the quotation marks are used to name a word. Use of the qp175

element in this case would be inappropriate.

<p>The word "ineffable" could have been used to describe the disaster
resulting from the campaign's mismanagement.</p>

The dfnp176 element representsp672 the defining instance of a term. The paragraphp98, description list groupp164, or
sectionp96 that is the nearest ancestor of the dfnp176 element must also contain the definition(s) for the termp176 given
by the dfnp176 element.

Defining term: If the dfnp176 element has a title attribute, then the exact value of that attribute is the term being
defined. Otherwise, if it contains exactly one element child node and no child text nodesp29, and that child element is
an abbrp177 element with a titlep177 attribute, then the exact value of that attribute is the term being defined.
Otherwise, it is the exact textContentp33 of the dfnp176 element that gives the term being defined.

If the titlep176 attribute of the dfnp176 element is present, then it must contain only the term being defined.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96, but there must be no dfnp176 element descendants.

Content attributes:
Global attributesp87

Also, the titlep176 attribute has special semantics on this element.

DOM interface:
Uses HTMLElementp85.

4.6.7 The dfn element

176

Note: The titlep89 attribute of ancestor elements does not affect dfnp176 elements.

An ap169 element that links to a dfnp176 element represents an instance of the term defined by the dfnp176 element.

In the following fragment, the term "GDO" is first defined in the first paragraph, then used in the second.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

With the addition of an ap169 element, the reference can be made explicit:

<p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

The abbrp177 element representsp672 an abbreviation or acronym, optionally with its expansion. The title attribute
may be used to provide an expansion of the abbreviation. The attribute, if specified, must contain an expansion of the
abbreviation, and nothing else.

The paragraph below contains an abbreviation marked up with the abbrp177 element. This paragraph defines the
termp176 "Web Hypertext Application Technology Working Group".

<p>The <dfn id=whatwg><abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr></dfn>
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

An alternative way to write this would be:

<p>The <dfn id=whatwg>Web Hypertext Application Technology
Working Group</dfn> (<abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>)
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

This paragraph has two abbreviations. Notice how only one is defined; the other, with no expansion associated
with it, does not use the abbrp177 element.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

Also, the titlep177 attribute has special semantics on this element.

DOM interface:
Uses HTMLElementp85.

4.6.8 The abbr element

177

<p>The
<abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
started working on HTML5 in 2004.</p>

This paragraph links an abbreviation to its definition.

<p>The <abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
community does not have much representation from Asia.</p>

This paragraph marks up an abbreviation without giving an expansion, possibly as a hook to apply styles for
abbreviations (e.g. smallcaps).

<p>Philip` and Dashiva both denied that they were going to
get the issue counts from past revisions of the specification to
backfill the <abbr>WHATWG</abbr> issue graph.</p>

If an abbreviation is pluralized, the expansion's grammatical number (plural vs singular) must match the grammatical
number of the contents of the element.

Here the plural is outside the element, so the expansion is in the singular:

<p>Two <abbr title="Working Group">WG</abbr>s worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Here the plural is inside the element, so the expansion is in the plural:

<p>Two <abbr title="Working Groups">WGs</abbr> worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Abbreviations do not have to be marked up using this element. It is expected to be useful in the following cases:

• Abbreviations for which the author wants to give expansions, where using the abbrp177 element with a
titlep89 attribute is an alternative to including the expansion inline (e.g. in parentheses).

• Abbreviations that are likely to be unfamiliar to the document's readers, for which authors are encouraged to
either mark up the abbreviation using a abbrp177 element with a titlep89 attribute or include the expansion
inline in the text the first time the abbreviation is used.

• Abbreviations whose presence needs to be semantically annotated, e.g. so that they can be identified from a
style sheet and given specific styles, for which the abbrp177 element can be used without a titlep89

attribute.

Providing an expansion in a titlep89 attribute once will not necessarily cause other abbrp177 elements in the same
document with the same contents but without a titlep89 attribute to behave as if they had the same expansion. Every
abbrp177 element is independent.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96, but there must be no timep178 element descendants.

Content attributes:
Global attributesp87

datetimep179

pubdatep179

4.6.9 The time element

178

The timep178 element representsp672 either a time on a 24 hour clock, or a precise date in the proleptic Gregorian
calendar, optionally with a time and a time-zone offset. [GREGORIAN]p739

This element is intended as a way to encode modern dates and times in a machine-readable way so that, for example,
user agents can offer to add birthday reminders or scheduled events to the user's calendar.

The timep178 element is not intended for encoding times for which a precise date or time cannot be
established. For example, it would be inappropriate for encoding times like "one millisecond after
the big bang", "the early part of the Jurassic period", or "a winter around 250 BCE".

For dates before the introduction of the Gregorian calendar, authors are encouraged to not use
the timep178 element, or else to be very careful about converting dates and times from the period
to the Gregorian calendar. This is complicated by the manner in which the Gregorian calendar was
phased in, which occurred at different times in different countries, ranging from partway through
the 16th century all the way to early in the 20th.

The pubdate attribute is a boolean attributep37. If specified, it indicates that the date and time given by the element is
the publication date and time of the nearest ancestor articlep144 element, or, if the element has no ancestor
articlep144 element, of the document as a whole. If the element has a pubdatep179 attribute specified, then the
element needs a date. For each articlep144 element, there must no more than one timep178 element with a
pubdatep179 attribute whose nearest ancestor is that articlep144 element. Furthermore, for each Documentp33, there
must be no more than one timep178 element with a pubdatep179 attribute that does not have an ancestor articlep144

element.

The datetime attribute, if present, gives the date or time being specified. Otherwise, the date or time is given by the
element's contents.

If the element needs a datep179, and the datetimep179 attribute is present, then the attribute's value must be a valid
date string with optional timep49.

If the element needs a datep179, but the datetimep179 attribute is not present, then the element's textContentp33 must
be a valid date string in content with optional timep50.

If the element does not need a date, and the datetimep179 attribute is present, then the attribute's value must be a
valid date or time stringp49.

If the element does not need a date, but the datetimep179 attribute is not present, then the element's textContentp33

must be a valid date or time string in contentp49.

The date, if any, must be expressed using the Gregorian calendar.

If the datetimep179 attribute is present, the user agent should convey the attribute's value to the user when rendering
the element.

The timep178 element can be used to encode dates, for example in Microformats. The following shows a
hypothetical way of encoding an event using a variant on hCalendar that uses the timep178 element:

<div class="vevent">
http://www.web2con.com/
Web 2.0 Conference:
<time class="dtstart" datetime="2007-10-05">October 5</time> -
<time class="dtend" datetime="2007-10-20">19</time>,
at the Argent Hotel, San Francisco, CA

</div>

(The end date is encoded as one day after the last date of the event because in the iCalendar format, end dates
are exclusive, not inclusive.)

DOM interface:

interface HTMLTimeElement : HTMLElement {
attribute DOMString dateTime;
attribute boolean pubDate;

readonly attribute Date valueAsDate;
};

179

The timep178 element is not necessary for encoding dates or times. In the following snippet, the time is encoded
using timep178, so that it can be restyled (e.g. using XBL2) to match local conventions, while the year is not
marked up at all, since marking it up would not be particularly useful.

<p>I usually have a snack at <time>16:00</time>.</p>
<p>I've liked model trains since at least 1983.</p>

Using a styling technology that supports restyling times, the first paragraph from the above snippet could be
rendered as follows:

I usually have a snack at 4pm.

Or it could be rendered as follows:

I usually have a snack at 16h00.

The dateTime IDL attribute must reflectp61 the datetimep179 content attribute.

The pubDate IDL attribute must reflectp61 the pubdatep179 content attribute.

User agents, to obtain the date, time, and time-zone offset represented by a timep178 element, must follow these
steps:

1. If the datetimep179 attribute is present, then use the rules to parse a date or time stringp50 with the flag in
attribute from the value of that attribute, and let the result be result.

2. Otherwise, use the rules to parse a date or time stringp50 with the flag in content from the element's
textContentp33, and let the result be result.

3. If result is empty (because the parsing failed), then the datep180 is unknown, the timep180 is unknown, and
the time-zone offsetp180 is unknown.

4. Otherwise: if result contains a date, then that is the datep180; if result contains a time, then that is the
timep180; and if result contains a time-zone offset, then the time-zone offset is the element's time-zone
offsetp180. (A time-zone offset can only be present if both a date and a time are also present.)

This box is non-normative. Implementation requirements are given below this box.

time . valueAsDatep180

Returns a Date object representing the specified date and time.

The valueAsDate IDL attribute must return either null or a new Date object initialised to the relevant value as defined
by the following list:

If the datep180 is known but the timep180 is not
The time corresponding to midnight UTC (i.e. the first second) of the given datep180.

If the timep180 is known but the datep180 is not
The time corresponding to the given timep180 of 1970-01-01, with the time zone UTC.

If both the datep180 and the timep180 are known
The time corresponding to the datep180 and timep180, with the given time-zone offsetp180.

If neither the datep180 nor the timep180 are known
The null value.

When a Date object is to be returned, a new one must be constructed.

In the following snippet:

<p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>

...the timep178 element's valueAsDatep180 attribute would have the value 1,158,969,600,000ms.

In the following snippet:

<p>Many people get up at <time>08:00</time>.</p>

...the timep178 element's valueAsDatep180 attribute would have the value 28,800,000ms.

180

In this example, an article's publication date is marked up using timep178:

<article>
<h1>Small tasks</h1>
<footer>Published <time pubdate>2009-08-30</time>.</footer>
<p>I put a bike bell on his bike.</p>

</article>

Here is another way that could be marked up:

<article>
<h1>Small tasks</h1>
<footer>Published <time pubdate datetime="2009-08-30">today</time>.</footer>
<p>I put a bike bell on his bike.</p>

</article>

Here is the same thing but with the time included. Because the element is empty, it will be replaced in the
rendering with a more readable version of the date and time given.

<article>
<h1>Small tasks</h1>
<footer>Published <time pubdate datetime="2009-08-30T07:13Z"></time>.</footer>
<p>I put a bike bell on his bike.</p>

</article>

The codep181 element representsp672 a fragment of computer code. This could be an XML element name, a filename, a
computer program, or any other string that a computer would recognize.

Although there is no formal way to indicate the language of computer code being marked up, authors who wish to
mark codep181 elements with the language used, e.g. so that syntax highlighting scripts can use the right rules, may do
so by adding a class prefixed with "language-" to the element.

The following example shows how the element can be used in a paragraph to mark up element names and
computer code, including punctuation.

<p>The <code>code</code> element represents a fragment of computer
code.</p>

<p>When you call the <code>activate()</code> method on the
<code>robotSnowman</code> object, the eyes glow.</p>

<p>The example below uses the <code>begin</code> keyword to indicate
the start of a statement block. It is paired with an <code>end</code>
keyword, which is followed by the <code>.</code> punctuation character
(full stop) to indicate the end of the program.</p>

The following example shows how a block of code could be marked up using the prep158 and codep181 elements.

<pre><code class="language-pascal">var i: Integer;
begin

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.10 The code element

181

i := 1;
end.</code></pre>

A class is used in that example to indicate the language used.

Note: See the prep158 element for more details.

The varp182 element representsp672 a variable. This could be an actual variable in a mathematical expression or
programming context, or it could just be a term used as a placeholder in prose.

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at least <var>n</var>
flavors of ice cream to be available for purchase!</p>

For mathematics, in particular for anything beyond the simplest of expressions, MathML is more appropriate. However,
the varp182 element can still be used to refer to specific variables that are then mentioned in MathML expressions.

In this example, an equation is shown, with a legend that references the variables in the equation. The
expression itself is marked up with MathML, but the variables are mentioned in the figure's legend using varp182.

<figure>
<math>
<mi>a</mi>
<mo>=</mo>
<msqrt>
<msup><mi>b</mi><mn>2</mn></msup>
<mi>+</mi>
<msup><mi>c</mi><mn>2</mn></msup>

</msqrt>
</math>
<figcaption>
Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of
a triangle with sides <var>b</var> and <var>c</var>

</figcaption>
</figure>

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

4.6.11 The var element

4.6.12 The samp element

182

The sampp182 element representsp672 (sample) output from a program or computing system.

Note: See the prep158 and kbdp183 elements for more details.

This example shows the sampp182 element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

This second example shows a block of sample output. Nested sampp182 and kbdp183 elements allow for the styling
of specific elements of the sample output using a style sheet.

<pre><samp>jdoe@mowmow:~$ <kbd>ssh demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189 #1 SMP Tue Feb
1 11:22:36 PST 2005 i686 unknown

jdoe@demo:~$ _</samp></pre>

The kbdp183 element representsp672 user input (typically keyboard input, although it may also be used to represent
other input, such as voice commands).

When the kbdp183 element is nested inside a sampp182 element, it represents the input as it was echoed by the system.

When the kbdp183 element contains a sampp182 element, it represents input based on system output, for example
invoking a menu item.

When the kbdp183 element is nested inside another kbdp183 element, it represents an actual key or other single unit of
input as appropriate for the input mechanism.

Here the kbdp183 element is used to indicate keys to press:

<p>To make George eat an apple, press <kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer kbdp183 element marks up a
block of input, with the inner kbdp183 elements representing each individual step of the input, and the sampp182

elements inside them indicating that the steps are input based on something being displayed by the system, in
this case menu labels:

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.13 The kbd element

183

<p>To make George eat an apple, select
<kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...</samp></kbd></kbd>

</p>

Such precision isn't necessary; the following is equally fine:

<p>To make George eat an apple, select <kbd>File | Eat Apple...</kbd></p>

The supp184 element representsp672 a superscript and the subp184 element representsp672 a subscript.

These elements must be used only to mark up typographical conventions with specific meanings, not for typographical
presentation for presentation's sake. For example, it would be inappropriate for the subp184 and supp184 elements to be
used in the name of the LaTeX document preparation system. In general, authors should use these elements only if the
absence of those elements would change the meaning of the content.

In certain languages, superscripts are part of the typographical conventions for some abbreviations.

<p>The most beautiful women are
<abbr>M^{lle}</abbr> Gwendoline and
<abbr>M^{me}</abbr> Denise.</p>

The subp184 element can be used inside a varp182 element, for variables that have subscripts.

Here, the subp184 element is used to represents the subscript that identifies the variable in a family of variables:

<p>The coordinate of the <var>i</var>th point is
(<var>x_{<var>i</var>}</var>, <var>y_{<var>i</var>}</var>).
For example, the 10th point has coordinate
(<var>x₁₀</var>, <var>y₁₀</var>).</p>

Mathematical expressions often use subscripts and superscripts. Authors are encouraged to use MathML for marking
up mathematics, but authors may opt to use subp184 and supp184 if detailed mathematical markup is not desired.
[MATHML]p740

<var>E</var>=<var>m</var><var>c</var>²
f(<var>x</var>, <var>n</var>) = log₄<var>x</var>^{<var>n</var>}

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which these elements may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Use HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

4.6.14 The sub and sup elements

4.6.15 The i element

184

The ip184 element representsp672 a span of text in an alternate voice or mood, or otherwise offset from the normal
prose, such as a taxonomic designation, a technical term, an idiomatic phrase from another language, a thought, a
ship name, or some other prose whose typical typographic presentation is italicized.

Terms in languages different from the main text should be annotated with langp89 attributes (or, in XML, lang
attributes in the XML namespacep89).

The examples below show uses of the ip184 element:

<p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

In the following example, a dream sequence is marked up using ip184 elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

Authors are encouraged to use the classp91 attribute on the ip184 element to identify why the element is being used,
so that if the style of a particular use (e.g. dream sequences as opposed to taxonomic terms) is to be changed at a
later date, the author doesn't have to go through the entire document (or series of related documents) annotating
each use. Similarly, authors are encouraged to consider whether other elements might be more applicable than the
ip184 element, for instance the emp171 element for marking up stress emphasis, or the dfnp176 element to mark up the
defining instance of a term.

Note: Style sheets can be used to format ip184 elements, just like any other element can be
restyled. Thus, it is not the case that content in ip184 elements will necessarily be italicized.

The bp185 element representsp672 a span of text to be stylistically offset from the normal prose without conveying any
extra importance, such as key words in a document abstract, product names in a review, or other spans of text whose
typical typographic presentation is boldened.

The following example shows a use of the bp185 element to highlight key words without marking them up as
important:

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.16 The b element

185

<p>The frobonitor and barbinator components are fried.</p>

In the following example, objects in a text adventure are highlighted as being special by use of the bp185

element.

<p>You enter a small room. Your sword glows
brighter. A rat scurries past the corner wall.</p>

Another case where the bp185 element is appropriate is in marking up the lede (or lead) sentence or paragraph.
The following example shows how a BBC article about kittens adopting a rabbit as their own could be marked
up:

<article>
<h2>Kittens 'adopted' by pet rabbit</h2>
<p><b class="lede">Six abandoned kittens have found an
unexpected new mother figure — a pet rabbit.</p>
<p>Veterinary nurse Melanie Humble took the three-week-old
kittens to her Aberdeen home.</p>

[...]

As with the ip184 element, authors are encouraged to use the classp91 attribute on the bp185 element to identify why
the element is being used, so that if the style of a particular use is to be changed at a later date, the author doesn't
have to go through annotating each use.

The bp185 element should be used as a last resort when no other element is more appropriate. In particular, headings
should use the h1p147 to h6p147 elements, stress emphasis should use the emp171 element, importance should be denoted
with the strongp172 element, and text marked or highlighted should use the markp186 element.

The following would be incorrect usage:

<p>WARNING! Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strongp172, not bp185.

Note: Style sheets can be used to format bp185 elements, just like any other element can be
restyled. Thus, it is not the case that content in bp185 elements will necessarily be boldened.

The markp186 element representsp672 a run of text in one document marked or highlighted for reference purposes, due
to its relevance in another context. When used in a quotation or other block of text referred to from the prose, it
indicates a highlight that was not originally present but which has been added to bring the reader's attention to a part
of the text that might not have been considered important by the original author when the block was originally written,
but which is now under previously unexpected scrutiny. When used in the main prose of a document, it indicates a
part of the document that has been highlighted due to its likely relevance to the user's current activity.

This example shows how the markp186 element can be used to bring attention to a particular part of a quotation:

<p lang="en-US">Consider the following quote:</p>
<blockquote lang="en-GB">
<p>Look around and you will find, no-one's really
<mark>colour</mark> blind.</p>

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.17 The mark element

186

http://news.bbc.co.uk/2/hi/uk_news/scotland/north_east/7101506.stm

</blockquote>
<p lang="en-US">As we can tell from the spelling of the word,
the person writing this quote is clearly not American.</p>

Another example of the markp186 element is highlighting parts of a document that are matching some search
string. If someone looked at a document, and the server knew that the user was searching for the word "kitten",
then the server might return the document with one paragraph modified as follows:

<p>I also have some <mark>kitten</mark>s who are visiting me
these days. They're really cute. I think they like my garden! Maybe I
should adopt a <mark>kitten</mark>.</p>

In the following snippet, a paragraph of text refers to a specific part of a code fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin

i := <mark>1.1</mark>;
end.</code></pre>

This is another example showing the use of markp186 to highlight a part of quoted text that was originally not
emphasized. In this example, common typographic conventions have led the author to explicitly style markp186

elements in quotes to render in italics.

<article>
<style scoped>
blockquote mark, q mark {

font: inherit; font-style: italic;
text-decoration: none;
background: transparent; color: inherit;

}
.bubble em {

font: inherit; font-size: larger;
text-decoration: underline;

}
</style>
<h1>She knew</h1>
<p>Did you notice the subtle joke in the joke on panel 4?</p>
<blockquote>
<p class="bubble">I didn't want to believe. <mark>Of course
on some level I realized it was a known-plaintext attack.</mark> But I
couldn't admit it until I saw for myself.</p>

</blockquote>
<p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it
explains everything neatly.</p>

</article>

Note, incidentally, the distinction between the emp171 element in this example, which is part of the original text
being quoted, and the markp186 element, which is highlighting a part for comment.

The following example shows the difference between denoting the importance of a span of text (strongp172) as
opposed to denoting the relevance of a span of text (markp186). It is an extract from a textbook, where the
extract has had the parts relevant to the exam highlighted. The safety warnings, important though they may be,
are apparently not relevant to the exam.

<h3>Wormhole Physics Introduction</h3>

<p><mark>A wormhole in normal conditions can be held open for a
maximum of just under 39 minutes.</mark> Conditions that can increase
the time include a powerful energy source coupled to one or both of
the gates connecting the wormhole, and a large gravity well (such as a
black hole).</p>

<p><mark>Momentum is preserved across the wormhole. Electromagnetic
radiation can travel in both directions through a wormhole,
but matter cannot.</mark></p>

<p>When a wormhole is created, a vortex normally forms.

187

Warning: The vortex caused by the wormhole opening will
annihilate anything in its path. Vortexes can be avoided when
using sufficiently advanced dialing technology.</p>

<p><mark>An obstruction in a gate will prevent it from accepting a
wormhole connection.</mark></p>

The rubyp188 element allows one or more spans of phrasing content to be marked with ruby annotations. Ruby
annotations are short runs of text presented alongside base text, primarily used in East Asian typography as a guide
for pronunciation or to include other annotations. In Japanese, this form of typography is also known as furigana.

A rubyp188 element representsp672 the spans of phrasing content it contains, ignoring all the child rtp189 and rpp189

elements and their descendants. Those spans of phrasing content have associated annotations created using the
rtp189 element.

In this example, each ideograph in the Japanese text 漢字 is annotated with its reading in hiragana.

...
<ruby>
漢 <rt> かん </rt>
字 <rt> じ　 </rt>

</ruby>
...

This might be rendered as:

In this example, each ideograph in the traditional Chinese text 漢字 is annotated with its bopomofo reading.

<ruby>
漢 <rt> ㄏㄢˋ </rt>
字 <rt> ㄗˋ　 </rt>

</ruby>

This might be rendered as:

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
One or more groups of: phrasing contentp96 followed either by a single rtp189 element, or an rpp189 element,
an rtp189 element, and another rpp189 element.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.18 The ruby element

188

In this example, each ideograph in the simplified Chinese text 汉字 is annotated with its pinyin reading.

...
<ruby>
汉 <rt> hàn </rt>
字 <rt> zì </rt>

</ruby>
...

This might be rendered as:

The rtp189 element marks the ruby text component of a ruby annotation.

An rtp189 element that is a child of a rubyp188 element representsp672 an annotation (given by its children) for the zero
or more nodes of phrasing content that immediately precedes it in the rubyp188 element, ignoring rpp189 elements.

An rtp189 element that is not a child of a rubyp188 element represents the same thing as its children.

Categories
None.

Contexts in which this element may be used:
As a child of a rubyp188 element.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
None.

Contexts in which this element may be used:
As a child of a rubyp188 element, either immediately before or immediately after an rtp189 element.

Content model:
Phrasing contentp96.

4.6.19 The rt element

4.6.20 The rp element

189

The rpp189 element can be used to provide parentheses around a ruby text component of a ruby annotation, to be
shown by user agents that don't support ruby annotations.

An rpp189 element that is a child of a rubyp188 element representsp672 nothing and its contents must be ignored. An
rpp189 element whose parent element is not a rubyp188 element representsp672 its children.

The example above, in which each ideograph in the text 漢字 is annotated with its kanji reading, could be
expanded to use rpp189 so that in legacy user agents the readings are in parentheses:

...
<ruby>
漢 <rp>(</rp><rt>かん</rt><rp>)</rp>
字 <rp>(</rp><rt>じ</rt><rp>)</rp>

</ruby>
...

In conforming user agents the rendering would be as above, but in user agents that do not support ruby, the
rendering would be:

... 漢 (かん) 字 (じ) ...

The bdop190 element representsp672 explicit text directionality formatting control for its children. It allows authors to
override the Unicode bidirectional algorithm by explicitly specifying a direction override. [BIDI]p738

Authors must specify the dirp90 attribute on this element, with the value ltr to specify a left-to-right override and with
the value rtl to specify a right-to-left override.

If the element has the dirp90 attribute set to the exact value ltr, then for the purposes of the bidi algorithm, the user
agent must act as if there was a U+202D LEFT-TO-RIGHT OVERRIDE character at the start of the element, and a
U+202C POP DIRECTIONAL FORMATTING at the end of the element.

If the element has the dirp90 attribute set to the exact value rtl, then for the purposes of the bidi algorithm, the user
agent must act as if there was a U+202E RIGHT-TO-LEFT OVERRIDE character at the start of the element, and a
U+202C POP DIRECTIONAL FORMATTING at the end of the element.

The requirements on handling the bdop190 element for the bidi algorithm may be implemented indirectly through the
style layer. For example, an HTML+CSS user agent should implement these requirements by implementing the CSS
'unicode-bidi' property. [CSS]p738

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

Also, the dirp90 global attribute has special semantics on this element.

DOM interface:
Uses HTMLElementp85.

4.6.21 The bdo element

190

The spanp191 element doesn't mean anything on its own, but can be useful when used together with other attributes,
e.g. classp91, langp89, or dirp90. It representsp672 its children.

In this example, a code fragment is marked up using spanp191 elements and classp91 attributes so that its
keywords and identifiers can be color-coded from CSS:

<pre><code class="lang-c">for (j
= 0; j < 256; j++) {

i_t3 = (i_t3 & 0x1ffff) | (j << 17);

i_t6 = (((((((i_t3 >> 3) ^ i_t3) >> 1) ^ i_t3) >> 8) ^ i_t3) >> 5) & 0xff;

if (i_t6 == i_t1)

break;
}</code></pre>

The brp191 element representsp672 a line break.

brp191 elements must be used only for line breaks that are actually part of the content, as in poems or addresses.

The following example is correct usage of the brp191 element:

<p>P. Sherman

42 Wallaby Way

Sydney</p>

brp191 elements must not be used for separating thematic groups in a paragraph.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLSpanElement : HTMLElement {};

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLBRElement : HTMLElement {};

4.6.22 The span element

4.6.23 The br element

191

The following examples are non-conforming, as they abuse the brp191 element:

<p><a ...>34 comments.

<a ...>Add a comment.</p>
<p><label>Name: <input name="name"></label>

<label>Address: <input name="address"></label></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</p>
<p><a ...>Add a comment.</p>
<p><label>Name: <input name="name"></label></p>
<p><label>Address: <input name="address"></label></p>

If a paragraphp98 consists of nothing but a single brp191 element, it represents a placeholder blank line (e.g. as in a
template). Such blank lines must not be used for presentation purposes.

Any content inside brp191 elements must not be considered part of the surrounding text.

A brp191 element does not separate paragraphs for the purposes of the Unicode bidirectional algorithm. [BIDI]p738

The wbrp192 element representsp672 a line break opportunity.

In the following example, someone is quoted as saying something which, for effect, is written as one long word.
However, to ensure that the text can be wrapped in a readable fashion, the individual words in the quote are
separated using a wbrp192 element.

<p>So then he pointed at the tiger and screamed
"there<wbr>is<wbr>no<wbr>way<wbr>you<wbr>are<wbr>ever<wbr>going<wbr>to<wbr>catch<wbr>me"!</p>

Any content inside wbrp192 elements must not be considered part of the surrounding text.

This section is non-normative.

Element Purpose Example

ap169 Hyperlinks Visit my drinks page.

emp171 Stress emphasis I must say I adore lemonade.

strongp172 Importance This tea is very hot.

smallp173 Side comments These grapes are made into wine. <small>Alcohol is addictive.</small>

citep174 Titles of works The case <cite>Hugo v. Danielle</cite> is relevant here.

qp175 Quotations The judge said <q>You can drink water from the fish tank</q> but advised against it.

dfnp176 Defining instance The term <dfn>organic food</dfn> refers to food produced without synthetic chemicals.

abbrp177 Abbreviations Organic food in Ireland is certified by the <abbr title="Irish Organic Farmers and
Growers Association">IOFGA</abbr>.

timep178 Date and/or time Published <time>2009-10-21</time>.

codep181 Computer code The <code>fruitdb</code> program can be used for tracking fruit production.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

DOM interface:
Uses HTMLElementp85.

4.6.24 The wbr element

4.6.25 Usage summary

192

Element Purpose Example

varp182 Variables If there are <var>n</var> fruit in the bowl, at least <var>n</var>÷2 will be ripe.

sampp182 Computer output The computer said <samp>Unknown error -3</samp>.

kbdp183 User input Hit <kbd>F1</kbd> to continue.

subp184 Subscripts Water is H₂O.

supp184 Superscripts The Hydrogen in heavy water is usually ²H.

ip184 Alternative voice Lemonade consists primarily of <i>Citrus limon</i>.

bp185 Keywords Take a lemon and squeeze it with a juicer.

markp186 Highlight Elderflower cordial, with one <mark>part</mark> cordial to ten <mark>part</mark>s
water, stands a<mark>part</mark> from the rest.

rubyp188,
rtp189, rpp189

Ruby annotations <ruby> OJ <rp>(<rt>Orange Juice<rp>)</ruby>

bdop190 Text directionality
formatting

The proposal is to write English, but in reverse order. "Juice" would become "<bdo
dir=rtl>Juice</bdo>"

spanp191 Other In French we call it sirop de sureau.

brp191 Line break Simply Orange Juice Company
Apopka, FL 32703
U.S.A.

wbrp192 Line breaking
opportunity

www.simply<wbr>orange<wbr>juice.com

4.7 Edits

The insp193 and delp194 elements represent edits to the document.

The insp193 element representsp672 an addition to the document.

The following represents the addition of a single paragraph:

<aside>
<ins>
<p> I like fruit. </p>

</ins>
</aside>

As does this, because everything in the asidep145 element here counts as phrasing contentp96 and therefore
there is just one paragraphp98:

<aside>
<ins>
Apples are tasty.

</ins>
<ins>
So are pears.

</ins>
</aside>

Categories
Flow contentp96.
When the element only contains phrasing contentp96: phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Transparentp98.

Content attributes:
Global attributesp87

citep195

datetimep195

DOM interface:
Uses the HTMLModElementp195 interface.

4.7.1 The ins element

193

insp193 elements should not cross implied paragraphp98 boundaries.

The following example represents the addition of two paragraphs, the second of which was inserted in two parts.
The first insp193 element in this example thus crosses a paragraph boundary, which is considered poor form.

<aside>
<!-- don't do this -->
<ins datetime="2005-03-16T00:00Z">
<p> I like fruit. </p>
Apples are tasty.

</ins>
<ins datetime="2007-12-19T00:00Z">
So are pears.

</ins>
</aside>

Here is a better way of marking this up. It uses more elements, but none of the elements cross implied
paragraph boundaries.

<aside>
<ins datetime="2005-03-16T00:00Z">
<p> I like fruit. </p>

</ins>
<ins datetime="2005-03-16T00:00Z">
Apples are tasty.

</ins>
<ins datetime="2007-12-19T00:00Z">
So are pears.

</ins>
</aside>

The delp194 element representsp672 a removal from the document.

delp194 elements should not cross implied paragraphp98 boundaries.

The following shows a "to do" list where items that have been done are crossed-off with the date and time of
their completion.

<h1>To Do</h1>

Empty the dishwasher
<del datetime="2009-10-11T01:25-07:00">Watch Walter Lewin's lectures
<del datetime="2009-10-10T23:38-07:00">Download more tracks
Buy a printer

Categories
Flow contentp96.
When the element only contains phrasing contentp96: phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Transparentp98.

Content attributes:
Global attributesp87

citep195

datetimep195

DOM interface:
Uses the HTMLModElementp195 interface.

4.7.2 The del element

194

The cite attribute may be used to specify the address of a document that explains the change. When that document
is long, for instance the minutes of a meeting, authors are encouraged to include a fragment identifier pointing to the
specific part of that document that discusses the change.

If the citep195 attribute is present, it must be a valid URLp54 that explains the change. To obtain the corresponding
citation link, the value of the attribute must be resolvedp55 relative to the element. User agents should allow users to
follow such citation links.

The datetime attribute may be used to specify the time and date of the change.

If present, the datetimep195 attribute must be a valid global date and time stringp47 value.

User agents must parse the datetimep195 attribute according to the parse a global date and time stringp47 algorithm. If
that doesn't return a time, then the modification has no associated timestamp (the value is non-conforming; it is not a
valid global date and time stringp47). Otherwise, the modification is marked as having been made at the given
datetime. User agents should use the associated time-zone offset information to determine which time zone to present
the given datetime in.

The insp193 and delp194 elements must implement the HTMLModElementp195 interface:

interface HTMLModElement : HTMLElement {
attribute DOMString cite;
attribute DOMString dateTime;

};

The cite IDL attribute must reflectp61 the element's citep195 content attribute. The dateTime IDL attribute must
reflectp61 the element's datetimep195 content attribute.

This section is non-normative.

Since the insp193 and delp194 elements do not affect paragraphingp98, it is possible, in some cases where paragraphs
are impliedp98 (without explicit pp157 elements), for an insp193 or delp194 element to span both an entire paragraph or
other non-phrasing contentp96 elements and part of another paragraph. For example:

<section>
<ins>
<p>
This is a paragraph that was inserted.

</p>
This is another paragraph whose first sentence was inserted
at the same time as the paragraph above.

</ins>
This is a second sentence, which was there all along.

</section>

By only wrapping some paragraphs in pp157 elements, one can even get the end of one paragraph, a whole second
paragraph, and the start of a third paragraph to be covered by the same insp193 or delp194 element (though this is very
confusing, and not considered good practice):

<section>
This is the first paragraph. <ins>This sentence was
inserted.
<p>This second paragraph was inserted.</p>
This sentence was inserted too.</ins> This is the
third paragraph in this example.
<!-- (don't do this) -->

</section>

However, due to the way implied paragraphsp98 are defined, it is not possible to mark up the end of one paragraph and
the start of the very next one using the same insp193 or delp194 element. You instead have to use one (or two) pp157

element(s) and two insp193 or delp194 elements, as for example:

4.7.3 Attributes common to insp193 and delp194 elements

4.7.4 Edits and paragraphs

195

<section>
<p>This is the first paragraph. This sentence was
deleted.</p>
<p>This sentence was deleted too. That
sentence needed a separate element.</p>

</section>

Partly because of the confusion described above, authors are strongly encouraged to always mark up all paragraphs
with the pp157 element, instead of having insp193 or delp194 elements that cross implied paragraphsp98 boundaries.

This section is non-normative.

The content models of the olp161 and ulp162 elements do not allow insp193 and delp194 elements as children. Lists
always represent all their items, including items that would otherwise have been marked as deleted.

To indicate that an item is inserted or deleted, an insp193 or delp194 element can be wrapped around the contents of
the lip163 element. To indicate that an item has been replaced by another, a single lip163 element can have one or
more delp194 elements followed by one or more insp193 elements.

In the following example, a list that started empty had items added and removed from it over time. The bits in
the example that have been emphasized show the parts that are the "current" state of the list. The list item
numbers don't take into account the edits, though.

<h1>Stop-ship bugs</h1>

<ins datetime="2008-02-12T15:20Z">Bug 225:
Rain detector doesn't work in snow</ins>
<del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-14T12:02Z">Bug 228:
Water buffer overflows in April</ins>
<ins datetime="2008-02-16T13:50Z">Bug 230:
Water heater doesn't use renewable fuels</ins>
<del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-16T14:25Z">Bug 232:
Carbon dioxide emissions detected after startup</ins>

In the following example, a list that started with just fruit was replaced by a list with just colors.

<h1>List of fruits<ins>colors</ins></h1>

Lime<ins>Green</ins>
Apple
Orange
Pear
<ins>Teal</ins>
Lemon<ins>Yellow</ins>
Olive
<ins>Purple</ins>

4.8 Embedded content

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.
If the element has a usemapp282 attribute: Interactive contentp97.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

4.7.5 Edits and lists

4.8.1 The img element

196

An imgp196 element represents an image.

The image given by the src attribute is the embedded content, and the value of the alt attribute is the imgp196

element's fallback contentp97.

The srcp197 attribute must be present, and must contain a valid non-empty URLp54 referencing a non-interactive,
optionally animated, image resource that is neither paged nor scripted.

Note: Images can thus be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector documents
(single-page PDFs, XML files with an SVG root element), animated bitmaps (APNGs, animated
GIFs), animated vector graphics (XML files with an SVG root element that use declarative SMIL
animation), and so forth. However, this also precludes SVG files with script, multipage PDF files,
interactive MNG files, HTML documents, plain text documents, and so forth.

The requirements on the altp197 attribute's value are described in the next sectionp202.

The imgp196 must not be used as a layout tool. In particular, imgp196 elements should not be used to display transparent
images, as they rarely convey meaning and rarely add anything useful to the document.

Unless the user agent cannot support images, or its support for images has been disabled, or the user agent only
fetches elements on demand, then, when an imgp196 is created with a srcp197 attribute, and whenever the srcp197

attribute is set subsequently, the user agent must run the following steps:

1. If the element's srcp197 attribute's value is the empty string, then queue a taskp517 to fire a simple eventp523

named error at the imgp196 element, and abort these steps.

2. Otherwise, resolvep55 the value of that attribute, relative to the element, and if that is successful must then
fetchp58 that resource.

Fetching the image must delay the load eventp653 of the element's document until the taskp517 that is
queuedp517 by the networking task sourcep518 once the resource has been fetchedp58 (defined belowp198) has
been run.

⚠Warning! This, unfortunately, can be used to perform a rudimentary port scan of the user's
local network (especially in conjunction with scripting, though scripting isn't actually necessary

Content model:
Empty.

Content attributes:
Global attributesp87

altp197

srcp197

usemapp282

ismapp199

widthp286

heightp286

DOM interface:

[NamedConstructor=Image(),
NamedConstructor=Image(in unsigned long width),
NamedConstructor=Image(in unsigned long width, in unsigned long height)]

interface HTMLImageElement : HTMLElement {
attribute DOMString alt;
attribute DOMString src;
attribute DOMString useMap;
attribute boolean isMap;
attribute unsigned long width;
attribute unsigned long height;

readonly attribute unsigned long naturalWidth;
readonly attribute unsigned long naturalHeight;
readonly attribute boolean complete;

};

197

to carry out such an attack). User agents may implement cross-originp474 access control policies
that mitigate this attack.

If the image is in a supported image type and its dimensions are known, then the image is said to be available (this
affects exactly what the element represents, as defined below). This can be true even before the image is completely
downloaded, if the user agent supports incremental rendering of images; in such cases, each taskp517 that is
queuedp517 by the networking task sourcep518 while the image is being fetchedp58 must update the presentation of the
image appropriately. It can also stop being true, e.g. if the user agent finds, after obtaining the image's dimensions,
that the image data is actually fatally corrupted.

If the image was not fetched (e.g. because the UA's image support is disabled, or because the srcp197 attribute's value
is the empty string, or if the conditions in the previous paragraph are not met, then the image is not availablep198.

Whether the image is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalentp60)
must be ignored when determining the image's type and whether it is a valid image.

Note: This allows servers to return images with error responses, and have them displayed.

The user agents should apply the image sniffing rulesp61 to determine the type of the image, with the image's
associated Content-Type headersp61 giving the official type. If these rules are not applied, then the type of the image
must be the type given by the image's associated Content-Type headersp61.

User agents must not support non-image resources with the imgp196 element (e.g. XML files whose root element is an
HTML element). User agents must not run executable code (e.g. scripts) embedded in the image resource. User agents
must only display the first page of a multipage resource (e.g. a PDF file). User agents must not allow the resource to
act in an interactive fashion, but should honor any animation in the resource.

This specification does not specify which image types are to be supported.

The taskp517 that is queuedp517 by the networking task sourcep518 once the resource has been fetchedp58, must act as
appropriate given the following alternatives:

↪ If the download was successful and the image is availablep198

Queue a taskp517 to fire a simple eventp523 named load at the imgp196 element (this happens after
completep200 starts returning true).

↪ Otherwise (the fetching process failed without a response from the remote server, or completed but
the image is not a supported image)

Queue a taskp517 to fire a simple eventp523 named error on the imgp196 element.

The task sourcep517 for these tasksp517 is the DOM manipulation task sourcep518.

What an imgp196 element represents depends on the srcp197 attribute and the altp197 attribute.

↪ If the srcp197 attribute is set and the altp197 attribute is set to the empty string
The image is either decorative or supplemental to the rest of the content, redundant with some other
information in the document.

If the image is availablep198 and the user agent is configured to display that image, then the element
representsp672 the image specified by the srcp197 attribute.

Otherwise, the element representsp672 nothing, and may be omitted completely from the rendering. User
agents may provide the user with a notification that an image is present but has been omitted from the
rendering.

↪ If the srcp197 attribute is set and the altp197 attribute is set to a value that isn't empty
The image is a key part of the content; the altp197 attribute gives a textual equivalent or replacement for the
image.

If the image is availablep198 and the user agent is configured to display that image, then the element
representsp672 the image specified by the srcp197 attribute.

Otherwise, the element representsp672 the text given by the altp197 attribute. User agents may provide the
user with a notification that an image is present but has been omitted from the rendering.

↪ If the srcp197 attribute is set and the altp197 attribute is not
The image might be a key part of the content, and there is no textual equivalent of the image available.

198

Note: In a conforming document, the absence of the altp197 attribute indicates that the
image is a key part of the content but that a textual replacement for the image was not
available when the image was generated.

If the image is availablep198, the element representsp672 the image specified by the srcp197 attribute.

If the image is not availablep198 or if the user agent is not configured to display the image, then the user
agent should display some sort of indicator that there is an image that is not being rendered, and may, if
requested by the user, or if so configured, or when required to provide contextual information in response to
navigation, provide caption information for the image, derived as follows:

1. If the image has a titlep89 attribute whose value is not the empty string, then the value of that
attribute is the caption information; abort these steps.

2. If the image is the child of a figurep167 element that has a child figcaptionp168 element, then the
contents of the first such figcaptionp168 element are the caption information; abort these steps.

3. Run the algorithm to create the outlinep153 for the document.

4. If the imgp196 element did not end up associated with a heading in the outline, or if there are any
other images that are lacking an altp197 attribute and that are associated with the same heading in
the outline as the imgp196 element in question, then there is no caption information; abort these
steps.

5. The caption information is the heading with which the image is associated according to the outline.

↪ If the srcp197 attribute is not set and either the altp197 attribute is set to the empty string or the altp197

attribute is not set at all
The element representsp672 nothing.

↪ Otherwise
The element representsp672 the text given by the altp197 attribute.

The altp197 attribute does not represent advisory information. User agents must not present the contents of the altp197

attribute in the same way as content of the titlep89 attribute.

User agents may always provide the user with the option to display any image, or to prevent any image from being
displayed. User agents may also apply heuristics to help the user make use of the image when the user is unable to
see it, e.g. due to a visual disability or because they are using a text terminal with no graphics capabilities. Such
heuristics could include, for instance, optical character recognition (OCR) of text found within the image.

⚠Warning! While user agents are encouraged to repair cases of missing altp197 attributes, authors must
not rely on such behavior. Requirements for providing text to act as an alternative for imagesp202 are
described in detail below.

The contents of imgp196 elements, if any, are ignored for the purposes of rendering.

The usemapp282 attribute, if present, can indicate that the image has an associated image mapp282.

The ismap attribute, when used on an element that is a descendant of an ap169 element with an hrefp404 attribute,
indicates by its presence that the element provides access to a server-side image map. This affects how events are
handled on the corresponding ap169 element.

The ismapp199 attribute is a boolean attributep37. The attribute must not be specified on an element that does not have
an ancestor ap169 element with an hrefp404 attribute.

The imgp196 element supports dimension attributesp286.

The IDL attributes alt, src, useMap, and isMap each must reflectp61 the respective content attributes of the same
name.

This box is non-normative. Implementation requirements are given below this box.

199

image . widthp200 [= value]
image . heightp200 [= value]

These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not
known.
They can be set, to change the corresponding content attributes.

image . naturalWidthp200

image . naturalHeightp200

These attributes return the intrinsic dimensions of the image, or zero if the dimensions are not known.

image . completep200

Returns true if the image has been downloaded, decoded, and found to be valid; otherwise, returns false.

image = new Imagep200([width [, height]])
Returns a new imgp196 element, with the widthp286 and heightp286 attributes set to the values passed in the
relevant arguments, if applicable.

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if the
image is being renderedp672, and is being rendered to a visual medium; or else the intrinsic width and height of the
image, in CSS pixels, if the image is availablep198 but not being rendered to a visual medium; or else 0, if the image is
not availablep198. [CSS]p738

On setting, they must act as if they reflectedp61 the respective content attributes of the same name.

The IDL attributes naturalWidth and naturalHeight must return the intrinsic width and height of the image, in CSS
pixels, if the image is availablep198, or else 0. [CSS]p738

The IDL attribute complete must return true if the user agent has fetched the image specified in the srcp197 attribute,
and it is in a supported image type (i.e. it was decoded without fatal errors), even if the final taskp517 queued by the
networking task sourcep518 for the fetchingp58 of the image resource has not yet been processed. Otherwise, the
attribute must return false.

Note: The value of completep200 can thus change while a scriptp514 is executing.

Three constructors are provided for creating HTMLImageElementp197 objects (in addition to the factory methods from
DOM Core such as createElement()): Image(), Image(width), and Image(width, height). When invoked as
constructors, these must return a new HTMLImageElementp197 object (a new imgp196 element). If the width argument is
present, the new object's widthp286 content attribute must be set to width. If the height argument is also present, the
new object's heightp286 content attribute must be set to height. The element's document must be the active
documentp463 of the browsing contextp463 of the Windowp467 object on which the interface object of the invoked
constructor is found.

A single image can have different appropriate alternative text depending on the context.

In each of the following cases, the same image is used, yet the altp197 text is different each time. The image is
the coat of arms of the Carouge municipality in the canton Geneva in Switzerland.

Here it is used as a supplementary icon:

<p>I lived in Carouge.</p>

Here it is used as an icon representing the town:

<p>Home town: </p>

Here it is used as part of a text on the town:

<p>Carouge has a coat of arms.</p>
<p><img src="carouge.svg" alt="The coat of arms depicts a lion, sitting in front of a
tree."></p>
<p>It is used as decoration all over the town.</p>

Here it is used as a way to support a similar text where the description is given as well as, instead of as an
alternative to, the image:

200

<p>Carouge has a coat of arms.</p>
<p></p>
<p>The coat of arms depicts a lion, sitting in front of a tree.
It is used as decoration all over the town.</p>

Here it is used as part of a story:

<p>He picked up the folder and a piece of paper fell out.</p>
<p><img src="carouge.svg" alt="Shaped like a shield, the paper had a
red background, a green tree, and a yellow lion with its tongue
hanging out and whose tail was shaped like an S."></p>
<p>He stared at the folder. S! The answer he had been looking for all
this time was simply the letter S! How had he not seen that before? It all
came together now. The phone call where Hector had referred to a lion's tail,
the time Marco had stuck his tongue out...</p>

Here it is not known at the time of publication what the image will be, only that it will be a coat of arms of some
kind, and thus no replacement text can be provided, and instead only a brief caption for the image is provided,
in the titlep89 attribute:

<p>The last user to have uploaded a coat of arms uploaded this one:</p>
<p></p>

Ideally, the author would find a way to provide real replacement text even in this case, e.g. by asking the
previous user. Not providing replacement text makes the document more difficult to use for people who are
unable to view images, e.g. blind users, or users or very low-bandwidth connections or who pay by the byte, or
users who are forced to use a text-only Web browser.

Here are some more examples showing the same picture used in different contexts, with different appropriate
alternate texts each time.

<article>
<h1>My cats</h1>
<h2>Fluffy</h2>
<p>Fluffy is my favorite.</p>

<p>She's just too cute.</p>
<h2>Miles</h2>
<p>My other cat, Miles just eats and sleeps.</p>

</article>
<article>
<h1>Photography</h1>
<h2>Shooting moving targets indoors</h2>
<p>The trick here is to know how to anticipate; to know at what speed and
what distance the subject will pass by.</p>
<img src="fluffy.jpg" alt="A cat flying by, chasing a ball of yarn, can be
photographed quite nicely using this technique.">
<h2>Nature by night</h2>
<p>To achieve this, you'll need either an extremely sensitive film, or
immense flash lights.</p>

</article>
<article>
<h1>About me</h1>
<h2>My pets</h2>
<p>I've got a cat named Fluffy and a dog named Miles.</p>

<p>My dog Miles and I like go on long walks together.</p>
<h2>music</h2>
<p>After our walks, having emptied my mind, I like listening to Bach.</p>

</article>
<article>
<h1>Fluffy and the Yarn</h1>
<p>Fluffy was a cat who liked to play with yarn. He also liked to jump.</p>
<aside></aside>
<p>He would play in the morning, he would play in the evening.</p>

</article>

201

4.8.1.1 Requirements for providing text to act as an alternative for images

Except where otherwise specified, the altp197 attribute must be specified and its value must not be empty; the value
must be an appropriate replacement for the image. The specific requirements for the altp197 attribute depend on what
the image is intended to represent, as described in the following sections.

4.8.1.1.1 A link or button containing nothing but the image

When an ap169 element that is a hyperlinkp404, or a buttonp351 element, has no textual content but contains one or
more images, the altp197 attributes must contain text that together convey the purpose of the link or button.

In this example, a user is asked to pick his preferred color from a list of three. Each color is given by an image,
but for users who have configured their user agent not to display images, the color names are used instead:

<h1>Pick your color</h1>

In this example, each button has a set of images to indicate the kind of color output desired by the user. The
first image is used in each case to give the alternative text.

<button name="rgb"><img src="blue"
alt=""></button>
<button name="cmyk"></button>

Since each image represents one part of the text, it could also be written like this:

<button name="rgb"><img src="blue"
alt="B"></button>
<button name="cmyk"><img src="yellow"
alt="Y"></button>

However, with other alternative text, this might not work, and putting all the alternative text into one image in
each case might make more sense:

<button name="rgb"></button>
<button name="cmyk"></button>

4.8.1.1.2 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs,
maps, illustrations

Sometimes something can be more clearly stated in graphical form, for example as a flowchart, a diagram, a graph, or
a simple map showing directions. In such cases, an image can be given using the imgp196 element, but the lesser
textual version must still be given, so that users who are unable to view the image (e.g. because they have a very
slow connection, or because they are using a text-only browser, or because they are listening to the page being read
out by a hands-free automobile voice Web browser, or simply because they are blind) are still able to understand the
message being conveyed.

The text must be given in the altp197 attribute, and must convey the same message as the image specified in the
srcp197 attribute.

It is important to realize that the alternative text is a replacement for the image, not a description of the image.

In the following example we have a flowchart in image form, with text in the altp197 attribute rephrasing the
flowchart in prose form:

<p>In the common case, the data handled by the tokenization stage
comes from the network, but it can also come from script.</p>
<p><img src="images/parsing-model-overview.png" alt="The network
passes data to the Tokenizer stage, which passes data to the Tree
Construction stage. From there, data goes to both the DOM and to

202

http://www.whatwg.org/specs/web-apps/current-work/images/parsing-model-overview.png

Script Execution. Script Execution is linked to the DOM, and, using
document.write(), passes data to the Tokenizer."></p>

Here's another example, showing a good solution and a bad solution to the problem of including an image in a
description.

First, here's the good solution. This sample shows how the alternative text should just be what you would have
put in the prose if the image had never existed.

<!-- This is the correct way to do things. -->
<p>
You are standing in an open field west of a house.

There is a small mailbox here.

</p>

Second, here's the bad solution. In this incorrect way of doing things, the alternative text is simply a description
of the image, instead of a textual replacement for the image. It's bad because when the image isn't shown, the
text doesn't flow as well as in the first example.

<!-- This is the wrong way to do things. -->
<p>
You are standing in an open field west of a house.

There is a small mailbox here.

</p>

Text such as "Photo of white house with boarded door" would be equally bad alternative text (though it could be
suitable for the titlep89 attribute or in the figcaptionp168 element of a figurep167 with this image).

4.8.1.1.3 A short phrase or label with an alternative graphical representation: icons, logos

A document can contain information in iconic form. The icon is intended to help users of visual browsers to recognize
features at a glance.

In some cases, the icon is supplemental to a text label conveying the same meaning. In those cases, the altp197

attribute must be present but must be empty.

Here the icons are next to text that conveys the same meaning, so they have an empty altp197 attribute:

<nav>
<p> Help</p>
<p>
Configuration Tools</p>

</nav>

In other cases, the icon has no text next to it describing what it means; the icon is supposed to be self-explanatory. In
those cases, an equivalent textual label must be given in the altp197 attribute.

Here, posts on a news site are labeled with an icon indicating their topic.

<body>
<article>
<header>
<h1>Ratatouille wins <i>Best Movie of the Year</i> award</h1>
<p></p>

</header>
<p>Pixar has won yet another <i>Best Movie of the Year</i> award,
making this its 8th win in the last 12 years.</p>

</article>
<article>
<header>
<h1>Latest TWiT episode is online</h1>
<p></p>

</header>
<p>The latest TWiT episode has been posted, in which we hear
several tech news stories as well as learning much more about the
iPhone. This week, the panelists compare how reflective their
iPhones' Apple logos are.</p>

203

</article>
</body>

Many pages include logos, insignia, flags, or emblems, which stand for a particular entity such as a company,
organization, project, band, software package, country, or some such.

If the logo is being used to represent the entity, e.g. as a page heading, the altp197 attribute must contain the name of
the entity being represented by the logo. The altp197 attribute must not contain text like the word "logo", as it is not
the fact that it is a logo that is being conveyed, it's the entity itself.

If the logo is being used next to the name of the entity that it represents, then the logo is supplemental, and its altp197

attribute must instead be empty.

If the logo is merely used as decorative material (as branding, or, for example, as a side image in an article that
mentions the entity to which the logo belongs), then the entry below on purely decorative images applies. If the logo is
actually being discussed, then it is being used as a phrase or paragraph (the description of the logo) with an
alternative graphical representation (the logo itself), and the first entry above applies.

In the following snippets, all four of the above cases are present. First, we see a logo used to represent a
company:

<h1></h1>

Next, we see a paragraph which uses a logo right next to the company name, and so doesn't have any
alternative text:

<article>
<h2>News</h2>
<p>We have recently been looking at buying the <img src="alpha.gif"
alt=""> ΑΒΓ company, a small Greek company
specializing in our type of product.</p>

In this third snippet, we have a logo being used in an aside, as part of the larger article discussing the
acquisition:

<aside><p></p></aside>
<p>The ΑΒΓ company has had a good quarter, and our
pie chart studies of their accounts suggest a much bigger blue slice
than its green and orange slices, which is always a good sign.</p>

</article>

Finally, we have an opinion piece talking about a logo, and the logo is therefore described in detail in the
alternative text.

<p>Consider for a moment their logo:</p>

<p><img src="/images/logo" alt="It consists of a green circle with a
green question mark centered inside it."></p>

<p>How unoriginal can you get? I mean, oooooh, a question mark, how
revolutionary, how utterly ground-breaking, I'm
sure everyone will rush to adopt those specifications now! They could
at least have tried for some sort of, I don't know, sequence of
rounded squares with varying shades of green and bold white outlines,
at least that would look good on the cover of a blue book.</p>

This example shows how the alternative text should be written such that if the image isn't availablep198, and the
text is used instead, the text flows seamlessly into the surrounding text, as if the image had never been there in
the first place.

4.8.1.1.4 Text that has been rendered to a graphic for typographical effect

Sometimes, an image just consists of text, and the purpose of the image is not to highlight the actual typographic
effects used to render the text, but just to convey the text itself.

In such cases, the altp197 attribute must be present but must consist of the same text as written in the image itself.

204

Consider a graphic containing the text "Earth Day", but with the letters all decorated with flowers and plants. If
the text is merely being used as a heading, to spice up the page for graphical users, then the correct alternative
text is just the same text "Earth Day", and no mention need be made of the decorations:

<h1></h1>

4.8.1.1.5 A graphical representation of some of the surrounding text

In many cases, the image is actually just supplementary, and its presence merely reinforces the surrounding text. In
these cases, the altp197 attribute must be present but its value must be the empty string.

In general, an image falls into this category if removing the image doesn't make the page any less useful, but
including the image makes it a lot easier for users of visual browsers to understand the concept.

A flowchart that repeats the previous paragraph in graphical form:

<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<p></p>

In these cases, it would be wrong to include alternative text that consists of just a caption. If a caption is to be
included, then either the titlep89 attribute can be used, or the figurep167 and figcaptionp168 elements can be
used. In the latter case, the image would in fact be a phrase or paragraph with an alternative graphical
representation, and would thus require alternative text.

<!-- Using the title="" attribute -->
<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<p><img src="images/parsing-model-overview.png" alt=""

title="Flowchart representation of the parsing model."></p>
<!-- Using <figure> and <figcaption> -->
<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<figure>
<img src="images/parsing-model-overview.png" alt="The Network leads
to the Tokenizer, which leads to the Tree Construction. The Tree
Construction leads to two items. The first is Script Execution, which
leads via document.write() back to the Tokenizer. The second item
from which Tree Construction leads is the DOM. The DOM is related to
the Script Execution.">
<figcaption>Flowchart representation of the parsing model.</figcaption>

</figure>
<!-- This is WRONG. Do not do this. Instead, do what the above examples do. -->
<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<p><img src="images/parsing-model-overview.png"

alt="Flowchart representation of the parsing model."></p>
<!-- Never put the image's caption in the alt="" attribute! -->

A graph that repeats the previous paragraph in graphical form:

<p>According to a study covering several billion pages,
about 62% of documents on the Web in 2007 triggered the Quirks
rendering mode of Web browsers, about 30% triggered the Almost
Standards mode, and about 9% triggered the Standards mode.</p>
<p></p>

205

4.8.1.1.6 A purely decorative image that doesn't add any information

In general, if an image is decorative but isn't especially page-specific, for example an image that forms part of a site-
wide design scheme, the image should be specified in the site's CSS, not in the markup of the document.

However, a decorative image that isn't discussed by the surrounding text but still has some relevance can be included
in a page using the imgp196 element. Such images are decorative, but still form part of the content. In these cases, the
altp197 attribute must be present but its value must be the empty string.

Examples where the image is purely decorative despite being relevant would include things like a photo of the
Black Rock City landscape in a blog post about an event at Burning Man, or an image of a painting inspired by a
poem, on a page reciting that poem. The following snippet shows an example of the latter case (only the first
verse is included in this snippet):

<h1>The Lady of Shalott</h1>
<p></p>
<p>On either side the river lie

Long fields of barley and of rye,

That clothe the wold and meet the sky;

And through the field the road run by

To many-tower'd Camelot;

And up and down the people go,

Gazing where the lilies blow

Round an island there below,

The island of Shalott.</p>

4.8.1.1.7 A group of images that form a single larger picture with no links

When a picture has been sliced into smaller image files that are then displayed together to form the complete picture
again, one of the images must have its altp197 attribute set as per the relevant rules that would be appropriate for the
picture as a whole, and then all the remaining images must have their altp197 attribute set to the empty string.

In the following example, a picture representing a company logo for XYZ Corp has been split into two pieces, the
first containing the letters "XYZ" and the second with the word "Corp". The alternative text ("XYZ Corp") is all in
the first image.

<h1></h1>

In the following example, a rating is shown as three filled stars and two empty stars. While the alternative text
could have been "★★★☆☆", the author has instead decided to more helpfully give the rating in the form "3 out
of 5". That is the alternative text of the first image, and the rest have blank alternative text.

<p>Rating: <meter max=5 value=3><img src="1" alt="3 out of 5"
><img src="0" alt=""
></meter></p>

4.8.1.1.8 A group of images that form a single larger picture with links

Generally, image mapsp282 should be used instead of slicing an image for links.

However, if an image is indeed sliced and any of the components of the sliced picture are the sole contents of links,
then one image per link must have alternative text in its altp197 attribute representing the purpose of the link.

In the following example, a picture representing the flying spaghetti monster emblem, with each of the left
noodly appendages and the right noodly appendages in different images, so that the user can pick the left side
or the right side in an adventure.

<h1>The Church</h1>
<p>You come across a flying spaghetti monster. Which side of His
Noodliness do you wish to reach out for?</p>
<p><img src="fsm-middle.png" alt=""
></p>

206

4.8.1.1.9 A key part of the content

In some cases, the image is a critical part of the content. This could be the case, for instance, on a page that is part of
a photo gallery. The image is the whole point of the page containing it.

How to provide alternative text for an image that is a key part of the content depends on the image's provenance.

The general case
When it is possible for detailed alternative text to be provided, for example if the image is part of a series of
screenshots in a magazine review, or part of a comic strip, or is a photograph in a blog entry about that
photograph, text that can serve as a substitute for the image must be given as the contents of the altp197

attribute.

A screenshot in a gallery of screenshots for a new OS, with some alternative text:

<figure>
<img src="KDE%20Light%20desktop.png"

alt="The desktop is blue, with icons along the left hand side in
two columns, reading System, Home, K-Mail, etc. A window is
open showing that menus wrap to a second line if they
cannot fit in the window. The window has a list of icons
along the top, with an address bar below it, a list of
icons for tabs along the left edge, a status bar on the
bottom, and two panes in the middle. The desktop has a bar
at the bottom of the screen with a few buttons, a pager, a
list of open applications, and a clock.">

<figcaption>Screenshot of a KDE desktop.</figcaption>
</figure>

A graph in a financial report:

<img src="sales.gif"
title="Sales graph"
alt="From 1998 to 2005, sales increased by the following percentages
with each year: 624%, 75%, 138%, 40%, 35%, 9%, 21%">

Note that "sales graph" would be inadequate alternative text for a sales graph. Text that would be a good
caption is not generally suitable as replacement text.

Images that defy a complete description
In certain cases, the nature of the image might be such that providing thorough alternative text is impractical.
For example, the image could be indistinct, or could be a complex fractal, or could be a detailed topographical
map.

In these cases, the altp197 attribute must contain some suitable alternative text, but it may be somewhat brief.

Sometimes there simply is no text that can do justice to an image. For example, there is little that can be
said to usefully describe a Rorschach inkblot test. However, a description, even if brief, is still better than
nothing:

<figure>
<img src="/commons/a/a7/Rorschach1.jpg" alt="A shape with left-right
symmetry with indistinct edges, with a small gap in the center, two
larger gaps offset slightly from the center, with two similar gaps
under them. The outline is wider in the top half than the bottom
half, with the sides extending upwards higher than the center, and
the center extending below the sides.">
<figcaption>A black outline of the first of the ten cards
in the Rorschach inkblot test.</figcaption>

</figure>
Note that the following would be a very bad use of alternative text:

<!-- This example is wrong. Do not copy it. -->
<figure>
<img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline
of the first of the ten cards in the Rorschach inkblot test.">
<figcaption>A black outline of the first of the ten cards
in the Rorschach inkblot test.</figcaption>

</figure>

207

Including the caption in the alternative text like this isn't useful because it effectively duplicates the
caption for users who don't have images, taunting them twice yet not helping them any more than if they
had only read or heard the caption once.

Another example of an image that defies full description is a fractal, which, by definition, is infinite in
detail.

The following example shows one possible way of providing alternative text for the full view of an image of
the Mandelbrot set.

<img src="ms1.jpeg" alt="The Mandelbrot set appears as a cardioid with
its cusp on the real axis in the positive direction, with a smaller
bulb aligned along the same center line, touching it in the negative
direction, and with these two shapes being surrounded by smaller bulbs
of various sizes.">

Images whose contents are not known
In some unfortunate cases, there might be no alternative text available at all, either because the image is
obtained in some automated fashion without any associated alternative text (e.g. a Webcam), or because the
page is being generated by a script using user-provided images where the user did not provide suitable or usable
alternative text (e.g. photograph sharing sites), or because the author does not himself know what the images
represent (e.g. a blind photographer sharing an image on his blog).

In such cases, the altp197 attribute's value may be omitted, but one of the following conditions must be met as
well:

• The titlep89 attribute is present and has a non-empty value.

• The imgp196 element is in a figurep167 element that contains a figcaptionp168 element that contains
content other than inter-element whitespacep94.

• The imgp196 element is part of the only paragraphp98 directly in its sectionp153, and is the only imgp196

element without an altp197 attribute in its section, and its sectionp153 has an associated heading.

Note: Such cases are to be kept to an absolute minimum. If there is even the slightest
possibility of the author having the ability to provide real alternative text, then it would not
be acceptable to omit the altp197 attribute.

A photo on a photo-sharing site, if the site received the image with no metadata other than the caption:

<figure>

<figcaption>Bubbles traveled everywhere with us.</figcaption>

</figure>
It could also be marked up like this:

<article>
<h1>Bubbles traveled everywhere with us.</h1>

</article>
In either case, though, it would be better if a detailed description of the important parts of the image
obtained from the user and included on the page.

A blind user's blog in which a photo taken by the user is shown. Initially, the user might not have any idea
what the photo he took shows:

<article>
<h1>I took a photo</h1>
<p>I went out today and took a photo!</p>
<figure>

<figcaption>A photograph taken blindly from my front porch.</figcaption>

</figure>
</article>

Eventually though, the user might obtain a description of the image from his friends and could then
include alternative text:

<article>
<h1>I took a photo</h1>

208

<p>I went out today and took a photo!</p>
<figure>
<img src="photo2.jpeg" alt="The photograph shows my hummingbird
feeder hanging from the edge of my roof. It is half full, but there
are no birds around. In the background, out-of-focus trees fill the
shot. The feeder is made of wood with a metal grate, and it contains
peanuts. The edge of the roof is wooden too, and is painted white
with light blue streaks.">
<figcaption>A photograph taken blindly from my front porch.</figcaption>

</figure>
</article>

Sometimes the entire point of the image is that a textual description is not available, and the user is to
provide the description. For instance, the point of a CAPTCHA image is to see if the user can literally read
the graphic. Here is one way to mark up a CAPTCHA (note the titlep89 attribute):

<p><label>What does this image say?

<input type=text name=captcha></label>
(If you cannot see the image, you can use an audio test instead.)</p>

Another example would be software that displays images and asks for alternative text precisely for the
purpose of then writing a page with correct alternative text. Such a page could have a table of images, like
this:

<table>
<thead>
<tr> <th> Image <th> Description

<tbody>
<tr>
<td>
<td> <input name="alt2421">

<tr>
<td>
<td> <input name="alt2422">

</table>
Notice that even in this example, as much useful information as possible is still included in the titlep89

attribute.

Note: Since some users cannot use images at all (e.g. because they have a very slow
connection, or because they are using a text-only browser, or because they are listening to
the page being read out by a hands-free automobile voice Web browser, or simply because
they are blind), the altp197 attribute is only allowed to be omitted rather than being provided
with replacement text when no alternative text is available and none can be made available,
as in the above examples. Lack of effort from the part of the author is not an acceptable
reason for omitting the altp197 attribute.

4.8.1.1.10 An image not intended for the user

Generally authors should avoid using imgp196 elements for purposes other than showing images.

If an imgp196 element is being used for purposes other than showing an image, e.g. as part of a service to count page
views, then the altp197 attribute must be the empty string.

In such cases, the widthp286 and heightp286 attributes should both be set to zero.

4.8.1.1.11 An image in an e-mail or private document intended for a specific person who is known to be
able to view images

This section does not apply to documents that are publicly accessible, or whose target audience is not necessarily
personally known to the author, such as documents on a Web site, e-mails sent to public mailing lists, or software
documentation.

When an image is included in a private communication (such as an HTML e-mail) aimed at a specific person who is
known to be able to view images, the altp197 attribute may be omitted. However, even in such cases it is strongly
recommended that alternative text be included (as appropriate according to the kind of image involved, as described

209

in the above entries), so that the e-mail is still usable should the user use a mail client that does not support images,
or should the document be forwarded on to other users whose abilities might not include easily seeing images.

4.8.1.1.12 General guidelines

The most general rule to consider when writing alternative text is the following: the intent is that replacing every
image with the text of its altp197 attribute not change the meaning of the page.

So, in general, alternative text can be written by considering what one would have written had one not been able to
include the image.

A corollary to this is that the altp197 attribute's value should never contain text that could be considered the image's
caption, title, or legend. It is supposed to contain replacement text that could be used by users instead of the image; it
is not meant to supplement the image. The titlep89 attribute can be used for supplemental information.

Note: One way to think of alternative text is to think about how you would read the page
containing the image to someone over the phone, without mentioning that there is an image
present. Whatever you say instead of the image is typically a good start for writing the
alternative text.

4.8.1.1.13 Guidance for markup generators

Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain alternative text from their
users. However, it is recognized that in many cases, this will not be possible.

For images that are the sole contents of links, markup generators should examine the link target to determine the title
of the target, or the URL of the target, and use information obtained in this manner as the alternative text.

As a last resort, implementors should either set the altp197 attribute to the empty string, under the assumption that
the image is a purely decorative image that doesn't add any information but is still specific to the surrounding content,
or omit the altp197 attribute altogether, under the assumption that the image is a key part of the content.

Markup generators should generally avoid using the image's own file name as the alternative text. Similarly, markup
generators should avoid generating alternative text from any content that will be equally available to presentation
user agents (e.g. Web browsers).

Note: This is because once a page is generated, it will typically not be updated, whereas the
browsers that later read the page can be updated by the user, therefore the browser is likely to
have more up-to-date and finely-tuned heuristics than the markup generator did when generating
the page.

4.8.1.1.14 Guidance for conformance checkers

A conformance checker must report the lack of an altp197 attribute as an error unless one of the conditions listed
below applies:

• The titlep89 attribute is present and has a non-empty value (as described abovep208).

• The imgp196 element is in a figurep167 element that contains a figcaptionp168 element that contains content
other than inter-element whitespacep94 (as described abovep208).

• The imgp196 element is part of the only paragraphp98 directly in its sectionp153, and is the only imgp196 element
without an altp197 attribute in its section, and its sectionp153 has an associated heading (as described
abovep208).

• The conformance checker has been configured to assume that the document is an e-mail or document
intended for a specific person who is known to be able to view images.

• The document has a metap119 element with a namep120 attribute whose value is an ASCII case-insensitivep35

match for the string "generatorp120". (This case does not represent a case where the document is
conforming, only that the generator could not determine appropriate alternative text — validators are
required to not show an error in this case to discourage markup generators from including bogus alternative
text purely in an attempt to silence validators.)

210

The iframep211 element representsp672 a nested browsing contextp463.

The src attribute gives the address of a page that the nested browsing contextp463 is to contain. The attribute, if
present, must be a valid non-empty URLp54.

The srcdoc attribute gives the content of the page that the nested browsing contextp463 is to contain. The value of the
attribute in is an iframe srcdoc document.

For iframep211 elements in HTML documentsp75, the attribute, if present, must have a value using the HTML syntaxp577

that consists of the following syntactic components, in the given order:

1. Any number of commentsp584 and space charactersp36.

2. Optionally, a DOCTYPEp577.

3. Any number of commentsp584 and space charactersp36.

4. The root element, in the form of an htmlp112 elementp578.

5. Any number of commentsp584 and space charactersp36.

For iframep211 elements in XML documentsp75, the attribute, if present, must have a value that matches the production
labeled documentp33 in the XML specification. [XML]p743

If the srcp211 attribute and the srcdocp211 attribute are both specified together, the srcdocp211 attribute takes priority.
This allows authors to provide a fallback URLp54 for legacy user agents that do not support the srcdocp211 attribute.

When an iframep211 element is first inserted into a documentp29, the user agent must create a nested browsing
contextp463, and then process the iframe attributesp212 for the first time.

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.
Interactive contentp97.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

Content model:
Text that conforms to the requirements given in the prose.

Content attributes:
Global attributesp87

srcp211

srcdocp211

namep213

sandboxp213

seamlessp216

widthp286

heightp286

DOM interface:

interface HTMLIFrameElement : HTMLElement {
attribute DOMString src;
attribute DOMString srcdoc;
attribute DOMString name;

[PutForwards=value] readonly attribute DOMSettableTokenList sandbox;
attribute boolean seamless;
attribute DOMString width;
attribute DOMString height;

readonly attribute Document contentDocument;
readonly attribute WindowProxy contentWindow;

};

4.8.2 The iframe element

211

Whenever an iframep211 element with a nested browsing contextp463 has its srcdocp211 attribute set or changed, the
user agent must process the iframe attributesp212.

Similarly, whenever an iframep211 element with a nested browsing contextp463 but with no srcdocp211 attribute
specified has its srcp211 attribute set or changed, the user agent must process the iframe attributesp212.

When the user agent is to process the iframe attributes, it must run the first appropriate steps from the following
list:

↪ If the srcdocp211 attribute is specified
Navigatep484 the element's browsing contextp463 to a resource whose Content-Typep61 is text/htmlp715, whose
URLp54 is about:srcdocp56, and whose data consists of the value of the attribute.

↪ If the srcp211 attribute is specified but the srcdocp211 attribute is not

1. If the value of the srcp211 attribute is the empty string, jump to the empty step below.

2. Resolvep55 the value of the srcp211 attribute, relative to the iframep211 element.

3. If that is not successful, then jump to the empty step below.

4. If the resulting absolute URLp55 is an ASCII case-insensitivep35 match for the string
"about:blankp59", and the user agent is processing this iframep211 's attributes for the first time,
then jump to the empty step below. (In cases other than the first time, about:blankp59 is loaded
normally.)

5. Navigatep484 the element's browsing contextp463 to the resulting absolute URLp55.

Empty: When the steps above require the user agent to jump to the empty step, if the user agent is
processing this iframep211 's attributes for the first time, then the user agent must queue a taskp517 to fire a
simple eventp523 named load at the iframep211 element. (After jumping to this step, the above steps are not
resumed.)

↪ Otherwise
Queue a taskp517 to fire a simple eventp523 named load at the iframep211 element.

Any navigationp484 required of the user agent in the process the iframe attributesp212 algorithm must be completed
with the iframep211 element's document's browsing contextp463 as the source browsing contextp484.

Furthermore, if the process the iframe attributesp212 algorithm was invoked for the first time for this element (i.e. as a
result of the element being inserted into a documentp29), then any navigationp484 required of the user agent in that
algorithm must be completed with replacement enabledp492.

Note: If, when the element is created, the srcdocp211 attribute is not set, and the srcp211 attribute is
either also not set or set but its value cannot be resolvedp55, the browsing context will remain at
the initial about:blankp59 page.

Note: If the user navigatesp484 away from this page, the iframep211's corresponding WindowProxyp473

object will proxy new Windowp467 objects for new Documentp33 objects, but the srcp211 attribute will
not change.

Here a blog uses the srcdocp211 attribute in conjunction with the sandboxp213 and seamlessp216 attributes
described below to provide users of user agents that support this feature with an extra layer of protection from
script injection in the blog post comments:

<article>
<h1>I got my own magazine!</h1>
<p>After much effort, I've finally found a publisher, and so now I
have my own magazine! Isn't that awesome?! The first issue will come
out in September, and we have articles about getting food, and about
getting in boxes, it's going to be great!</p>
<footer>
<p>Written by cap.
<time pubdate>2009-08-21T23:32Z</time></p>

</footer>
<article>
<footer> At <time pubdate>2009-08-21T23:35Z</time>, ch writes:

</footer>

212

<iframe seamless sandbox="allow-same-origin" srcdoc="<p>did you get a cover picture
yet?"></iframe>
</article>
<article>
<footer> At <time pubdate>2009-08-21T23:44Z</time>, cap

writes: </footer>
<iframe seamless sandbox="allow-same-origin" srcdoc="<p>Yeah, you can see it in my gallery."></iframe>
</article>
<article>
<footer> At <time pubdate>2009-08-21T23:58Z</time>, ch writes:

</footer>
<iframe seamless sandbox="allow-same-origin" srcdoc="<p>hey that's earl's table.

<p>you should get earl&amp;me on the next cover."></iframe>
</article>

Notice the way that quotes have to be escaped (otherwise the sandboxp213 attribute would end prematurely),
and the way raw ampersands (e.g. in URLs or in prose) mentioned in the sandboxed content have to be doubly
escaped — once so that the ampersand is preserved when originally parsing the sandboxp213 attribute, and once
more to prevent the ampersand from being misinterpreted when parsing the sandboxed content.

Note: In the HTML syntaxp577, authors need only remember to use U+0022 QUOTATION MARK
characters (") to wrap the attribute contents and then to escape all U+0022 QUOTATION MARK (")
and U+0026 AMPERSAND (&) characters, and to specify the sandboxp213 attribute, to ensure safe
embedding of content.

Note: Due to restrictions of the XML syntax, in XML a number of other characters need to be
escaped also to ensure correctness.

The name attribute, if present, must be a valid browsing context namep466. The given value is used to name the nested
browsing contextp463. When the browsing context is created, if the attribute is present, the browsing context namep466

must be set to the value of this attribute; otherwise, the browsing context namep466 must be set to the empty string.

Whenever the namep213 attribute is set, the nested browsing contextp463 's namep466 must be changed to the new value.
If the attribute is removed, the browsing context namep466 must be set to the empty string.

When content loads in an iframep211, after any load events are fired within the content itself, the user agent must
queue a taskp517 to fire a simple eventp523 named load at the iframep211 element. When content whose URLp54 has the
same originp476 as the iframep211 element's Documentp33 fails to load (e.g. due to a DNS error, network error, or if the
server returned a 4xx or 5xx status code or equivalentp60), then the user agent must queue a taskp517 to fire a simple
eventp523 named error at the element instead. (This event does not fire for parse errorsp585, script errors, or any errors
for cross-origin resources.)

The task sourcep517 for these tasksp517 is the DOM manipulation task sourcep518.

Note: A load event is also fired at the iframep211 element when it is created if no other data is
loaded in it.

When there is an active parserp80 in the iframep211, and when anything in the iframep211 is delaying the load eventp653

of the iframep211 's browsing contextp463 's active documentp463, the iframep211 must delay the load eventp653 of its
document.

Note: If, during the handling of the load event, the browsing contextp463 in the iframep211 is again
navigatedp484, that will further delay the load eventp653.

The sandbox attribute, when specified, enables a set of extra restrictions on any content hosted by the iframep211. Its
value must be an unordered set of unique space-separated tokensp52. The allowed values are allow-same-originp214,
allow-top-navigationp214, allow-formsp214, and allow-scriptsp214. When the attribute is set, the content is treated
as being from a unique originp474, forms and scripts are disabled, links are prevented from targeting other browsing
contextsp463, and plugins are disabled. The allow-same-originp214 keyword allows the content to be treated as being
from the same origin instead of forcing it into a unique origin, the allow-top-navigationp214 keyword allows the
content to navigatep484 its top-level browsing contextp464, and the allow-formsp214 and allow-scriptsp214 keywords
re-enable forms and scripts respectively (though scripts are still prevented from creating popups).

213

⚠Warning! Setting both the allow-scriptsp214 and allow-same-originp214 keywords together when the
embedded page has the same originp476 as the page containing the iframep211 allows the embedded page
to simply remove the sandboxp213 attribute.

⚠Warning! Sandboxing hostile content is of minimal help if an attacker can convince the user to just visit
the hostile content directly, rather than in the iframep211. To limit the damage that can be caused by
hostile HTML content, it should be served using the text/html-sandboxedp716 MIME type.

While the sandboxp213 attribute is specified, the iframep211 element's nested browsing contextp463 must have the flags
given in the following list set. In addition, any browsing contexts nestedp463 within an iframep211, either directly or
indirectly, must have all the flags set on them as were set on the iframep211 's Documentp33 's browsing contextp463 when
the iframep211 's Documentp33 was created.

The sandboxed navigation browsing context flag
This flag prevents content from navigating browsing contexts other than the sandboxed browsing context
itselfp484 (or browsing contexts further nested inside it), and the top-level browsing contextp464 (which is
protected by the sandboxed top-level navigation browsing context flagp214 defined next).

This flag also prevents content from creating new auxiliary browsing contextsp466, e.g. using the targetp404

attribute or the window.open()p470 method.

The sandboxed top-level navigation browsing context flag, unless the sandboxp213 attribute's value, when
split on spacesp52, is found to have the allow-top-navigation keyword set

This flag prevents content from navigating their top-level browsing contextp484.

When the allow-top-navigationp214 is set, content can navigate its top-level browsing contextp464, but other
browsing contextsp463 are still protected by the sandboxed navigation browsing context flagp214 defined above.

The sandboxed plugins browsing context flag
This flag prevents content from instantiating pluginsp29, whether using the embed elementp218, the object
elementp223, the applet elementp701, or through navigationp490 of a nested browsing contextp463.

The sandboxed seamless iframes flag
This flag prevents content from using the seamlessp216 attribute on descendant iframep211 elements.

Note: This prevents a page inserted using the allow-same-originp214 keyword from using a
CSS-selector-based method of probing the DOM of other pages on the same site (in
particular, pages that contain user-sensitive information).

The sandboxed origin browsing context flag, unless the sandboxp213 attribute's value, when split on
spacesp52, is found to have the allow-same-origin keyword set

This flag forces content into a unique originp475, thus preventing it from accessing other content from the same
originp474.

This flag also prevents script from reading from or writing to the document.cookie IDL attributep78, and blocks
access to localStorage and openDatabase(). [WEBSTORAGE]p743 [WEBSQL]p742

The allow-same-originp214 attribute is intended for two cases.

First, it can be used to allow content from the same site to be sandboxed to disable
scripting, while still allowing access to the DOM of the sandboxed content.

Second, it can be used to embed content from a third-party site, sandboxed to prevent that
site from opening popup windows, etc, without preventing the embedded page from
communicating back to its originating site, using the database APIs to store data, etc.

The sandboxed forms browsing context flag, unless the sandboxp213 attribute's value, when split on
spacesp52, is found to have the allow-forms keyword set

This flag blocks form submissionp381.

The sandboxed scripts browsing context flag, unless the sandboxp213 attribute's value, when split on
spacesp52, is found to have the allow-scripts keyword set

This flag blocks script executionp514.

214

The sandboxed automatic features browsing context flag, unless the sandboxp213 attribute's value, when
split on spacesp52, is found to have the allow-scriptsp214 keyword (defined above) set

This flag blocks features that trigger automatically, such as automatically playing a videop243 or automatically
focusing a form controlp374. It is relaxed by the same flag as scripts, because when scripts are enabled these
features are trivially possible anyway, and it would be unfortunate to force authors to use script to do them when
sandboxed rather than allowing them to use the declarative features.

These flags must not be set unless the conditions listed above define them as being set.

⚠Warning! These flags only take effect when the nested browsing contextp463 of the iframep211 is
navigatedp484. Removing then, or removing the entire sandboxp213 attribute, has no effect on an already-
loaded page.

In this example, some completely-unknown, potentially hostile, user-provided HTML content is embedded in a
page. Because it is sandboxed, it is treated by the user agent as being from a unique origin, despite the content
being served from the same site. Thus it is affected by all the normal cross-site restrictions. In addition, the
embedded page has scripting disabled, plugins disabled, forms disabled, and it cannot navigate any frames or
windows other than itself (or any frames or windows it itself embeds).

<p>We're not scared of you! Here is your content, unedited:</p>
<iframe sandbox src="getusercontent.cgi?id=12193"></iframe>

Note that cookies are still sent to the server in the getusercontent.cgi request, though they are not visible in
the document.cookiep78 IDL attribute.

⚠Warning! It is important that the server serve the user-provided HTML using the text/html-
sandboxedp716 MIME type so that if the attacker convinces the user to visit that page directly, the
page doesn't run in the context of the site's origin, which would make the user vulnerable to any
attack found in the page.

In this example, a gadget from another site is embedded. The gadget has scripting and forms enabled, and the
origin sandbox restrictions are lifted, allowing the gadget to communicate with its originating server. The
sandbox is still useful, however, as it disables plugins and popups, thus reducing the risk of the user being
exposed to malware and other annoyances.

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
src="http://maps.example.com/embedded.html"></iframe>

Suppose a file A contained the following fragment:

<iframe sandbox="allow-same-origin allow-forms" src=B></iframe>

Suppose that file B contained an iframe also:

<iframe sandbox="allow-scripts" src=C></iframe>

Further, suppose that file C contained a link:

Link

For this example, suppose all the files were served as text/htmlp715.

Page C in this scenario has all the sandboxing flags set. Scripts are disabled, because the iframep211 in A has
scripts disabled, and this overrides the allow-scriptsp214 keyword set on the iframep211 in B. Forms are also
disabled, because the inner iframep211 (in B) does not have the allow-formsp214 keyword set.

Suppose now that a script in A removes all the sandboxp213 attributes in A and B. This would change nothing
immediately. If the user clicked the link in C, loading page D into the iframep211 in B, page D would now act as if
the iframep211 in B had the allow-same-originp214 and allow-formsp214 keywords set, because that was the
state of the nested browsing contextp463 in the iframep211 in A when page B was loaded.

Generally speaking, dynamically removing or changing the sandboxp213 attribute is ill-advised, because it can
make it quite hard to reason about what will be allowed and what will not.

Note: Potentially hostile files can be served from the same server as the file containing the
iframep211 element by labeling them as text/html-sandboxedp716 instead of text/htmlp715. This
ensures that scripts in the files are unable to attack the site (as if they were actually served from
another server), even if the user is tricked into visiting those pages directly, without the
protection of the sandboxp213 attribute.

215

⚠Warning! If the allow-scriptsp214 keyword is set along with allow-same-originp214 keyword, and the file is
from the same originp476 as the iframep211's Documentp33, then a script in the "sandboxed" iframe could just
reach out, remove the sandboxp213 attribute, and then reload itself, effectively breaking out of the
sandbox altogether.

The seamless attribute is a boolean attributep37. When specified, it indicates that the iframep211 element's browsing
contextp463 is to be rendered in a manner that makes it appear to be part of the containing document (seamlessly
included in the parent document). Specifically, when the attribute is set on an iframep211 element whose owner
Documentp33 's browsing contextp463 did not have the sandboxed seamless iframes flagp214 set when that Documentp33

was created, and while either the browsing contextp463 's active documentp463 has the same originp476 as the iframep211

element's document, or the browsing contextp463 's active documentp463 's addressp75 has the same originp476 as the
iframep211 element's document, the following requirements apply:

• The user agent must set the seamless browsing context flag to true for that browsing contextp463. This
will cause links to open in the parent browsing contextp484.

• In a CSS-supporting user agent: the user agent must add all the style sheets that apply to the iframep211

element to the cascade of the active documentp463 of the iframep211 element's nested browsing contextp463,
at the appropriate cascade levels, before any style sheets specified by the document itself.

• In a CSS-supporting user agent: the user agent must, for the purpose of CSS property inheritance only, treat
the root element of the active documentp463 of the iframep211 element's nested browsing contextp463 as
being a child of the iframep211 element. (Thus inherited properties on the root element of the document in
the iframep211 will inherit the computed values of those properties on the iframep211 element instead of
taking their initial values.)

• In visual media, in a CSS-supporting user agent: the user agent should set the intrinsic width of the
iframep211 to the width that the element would have if it was a non-replaced block-level element with 'width:
auto'.

• In visual media, in a CSS-supporting user agent: the user agent should set the intrinsic height of the
iframep211 to the height of the bounding box around the content rendered in the iframep211 at its current
width (as given in the previous bullet point), as it would be if the scrolling position was such that the top of
the viewport for the content rendered in the iframep211 was aligned with the origin of that content's canvas.

• In visual media, in a CSS-supporting user agent: the user agent must force the height of the initial containing
block of the active documentp463 of the nested browsing contextp463 of the iframep211 to zero.

Note: This is intended to get around the otherwise circular dependency of percentage
dimensions that depend on the height of the containing block, thus affecting the height
of the document's bounding box, thus affecting the height of the viewport, thus affecting
the size of the initial containing block.

• In speech media, the user agent should render the nested browsing contextp463 without announcing that it is
a separate document.

• User agents should, in general, act as if the active documentp463 of the iframep211 's nested browsing
contextp463 was part of the document that the iframep211 is in.

For example if the user agent supports listing all the links in a document, links in "seamlessly" nested
documents would be included in that list without being significantly distinguished from links in the
document itself.

If the attribute is not specified, or if the originp474 conditions listed above are not met, then the user agent should
render the nested browsing contextp463 in a manner that is clearly distinguishable as a separate browsing contextp463,
and the seamless browsing context flagp216 must be set to false for that browsing contextp463.

⚠Warning! It is important that user agents recheck the above conditions whenever the active
documentp463 of the nested browsing contextp463 of the iframep211 changes, such that the seamless
browsing context flagp216 gets unset if the nested browsing contextp463 is navigatedp484 to another origin.

Note: The attribute can be set or removed dynamically, with the rendering updating in tandem.

In this example, the site's navigation is embedded using a client-side include using an iframep211. Any links in
the iframep211 will, in new user agents, be automatically opened in the iframep211 's parent browsing context; for
legacy user agents, the site could also include a basep114 element with a targetp115 attribute with the value

216

_parent. Similarly, in new user agents the styles of the parent page will be automatically applied to the
contents of the frame, but to support legacy user agents authors might wish to include the styles explicitly.

<nav><iframe seamless src="nav.include.html"></iframe></nav>

The iframep211 element supports dimension attributesp286 for cases where the embedded content has specific
dimensions (e.g. ad units have well-defined dimensions).

An iframep211 element never has fallback contentp97, as it will always create a nested browsing contextp463, regardless
of whether the specified initial contents are successfully used.

Descendants of iframep211 elements represent nothing. (In legacy user agents that do not support iframep211

elements, the contents would be parsed as markup that could act as fallback content.)

When used in HTML documentsp75, the allowed content model of iframep211 elements is text, except that invoking the
HTML fragment parsing algorithmp661 with the iframep211 element as the context element and the text contents as the
input must result in a list of nodes that are all phrasing contentp96, with no parse errorsp585 having occurred, with no
scriptp129 elements being anywhere in the list or as descendants of elements in the list, and with all the elements in
the list (including their descendants) being themselves conforming.

The iframep211 element must be empty in XML documentsp75.

Note: The HTML parserp584 treats markup inside iframep211 elements as text.

The IDL attributes src, srcdoc, name, sandbox, and seamless must reflectp61 the respective content attributes of the
same name.

The contentDocument IDL attribute must return the Documentp33 object of the active documentp463 of the iframep211

element's nested browsing contextp463.

The contentWindow IDL attribute must return the WindowProxyp473 object of the iframep211 element's nested browsing
contextp463.

Here is an example of a page using an iframep211 to include advertising from an advertising broker:

<iframe src="http://ads.example.com/?customerid=923513721&format=banner"
width="468" height="60"></iframe>

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.
Interactive contentp97.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

srcp218

typep218

widthp286

heightp286

Any other attribute that has no namespace (see prose).

DOM interface:

interface HTMLEmbedElement : HTMLElement {
attribute DOMString src;
attribute DOMString type;
attribute DOMString width;

4.8.3 The embed element

217

The embedp217 element representsp672 an integration point for an external (typically non-HTML) application or
interactive content.

The src attribute gives the address of the resource being embedded. The attribute, if present, must contain a valid
non-empty URLp54.

The type attribute, if present, gives the MIME typep28 by which the plugin to instantiate is selected. The value must be
a valid MIME typep28. If both the typep218 attribute and the srcp218 attribute are present, then the typep218 attribute
must specify the same type as the explicit Content-Type metadatap61 of the resource given by the srcp218 attribute.

When the element is created with neither a srcp218 attribute nor a typep218 attribute, and when attributes are removed
such that neither attribute is present on the element anymore, and when the element has a media elementp231

ancestor, and when the element has an ancestor objectp220 element that is not showing its fallback contentp97, any
plugins instantiated for the element must be removed, and the embedp217 element represents nothing.

If either:

• the sandboxed plugins browsing context flagp214 was set on the browsing contextp463 for which the embedp217

element's Documentp33 is the active documentp463 when that Documentp33 was created, or

• the embedp217 element's Documentp33 was parsed from a resource whose sniffed typep61 as determined during
navigationp484 is text/html-sandboxedp716

...then the user agent must render the embedp217 element in a manner that conveys that the pluginp29 was disabled.
The user agent may offer the user the option to override the sandbox and instantiate the pluginp29 anyway; if the user
invokes such an option, the user agent must act as if the conditions above did not apply for the purposes of this
element.

⚠Warning! Plugins are disabled in sandboxed browsing contexts because they might not honor the
restrictions imposed by the sandbox (e.g. they might allow scripting even when scripting in the sandbox
is disabled). User agents should convey the danger of overriding the sandbox to the user if an option to
do so is provided.

An embedp217 element is said to be potentially active when the following conditions are all met simultaneously:

• The element is in a Documentp29.
• The element's Documentp33 is fully activep464.
• The element has either a srcp218 attribute set or a typep218 attribute set (or both).
• The element's srcp218 attribute is either absent or its value is the empty string.
• The element is not in a Documentp33 whose browsing contextp463 had the sandboxed plugins browsing context

flagp214 set when the Documentp33 was created (unless this has been overridden as described above).
• The element's Documentp33 was not parsed from a resource whose sniffed typep61 as determined during

navigationp484 is text/html-sandboxedp716 (unless this has been overridden as described above).
• The element is not a descendant of a media elementp231.
• The element is not a descendant of an objectp220 element that is not showing its fallback contentp97.

Whenever an embedp217 element that was not potentially activep218 becomes potentially activep218, and whenever a
potentially activep218 embedp217 element's srcp218 attribute is set, changed, or removed, and whenever a potentially
activep218 embedp217 element's typep218 attribute is set, changed, or removed, the appropriate set of steps from the
following is then applied:

↪ If the element has a srcp218 attribute set
The user agent must resolvep55 the value of the element's srcp218 attribute, relative to the element. If that is
successful, the user agent should fetchp58 the resulting absolute URLp55, from the element's browsing context
scope originp465 if it has one. The taskp517 that is queuedp517 by the networking task sourcep518 once the
resource has been fetchedp58 must find and instantiate an appropriate pluginp29 based on the content's
typep219, and hand that pluginp29 the content of the resource, replacing any previously instantiated plugin for
the element.

Fetching the resource must delay the load eventp653 of the element's document.

attribute DOMString height;
};

Depending on the type of content instantiated by the embedp217 element, the node may also support other
interfaces.

218

↪ If the element has no srcp218 attribute set
The user agent should find and instantiate an appropriate pluginp29 based on the value of the typep218

attribute.

Whenever an embedp217 element that was potentially activep218 stops being potentially activep218, any pluginp29 that
had been instantiated for that element must be unloaded.

Note: The embedp217 element is unaffected by the CSS 'display' property. The selected plugin is
instantiated even if the element is hidden with a 'display:none' CSS style.

The type of the content being embedded is defined as follows:

1. If the element has a typep218 attribute, and that attribute's value is a type that a pluginp29 supports, then the
value of the typep218 attribute is the content's typep219.

2. Otherwise, if the <path>p55 component of the URLp54 of the specified resource (after any redirects) matches
a pattern that a pluginp29 supports, then the content's typep219 is the type that that plugin can handle.

For example, a plugin might say that it can handle resources with <path>p55 components that end
with the four character string ".swf".

3. Otherwise, if the specified resource has explicit Content-Type metadatap61, then that is the content's
typep219.

4. Otherwise, the content has no type and there can be no appropriate pluginp29 for it.

The embedp217 element has no fallback contentp97. If the user agent can't find a suitable plugin, then the user agent
must use a default plugin. (This default could be as simple as saying "Unsupported Format".)

Whether the resource is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalentp60)
must be ignored when determining the resource's type and when handing the resource to the plugin.

Note: This allows servers to return data for plugins even with error responses (e.g. HTTP 500
Internal Server Error codes can still contain plugin data).

Any namespace-less attribute other than namep698, alignp700, hspacep700, and vspacep700 may be specified on the
embedp217 element, so long as its name is XML-compatiblep29 and contains no characters in the range U+0041 to
U+005A (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z). These attributes are then passed as parameters to the
pluginp29.

Note: All attributes in HTML documentsp75 get lowercased automatically, so the restriction on
uppercase letters doesn't affect such documents.

Note: The four exceptions are to exclude legacy attributes that have side-effects beyond just
sending parameters to the pluginp29.

The user agent should pass the names and values of all the attributes of the embedp217 element that have no
namespace to the pluginp29 used, when it is instantiated.

If the pluginp29 instantiated for the embedp217 element supports a scriptable interface, the HTMLEmbedElementp217 object
representing the element should expose that interface while the element is instantiated.

The embedp217 element supports dimension attributesp286.

The IDL attributes src and type each must reflectp61 the respective content attributes of the same name.

Here's a way to embed a resource that requires a proprietary plug-in, like Flash:

<embed src="catgame.swf">

If the user does not have the plug-in (for example if the plug-in vendor doesn't support the user's platform),
then the user will be unable to use the resource.

To pass the plugin a parameter "quality" with the value "high", an attribute can be specified:

<embed src="catgame.swf" quality="high">

219

This would be equivalent to the following, when using an objectp220 element instead:

<object data="catgame.swf">
<param name="quality" value="high">

</object>

The objectp220 element can represent an external resource, which, depending on the type of the resource, will either
be treated as an image, as a nested browsing contextp463, or as an external resource to be processed by a pluginp29.

The data attribute, if present, specifies the address of the resource. If present, the attribute must be a valid non-
empty URLp54.

The type attribute, if present, specifies the type of the resource. If present, the attribute must be a valid MIME typep28.

At least one of either the datap220 attribute or the typep220 attribute must be present.

The name attribute, if present, must be a valid browsing context namep466. The given value is used to name the nested
browsing contextp463, if applicable.

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.
If the element has a usemapp282 attribute: Interactive contentp97.
Listedp313, submittablep314, form-associated elementp313.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

Content model:
Zero or more paramp224 elements, then, transparentp98.

Content attributes:
Global attributesp87

datap220

typep220

namep220

usemapp282

formp373

widthp286

heightp286

DOM interface:

interface HTMLObjectElement : HTMLElement {
attribute DOMString data;
attribute DOMString type;
attribute DOMString name;
attribute DOMString useMap;

readonly attribute HTMLFormElement form;
attribute DOMString width;
attribute DOMString height;

readonly attribute Document contentDocument;
readonly attribute WindowProxy contentWindow;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

};

Depending on the type of content instantiated by the objectp220 element, the node also supports other
interfaces.

4.8.4 The object element

220

When the element is created, when it is popped off the stack of open elementsp594 of an HTML parserp584 or XML
parserp669, and subsequently whenever the element is inserted into a documentp29 or removed from a documentp29;
and whenever the element's Documentp33 changes whether it is fully activep464; and whenever an ancestor objectp220

element changes to or from showing its fallback contentp97; and whenever the element's classidp698 attribute is set,
changed, or removed; and, when its classidp698 attribute is not present, whenever its datap220 attribute is set,
changed, or removed; and, when neither its classidp698 attribute nor its datap220 attribute are present, whenever its
typep220 attribute is set, changed, or removed: the user agent must queue a taskp517 to run the following steps to
(re)determine what the objectp220 element represents. The task sourcep517 for this taskp517 is the DOM manipulation
task sourcep518.

1. If the user has indicated a preference that this objectp220 element's fallback contentp97 be shown instead of
the element's usual behavior, then jump to the last step in the overall set of steps (fallback).

Note: For example, a user could ask for the element's fallback contentp97 to be shown
because that content uses a format that the user finds more accessible.

2. If the element has an ancestor media elementp231, or has an ancestor objectp220 element that is not showing
its fallback contentp97, or if the element is not in a Documentp29 with a browsing contextp463, or if the
element's Documentp33 is not fully activep464, or if the element is still in the stack of open elementsp594 of an
HTML parserp584 or XML parserp669, then jump to the last step in the overall set of steps (fallback).

3. If the classidp698 attribute is present, and has a value that isn't the empty string, then: if the user agent can
find a pluginp29 suitable according to the value of the classidp698 attribute, and plugins aren't being
sandboxedp223, then that pluginp29 should be usedp223, and the value of the datap220 attribute, if any, should
be passed to the pluginp29. If no suitable pluginp29 can be found, or if the pluginp29 reports an error, jump to
the last step in the overall set of steps (fallback).

4. If the datap220 attribute is present and its value is not the empty string, then:

1. If the typep220 attribute is present and its value is not a type that the user agent supports, and is
not a type that the user agent can find a pluginp29 for, then the user agent may jump to the last
step in the overall set of steps (fallback) without fetching the content to examine its real type.

2. Resolvep55 the URLp54 specified by the datap220 attribute, relative to the element.

3. If that failed, fire a simple eventp523 named error at the element, then jump to the last step in the
overall set of steps (fallback).

4. Fetchp58 the resulting absolute URLp55, from the element's browsing context scope originp465 if it
has one.

Fetching the resource must delay the load eventp653 of the element's document until the taskp517

that is queuedp517 by the networking task sourcep518 once the resource has been fetchedp58

(defined next) has been run.

5. If the resource is not yet available (e.g. because the resource was not available in the cache, so
that loading the resource required making a request over the network), then jump to the last step
in the overall set of steps (fallback). The taskp517 that is queuedp517 by the networking task
sourcep518 once the resource is available must restart this algorithm from this step. Resources can
load incrementally; user agents may opt to consider a resource "available" whenever enough data
has been obtained to begin processing the resource.

6. If the load failed (e.g. there was an HTTP 404 error, there was a DNS error), fire a simple eventp523

named error at the element, then jump to the last step in the overall set of steps (fallback).

7. Determine the resource type, as follows:

1. Let the resource type be unknown.

2. Let the sniffed flag be false.

3. If the user agent is configured to strictly obey Content-Type headers for this resource,
and the resource has associated Content-Type metadatap61, then let the resource type
be the type specified in the resource's Content-Type metadatap61, and abort these
substeps.

221

4. If there is a typep220 attribute present on the objectp220 element, and that attribute's
value is not a type that the user agent supports, but it is a type that a pluginp29 supports,
then let the resource type be the type specified in that typep220 attribute.

5. Otherwise, if the resource type is unknown, and the resource has associated Content-
Type metadatap61, then let the resource type be the type specified in the resource's
Content-Type metadatap61.

If this results in the resource type being "text/plain", then let the resource type be the
result of applying the rules for distingushing if a resource is text or binaryp61 to the
resource instead, and then set the sniffed flag to true.

6. If the resource type is unknown or "application/octet-stream" at this point and there
is a typep220 attribute present on the objectp220 element, then change the resource type
to instead be the type specified in that typep220 attribute.

Otherwise, if the resource type is "application/octet-stream" but there is no typep220

attribute on the objectp220 element, then change the resource type to be unknown, so
that the sniffing rules in the following steps are invoked.

7. If the resource type is still unknown at this point, but the <path>p55 component of the
URLp54 of the specified resource (after any redirects) matches a pattern that a pluginp29

supports, then let resource type be the type that that plugin can handle.

For example, a plugin might say that it can handle resources with <path>p55

components that end with the four character string ".swf".

8. If the resource type is still unknown, and the sniffed flag is false, then change the
resource type to instead be the sniffed type of the resourcep61.

Otherwise, if the resource type is still unknown, and the sniffed flag is true, then change
the resource type back to text/plain.

8. Handle the content as given by the first of the following cases that matches:

↪ If the resource type is not a type that the user agent supports, but it is a type that
a pluginp29 supports

If plugins are being sandboxedp223, jump to the last step in the overall set of steps
(fallback).

Otherwise, the user agent should use the plugin that supports resource typep223 and pass
the content of the resource to that pluginp29. If the pluginp29 reports an error, then jump
to the last step in the overall set of steps (fallback).

↪ If the resource type is an XML MIME typep29, or if the resource type does not start
with "image/"

The objectp220 element must be associated with a newly created nested browsing
contextp463, if it does not already have one.

If the URLp54 of the given resource is not about:blankp59, the element's nested browsing
contextp463 must then be navigatedp484 to that resource, with replacement enabledp492,
and with the objectp220 element's document's browsing contextp463 as the source
browsing contextp484. (The datap220 attribute of the objectp220 element doesn't get
updated if the browsing context gets further navigated to other locations.)

If the URLp54 of the given resource is about:blankp59, then, instead, the user agent must
queue a taskp517 to fire a simple eventp523 named load at the objectp220 element.

The objectp220 element representsp672 the nested browsing contextp463.

If the namep220 attribute is present, the browsing context namep466 must be set to the
value of this attribute; otherwise, the browsing context namep466 must be set to the
empty string.

Note: It's possible that the navigationp484 of the browsing contextp463

will actually obtain the resource from a different application cachep497.
Even if the resource is then found to have a different type, it is still

222

used as part of a nested browsing contextp463; this algorithm doesn't
restart with the new resource.

↪ If the resource type starts with "image/", and support for images has not been
disabled

Apply the image sniffingp61 rules to determine the type of the image.

The objectp220 element representsp672 the specified image. The image is not a nested
browsing contextp463.

If the image cannot be rendered, e.g. because it is malformed or in an unsupported
format, jump to the last step in the overall set of steps (fallback).

↪ Otherwise
The given resource type is not supported. Jump to the last step in the overall set of steps
(fallback).

9. The element's contents are not part of what the objectp220 element represents.

10. Once the resource is completely loaded, queue a taskp517 to fire a simple eventp523 named load at
the element.

The task sourcep517 for this task is the DOM manipulation task sourcep518.

5. If the datap220 attribute is absent but the typep220 attribute is present, plugins aren't being sandboxedp223,
and the user agent can find a pluginp29 suitable according to the value of the typep220 attribute, then that
pluginp29 should be usedp223. If no suitable pluginp29 can be found, or if the pluginp29 reports an error, jump to
the next step (fallback).

6. (Fallback.) The objectp220 element representsp672 the element's children, ignoring any leading paramp224

element children. This is the element's fallback contentp97. If the element has an instantiated pluginp29, then
unload it.

When the algorithm above instantiates a pluginp29, the user agent should pass to the pluginp29 used the names and
values of all the attributes on the element, in the order they were added to the element, with the attributes added by
the parser being ordered in source order, followed by a parameter named "PARAM" whose value is null, followed by all
the names and values of parametersp225 given by paramp224 elements that are children of the objectp220 element, in
tree orderp29. If the pluginp29 supports a scriptable interface, the HTMLObjectElementp220 object representing the
element should expose that interface. The objectp220 element representsp672 the pluginp29. The pluginp29 is not a
nested browsing contextp463.

If either:

• the sandboxed plugins browsing context flagp214 was set on the objectp220 element's Documentp33 's browsing
contextp463 when the Documentp33 was created, or

• the objectp220 element's Documentp33 was parsed from a resource whose sniffed typep61 as determined
during navigationp484 is text/html-sandboxedp716

...then the steps above must always act as if they had failed to find a pluginp29, even if one would otherwise have been
used.

Note: The above algorithm is independent of CSS properties (including 'display', 'overflow', and
'visibility'). For example, it runs even if the element is hidden with a 'display:none' CSS style, and
does not run again if the element's visibility changes.

Due to the algorithm above, the contents of objectp220 elements act as fallback contentp97, used only when referenced
resources can't be shown (e.g. because it returned a 404 error). This allows multiple objectp220 elements to be nested
inside each other, targeting multiple user agents with different capabilities, with the user agent picking the first one it
supports.

Whenever the namep220 attribute is set, if the objectp220 element has a nested browsing contextp463, its namep466 must
be changed to the new value. If the attribute is removed, if the objectp220 element has a browsing contextp463, the
browsing context namep466 must be set to the empty string.

The usemapp282 attribute, if present while the objectp220 element represents an image, can indicate that the object has
an associated image mapp282. The attribute must be ignored if the objectp220 element doesn't represent an image.

223

The formp373 attribute is used to explicitly associate the objectp220 element with its form ownerp373.

Constraint validation: objectp220 elements are always barred from constraint validationp376.

The objectp220 element supports dimension attributesp286.

The IDL attributes data, type, name, and useMap each must reflectp61 the respective content attributes of the same
name.

The contentDocument IDL attribute must return the Documentp33 object of the active documentp463 of the objectp220

element's nested browsing contextp463, if it has one; otherwise, it must return null.

The contentWindow IDL attribute must return the WindowProxyp473 object of the objectp220 element's nested browsing
contextp463, if it has one; otherwise, it must return null.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378.

In the following example, a Java applet is embedded in a page using the objectp220 element. (Generally
speaking, it is better to avoid using applets like these and instead use native JavaScript and HTML to provide the
functionality, since that way the application will work on all Web browsers without requiring a third-party plugin.
Many devices, especially embedded devices, do not support third-party technologies like Java.)

<figure>
<object type="application/x-java-applet">
<param name="code" value="MyJavaClass">
<p>You do not have Java available, or it is disabled.</p>

</object>
<figcaption>My Java Clock</figcaption>

</figure>

In this example, an HTML page is embedded in another using the objectp220 element.

<figure>
<object data="clock.html"></object>
<figcaption>My HTML Clock</figcaption>

</figure>

The following example shows how a plugin can be used in HTML (in this case the Flash plugin, to show a video
file). Fallback is provided for users who do not have Flash enabled, in this case using the videop225 element to
show the video for those using user agents that support videop225, and finally providing a link to the video for
those who have neither Flash nor a videop225-capable browser.

<p>Look at my video:
<object type="application/x-shockwave-flash">
<param name=movie value="http://video.example.com/library/watch.swf">
<param name=allowfullscreen value=true>
<param name=flashvars value="http://video.example.com/vids/315981">
<video controls src="http://video.example.com/vids/315981">
View video.

</video>
</object>

</p>

Categories
None.

Contexts in which this element may be used:
As a child of an objectp220 element, before any flow contentp96.

Content model:
Empty.

Content attributes:
Global attributesp87

4.8.5 The param element

224

The paramp224 element defines parameters for plugins invoked by objectp220 elements. It does not representp672

anything on its own.

The name attribute gives the name of the parameter.

The value attribute gives the value of the parameter.

Both attributes must be present. They may have any value.

If both attributes are present, and if the parent element of the paramp224 is an objectp220 element, then the element
defines a parameter with the given name/value pair.

The IDL attributes name and value must both reflectp61 the respective content attributes of the same name.

The following example shows how the paramp224 element can be used to pass a parameter to a plugin, in this
case the O3D plugin.

<!DOCTYPE HTML>
<html lang="en">
<head>
<title>O3D test page</title>

</head>
<body>
<p>
<object type="application/vnd.o3d.auto">
<param name="o3d_features" value="FloatingPointTextures">
This page requires the use of a proprietary technology. Since you
have not installed the software product required to view this
page, you should try visiting another site that instead uses open
vendor-neutral technologies.

</object>
<script src="o3dtest.js"></script>

</p>
</body>

</html>

namep225

valuep225

DOM interface:

interface HTMLParamElement : HTMLElement {
attribute DOMString name;
attribute DOMString value;

};

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.
If the element has a controlsp248 attribute: Interactive contentp97.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

Content model:
If the element has a srcp232 attribute: transparentp98, but with no media elementp231 descendants.
If the element does not have a srcp232 attribute: one or more sourcep229 elements, then, transparentp98, but
with no media elementp231 descendants.

Content attributes:
Global attributesp87

srcp232

4.8.6 The video element

225

A videop225 element is used for playing videos or movies.

Content may be provided inside the videop225 element. User agents should not show this content to the user; it is
intended for older Web browsers which do not support videop225, so that legacy video plugins can be tried, or to show
text to the users of these older browsers informing them of how to access the video contents.

Note: In particular, this content is not intended to address accessibility concerns. To make video
content accessible to the blind, deaf, and those with other physical or cognitive disabilities,
authors are expected to provide alternative media streams and/or to embed accessibility aids
(such as caption or subtitle tracks, audio description tracks, or sign-language overlays) into their
media streams.

The videop225 element is a media elementp231 whose media datap232 is ostensibly video data, possibly with associated
audio data.

The srcp232, preloadp240, autoplayp243, loopp242, and controlsp248 attributes are the attributes common to all media
elementsp232.

The poster attribute gives the address of an image file that the user agent can show while no video data is available.
The attribute, if present, must contain a valid non-empty URLp54. If the specified resource is to be used, then, when the
element is created or when the posterp226 attribute is set, if its value is not the empty string, its value must be
resolvedp55 relative to the element, and if that is successful, the resulting absolute URLp55 must be fetchedp58, from the
element's Documentp33 's originp474; this must delay the load eventp653 of the element's document. The poster frame is
then the image obtained from that resource, if any.

Note: The image given by the posterp226 attribute, the poster framep226, is intended to be a
representative frame of the video (typically one of the first non-blank frames) that gives the user
an idea of what the video is like.

The poster IDL attribute must reflectp61 the posterp226 content attribute.

When no video data is available (the element's readyStatep243 attribute is either HAVE_NOTHINGp242, or
HAVE_METADATAp242 but no video data has yet been obtained at all), the videop225 element representsp672 either the
poster framep226, or nothing.

When a videop225 element is pausedp244 and the current playback positionp241 is the first frame of video, the element
representsp672 either the frame of video corresponding to the current playback positionp241 or the poster framep226, at
the discretion of the user agent.

Notwithstanding the above, the poster framep226 should be preferred over nothing, but the poster framep226 should not
be shown again after a frame of video has been shown.

When a videop225 element is pausedp244 at any other position, the element representsp672 the frame of video
corresponding to the current playback positionp241, or, if that is not yet available (e.g. because the video is seeking or
buffering), the last frame of the video to have been rendered.

posterp226

preloadp240

autoplayp243

loopp242

controlsp248

widthp286

heightp286

DOM interface:

interface HTMLVideoElement : HTMLMediaElement {
attribute DOMString width;
attribute DOMString height;

readonly attribute unsigned long videoWidth;
readonly attribute unsigned long videoHeight;

attribute DOMString poster;
};

226

When a videop225 element is potentially playingp244, it representsp672 the frame of video at the continuously increasing
"current" positionp241. When the current playback positionp241 changes such that the last frame rendered is no longer
the frame corresponding to the current playback positionp241 in the video, the new frame must be rendered. Similarly,
any audio associated with the video must, if played, be played synchronized with the current playback positionp241, at
the specified volumep248 with the specified mute statep249.

When a videop225 element is neither potentially playingp244 nor pausedp244 (e.g. when seeking or stalled), the element
representsp672 the last frame of the video to have been rendered.

Note: Which frame in a video stream corresponds to a particular playback position is defined by
the video stream's format.

In addition to the above, the user agent may provide messages to the user (such as "buffering", "no video loaded",
"error", or more detailed information) by overlaying text or icons on the video or other areas of the element's playback
area, or in another appropriate manner.

User agents that cannot render the video may instead make the element representp672 a link to an external video
playback utility or to the video data itself.

This box is non-normative. Implementation requirements are given below this box.

video . videoWidthp227

video . videoHeightp227

These attributes return the intrinsic dimensions of the video, or zero if the dimensions are not known.

The intrinsic width and intrinsic height of the media resourcep232 are the dimensions of the resource in CSS pixels
after taking into account the resource's dimensions, aspect ratio, clean aperture, resolution, and so forth, as defined
for the format used by the resource. If an anamorphic format does not define how to apply the aspect ratio to the
video data's dimensions to obtain the "correct" dimensions, then the user agent must apply the ratio by increasing one
dimension and leaving the other unchanged.

The videoWidth IDL attribute must return the intrinsic widthp227 of the video in CSS pixels. The videoHeight IDL
attribute must return the intrinsic heightp227 of the video in CSS pixels. If the element's readyStatep243 attribute is
HAVE_NOTHINGp242, then the attributes must return 0.

The videop225 element supports dimension attributesp286.

Video content should be rendered inside the element's playback area such that the video content is shown centered in
the playback area at the largest possible size that fits completely within it, with the video content's aspect ratio being
preserved. Thus, if the aspect ratio of the playback area does not match the aspect ratio of the video, the video will be
shown letterboxed or pillarboxed. Areas of the element's playback area that do not contain the video represent
nothing.

The intrinsic width of a videop225 element's playback area is the intrinsic widthp227 of the video resource, if that is
available; otherwise it is the intrinsic width of the poster framep226, if that is available; otherwise it is 300 CSS pixels.

The intrinsic height of a videop225 element's playback area is the intrinsic heightp227 of the video resource, if that is
available; otherwise it is the intrinsic height of the poster framep226, if that is available; otherwise it is 150 CSS pixels.

User agents should provide controls to enable or disable the display of closed captions, audio description tracks, and
other additional data associated with the video stream, though such features should, again, not interfere with the
page's normal rendering.

User agents may allow users to view the video content in manners more suitable to the user (e.g. full-screen or in an
independent resizable window). As for the other user interface features, controls to enable this should not interfere
with the page's normal rendering unless the user agent is exposing a user interfacep248. In such an independent
context, however, user agents may make full user interfaces visible, with, e.g., play, pause, seeking, and volume
controls, even if the controlsp248 attribute is absent.

User agents may allow video playback to affect system features that could interfere with the user's experience; for
example, user agents could disable screensavers while video playback is in progress.

⚠Warning! User agents should not provide a public API to cause videos to be shown full-screen. A script,
combined with a carefully crafted video file, could trick the user into thinking a system-modal dialog had
been shown, and prompt the user for a password. There is also the danger of "mere" annoyance, with

227

pages launching full-screen videos when links are clicked or pages navigated. Instead, user-agent-
specific interface features may be provided to easily allow the user to obtain a full-screen playback
mode.

This example shows how to detect when a video has failed to play correctly:

<script>
function failed(e) {

// video playback failed - show a message saying why
switch (e.target.error.code) {

case e.target.error.MEDIA_ERR_ABORTED:
alert('You aborted the video playback.');
break;

case e.target.error.MEDIA_ERR_NETWORK:
alert('A network error caused the video download to fail part-way.');
break;

case e.target.error.MEDIA_ERR_DECODE:
alert('The video playback was aborted due to a corruption problem or because the

video used features your browser did not support.');
break;

case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
alert('The video could not be loaded, either because the server or network failed

or because the format is not supported.');
break;

default:
alert('An unknown error occurred.');
break;

}
}

</script>
<p><video src="tgif.vid" autoplay controls onerror="failed(event)"></video></p>
<p>Download the video file.</p>

An audiop228 element representsp672 a sound or audio stream.

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.
If the element has a controlsp248 attribute: Interactive contentp97.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

Content model:
If the element has a srcp232 attribute: transparentp98, but with no media elementp231 descendants.
If the element does not have a srcp232 attribute: one or more sourcep229 elements, then, transparentp98, but
with no media elementp231 descendants.

Content attributes:
Global attributesp87

srcp232

preloadp240

autoplayp243

loopp242

controlsp248

DOM interface:

[NamedConstructor=Audio(),
NamedConstructor=Audio(in DOMString src)]

interface HTMLAudioElement : HTMLMediaElement {};

4.8.7 The audio element

228

Content may be provided inside the audiop228 element. User agents should not show this content to the user; it is
intended for older Web browsers which do not support audiop228, so that legacy audio plugins can be tried, or to show
text to the users of these older browsers informing them of how to access the audio contents.

Note: In particular, this content is not intended to address accessibility concerns. To make audio
content accessible to the deaf or to those with other physical or cognitive disabilities, authors are
expected to provide alternative media streams and/or to embed accessibility aids (such as
transcriptions) into their media streams.

The audiop228 element is a media elementp231 whose media datap232 is ostensibly audio data.

The srcp232, preloadp240, autoplayp243, loopp242, and controlsp248 attributes are the attributes common to all media
elementsp232.

When an audiop228 element is potentially playingp244, it must have its audio data played synchronized with the current
playback positionp241, at the specified volumep248 with the specified mute statep249.

When an audiop228 element is not potentially playingp244, audio must not play for the element.

This box is non-normative. Implementation requirements are given below this box.

audio = new Audiop229([url])
Returns a new audiop228 element, with the srcp232 attribute set to the value passed in the argument, if
applicable.

Two constructors are provided for creating HTMLAudioElementp228 objects (in addition to the factory methods from DOM
Core such as createElement()): Audio() and Audio(src). When invoked as constructors, these must return a new
HTMLAudioElementp228 object (a new audiop228 element). The element must have its preloadp240 attribute set to the
literal value "autop240". If the src argument is present, the object created must have its srcp232 content attribute set to
the provided value, and the user agent must invoke the object's resource selection algorithmp235 before returning. The
element's document must be the active documentp463 of the browsing contextp463 of the Windowp467 object on which the
interface object of the invoked constructor is found.

The sourcep229 element allows authors to specify multiple alternative media resourcesp232 for media elementsp231. It
does not representp672 anything on its own.

The src attribute gives the address of the media resourcep232. The value must be a valid non-empty URLp54. This
attribute must be present.

Categories
None.

Contexts in which this element may be used:
As a child of a media elementp231, before any flow contentp96.

Content model:
Empty.

Content attributes:
Global attributesp87

srcp229

typep230

mediap230

DOM interface:

interface HTMLSourceElement : HTMLElement {
attribute DOMString src;
attribute DOMString type;
attribute DOMString media;

};

4.8.8 The source element

229

The type attribute gives the type of the media resourcep232, to help the user agent determine if it can play this media
resourcep232 before fetching it. If specified, its value must be a valid MIME typep28. The codecs parameter may be
specified and might be necessary to specify exactly how the resource is encoded. [RFC4281]p741

The following list shows some examples of how to use the codecs= MIME parameter in the typep230 attribute.

H.264 Simple baseline profile video (main and extended video compatible) level 3 and Low-
Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity AAC audio in MP4
container

<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>

H.264 'High' profile video (incompatible with main, baseline, or extended profiles) level 3 and Low-
Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.64001E, mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8, mp4a.40.2"'>

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240, mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container
<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>

Theora video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

Theora video and Speex audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>

Vorbis audio alone in Ogg container
<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

Speex audio alone in Ogg container
<source src='audio.spx' type='audio/ogg; codecs=speex'>

FLAC audio alone in Ogg container
<source src='audio.oga' type='audio/ogg; codecs=flac'>

Dirac video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

Theora video and Vorbis audio in Matroska container
<source src='video.mkv' type='video/x-matroska; codecs="theora, vorbis"'>

The media attribute gives the intended media type of the media resourcep232, to help the user agent determine if this
media resourcep232 is useful to the user before fetching it. Its value must be a valid media queryp54.

The default, if the media attribute is omitted, is "all", meaning that by default the media resourcep232 is suitable for all
media.

If a sourcep229 element is inserted as a child of a media elementp231 that has no srcp232 attribute and whose
networkStatep234 has the value NETWORK_EMPTYp234, the user agent must invoke the media elementp231 's resource
selection algorithmp235.

The IDL attributes src, type, and media must reflectp61 the respective content attributes of the same name.

If the author isn't sure if the user agents will all be able to render the media resources provided, the author can
listen to the error event on the last sourcep229 element and trigger fallback behavior:

<script>
function fallback(video) {

// replace <video> with its contents
while (video.hasChildNodes()) {

if (video.firstChild instanceof HTMLSourceElement)

230

video.removeChild(video.firstChild);
else

video.parentNode.insertBefore(video.firstChild, video);
}
video.parentNode.removeChild(video);

}
</script>
<video controls autoplay>
<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'

onerror="fallback(parentNode)">
...

</video>

Media elements implement the following interface:

interface HTMLMediaElement : HTMLElement {

// error state
readonly attribute MediaError error;

// network state
attribute DOMString src;

readonly attribute DOMString currentSrc;
const unsigned short NETWORK_EMPTY = 0;
const unsigned short NETWORK_IDLE = 1;
const unsigned short NETWORK_LOADING = 2;
const unsigned short NETWORK_NO_SOURCE = 3;
readonly attribute unsigned short networkState;

attribute DOMString preload;
readonly attribute TimeRanges buffered;
void load();
DOMString canPlayType(in DOMString type);

// ready state
const unsigned short HAVE_NOTHING = 0;
const unsigned short HAVE_METADATA = 1;
const unsigned short HAVE_CURRENT_DATA = 2;
const unsigned short HAVE_FUTURE_DATA = 3;
const unsigned short HAVE_ENOUGH_DATA = 4;
readonly attribute unsigned short readyState;
readonly attribute boolean seeking;

// playback state
attribute float currentTime;

readonly attribute float startTime;
readonly attribute float duration;
readonly attribute boolean paused;

attribute float defaultPlaybackRate;
attribute float playbackRate;

readonly attribute TimeRanges played;
readonly attribute TimeRanges seekable;
readonly attribute boolean ended;

attribute boolean autoplay;
attribute boolean loop;

void play();
void pause();

// controls
attribute boolean controls;
attribute float volume;

4.8.9 Media elements

231

attribute boolean muted;
};

The media element attributes, srcp232, preloadp240, autoplayp243, loopp242, and controlsp248, apply to all media
elementsp231. They are defined in this section.

Media elementsp231 are used to present audio data, or video and audio data, to the user. This is referred to as media
data in this section, since this section applies equally to media elementsp231 for audio or for video. The term media
resource is used to refer to the complete set of media data, e.g. the complete video file, or complete audio file.

Except where otherwise specified, the task sourcep517 for all the tasks queuedp517 in this section and its subsections is
the media element event task source.

4.8.9.1 Error codes

This box is non-normative. Implementation requirements are given below this box.

media . errorp232

Returns a MediaErrorp232 object representing the current error state of the element.
Returns null if there is no error.

All media elementsp231 have an associated error status, which records the last error the element encountered since its
resource selection algorithmp235 was last invoked. The error attribute, on getting, must return the MediaErrorp232

object created for this last error, or null if there has not been an error.

interface MediaError {
const unsigned short MEDIA_ERR_ABORTED = 1;
const unsigned short MEDIA_ERR_NETWORK = 2;
const unsigned short MEDIA_ERR_DECODE = 3;
const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;
readonly attribute unsigned short code;

};

This box is non-normative. Implementation requirements are given below this box.

media . errorp232 . codep232

Returns the current error's error code, from the list below.

The code attribute of a MediaErrorp232 object must return the code for the error, which must be one of the following:

MEDIA_ERR_ABORTED (numeric value 1)
The fetching process for the media resourcep232 was aborted by the user agent at the user's request.

MEDIA_ERR_NETWORK (numeric value 2)
A network error of some description caused the user agent to stop fetching the media resourcep232, after the
resource was established to be usable.

MEDIA_ERR_DECODE (numeric value 3)
An error of some description occurred while decoding the media resourcep232, after the resource was established
to be usable.

MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)
The media resourcep232 indicated by the srcp232 attribute was not suitable.

4.8.9.2 Location of the media resource

The src content attribute on media elementsp231 gives the address of the media resource (video, audio) to show. The
attribute, if present, must contain a valid non-empty URLp54.

232

If a srcp232 attribute of a media elementp231 is set or changed, the user agent must invoke the media elementp231 's
media element load algorithmp235. (Removing the srcp232 attribute does not do this, even if there are sourcep229

elements present.)

The src IDL attribute on media elementsp231 must reflectp61 the content attribute of the same name.

This box is non-normative. Implementation requirements are given below this box.

media . currentSrcp233

Returns the address of the current media resourcep232.

Returns the empty string when there is no media resourcep232.

The currentSrc IDL attribute is initially the empty string. Its value is changed by the resource selection algorithmp235

defined below.

Note: There are two ways to specify a media resourcep232, the srcp232 attribute, or sourcep229

elements. The attribute overrides the elements.

4.8.9.3 MIME types

A media resourcep232 can be described in terms of its type, specifically a MIME typep28, optionally with a codecs
parameter. [RFC4281]p741

Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't say anything except what the
container type is, and even a type like "video/mp4; codecs="avc1.42E01E, mp4a.40.2"" doesn't include information
like the actual bitrate (only the maximum bitrate). Thus, given a type, a user agent can often only know whether it
might be able to play media of that type (with varying levels of confidence), or whether it definitely cannot play media
of that type.

A type that the user agent knows it cannot render is one that describes a resource that the user agent definitely
does not support, for example because it doesn't recognize the container type, or it doesn't support the listed codecs.

The MIME typep28 "application/octet-stream" with no parameters is never a type that the user agent knows it
cannot renderp233. User agents must treat that type as equivalent to the lack of any explicit Content-Type metadatap61

when it is used to label a potential media resourcep232.

Note: In the absence of a specification to the contrary, the MIME typep28 "application/octet-
stream" when used with parameters, e.g. "application/octet-stream;codecs=theora", is a type that
the user agent knows it cannot renderp233.

This box is non-normative. Implementation requirements are given below this box.

media . canPlayTypep233(type)
Returns the empty string (a negative response), "maybe", or "probably" based on how confident the user
agent is that it can play media resources of the given type.

The canPlayType(type) method must return the empty string if type is a type that the user agent knows it cannot
renderp233; it must return "probably" if the user agent is confident that the type represents a media resourcep232 that it
can render if used in with this audiop228 or videop225 element; and it must return "maybe" otherwise. Implementors are
encouraged to return "maybe" unless the type can be confidently established as being supported or not. Generally, a
user agent should never return "probably" if the type doesn't have a codecs parameter.

This script tests to see if the user agent supports a (fictional) new format to dynamically decide whether to use
a videop225 element or a plugin:

<section id="video">
<p>Download video</p>

</section>
<script>
var videoSection = document.getElementById('video');
var videoElement = document.createElement('video');
var support = videoElement.canPlayType('video/

233

x-new-fictional-format;codecs="kittens,bunnies"');
if (support != "probably" && "New Fictional Video Plug-in" in navigator.plugins) {

// not confident of browser support
// but we have a plugin
// so use plugin instead
videoElement = document.createElement("embed");

} else if (support == "") {
// no support from browser and no plugin
// do nothing
videoElement = null;

}
if (videoElement) {

while (videoSection.hasChildNodes())
videoSection.removeChild(videoSection.firstChild);

videoElement.setAttribute("src", "playing-cats.nfv");
videoSection.appendChild(videoElement);

}
</script>

Note: The typep230 attribute of the sourcep229 element allows the user agent to avoid downloading
resources that use formats it cannot render.

4.8.9.4 Network states

This box is non-normative. Implementation requirements are given below this box.

media . networkStatep234

Returns the current state of network activity for the element, from the codes in the list below.

As media elementsp231 interact with the network, their current network activity is represented by the networkState
attribute. On getting, it must return the current network state of the element, which must be one of the following
values:

NETWORK_EMPTY (numeric value 0)
The element has not yet been initialized. All attributes are in their initial states.

NETWORK_IDLE (numeric value 1)
The element's resource selection algorithmp235 is active and has selected a resourcep232, but it is not actually
using the network at this time.

NETWORK_LOADING (numeric value 2)
The user agent is actively trying to download data.

NETWORK_NO_SOURCE (numeric value 3)
The element's resource selection algorithmp235 is active, but it has failed to find a resourcep232 to use.

The resource selection algorithmp235 defined below describes exactly when the networkStatep234 attribute changes
value and what events fire to indicate changes in this state.

4.8.9.5 Loading the media resource

This box is non-normative. Implementation requirements are given below this box.

media . loadp235()
Causes the element to reset and start selecting and loading a new media resourcep232 from scratch.

All media elementsp231 have an autoplaying flag, which must begin in the true state, and a delaying-the-load-
event flag, which must begin in the false state. While the delaying-the-load-event flagp234 is true, the element must
delay the load eventp653 of its document.

234

When the load() method on a media elementp231 is invoked, the user agent must run the media element load
algorithmp235.

The media element load algorithm consists of the following steps.

1. Abort any already-running instance of the resource selection algorithmp235 for this element.

2. If there are any tasksp517 from the media elementp231 's media element event task sourcep232 in one of the
task queuesp517, then remove those tasks.

Note: Basically, pending events and callbacks for the media element are discarded when
the media element starts loading a new resource.

3. If the media elementp231 's networkStatep234 is set to NETWORK_LOADINGp234 or NETWORK_IDLEp234, queue a
taskp517 to fire a simple eventp523 named abortp250 at the media elementp231.

4. If the media elementp231 's networkStatep234 is not set to NETWORK_EMPTYp234, then run these substeps:

1. If a fetching process is in progress for the media elementp231, the user agent should stop it.

2. Set the networkStatep234 attribute to NETWORK_EMPTYp234.

3. If readyStatep243 is not set to HAVE_NOTHINGp242, then set it to that state.

4. If the pausedp244 attribute is false, then set to true.

5. If seekingp247 is true, set it to false.

6. Set the current playback positionp241 to 0.

7. Queue a taskp517 to fire a simple eventp523 named emptiedp250 at the media elementp231.

5. Set the playbackRatep245 attribute to the value of the defaultPlaybackRatep245 attribute.

6. Set the errorp232 attribute to null and the autoplaying flagp234 to true.

7. Invoke the media elementp231 's resource selection algorithmp235.

8. Note: Playback of any previously playing media resourcep232 for this element stops.

The resource selection algorithm for a media elementp231 is as follows. This algorithm is always invoked
synchronously, but one of the first steps in the algorithm is to return and continue running the remaining steps
asynchronously, meaning that it runs in the background with scripts and other tasksp517 running in parallel. In addition,
this algorithm interacts closely with the event loopp516 mechanism; in particular, it has synchronous sectionsp517 (which
are triggered as part of the event loopp516 algorithm). Steps in such sections are marked with ?.

1. Set the networkStatep234 to NETWORK_NO_SOURCEp234.

2. Asynchronously await a stable statep517, allowing the taskp517 that invoked this algorithm to continue. The
synchronous sectionp517 consists of all the remaining steps of this algorithm until the algorithm says the
synchronous sectionp517 has ended. (Steps in synchronous sectionsp517 are marked with ?.)

3. ? If the media elementp231 has a srcp232 attribute, then let mode be attribute.

? Otherwise, if the media elementp231 does not have a srcp232 attribute but has a sourcep229 element child,
then let mode be children and let candidate be the first such sourcep229 element child in tree orderp29.

? Otherwise the media elementp231 has neither a srcp232 attribute nor a sourcep229 element child: set the
networkStatep234 to NETWORK_EMPTYp234, and abort these steps; the synchronous sectionp517 ends.

4. ? Set the media elementp231 's delaying-the-load-event flagp234 to true (this delays the load eventp653), and set
its networkStatep234 to NETWORK_LOADINGp234.

5. ? Queue a taskp517 to fire a simple eventp523 named loadstartp250 at the media elementp231.

6. If mode is attribute, then run these substeps:

1. ? Process candidate: If the srcp232 attribute's value is the empty string, then end the synchronous
sectionp517, and jump down to the failed step below.

235

2. ? Let absolute URL be the absolute URLp55 that would have resulted from resolvingp55 the URLp54

specified by the srcp232 attribute's value relative to the media elementp231 when the srcp232

attribute was last changed.

3. ? If absolute URL was obtained successfully, set the currentSrcp233 attribute to absolute URL.

4. End the synchronous sectionp517, continuing the remaining steps asynchronously.

5. If absolute URL was obtained successfully, run the resource fetch algorithmp237 with absolute URL.
If that algorithm returns without aborting this one, then the load failed.

6. Failed: Reaching this step indicates that the media resource failed to load or that the given URLp54

could not be resolvedp55. Set the errorp232 attribute to a new MediaErrorp232 object whose codep232

attribute is set to MEDIA_ERR_SRC_NOT_SUPPORTEDp232.

7. Set the element's networkStatep234 attribute to the NETWORK_NO_SOURCEp234 value.

8. Queue a taskp517 to fire a simple eventp523 named errorp250 at the media elementp231.

9. Set the element's delaying-the-load-event flagp234 to false. This stops delaying the load eventp653.

10. Abort these steps. Until the load()p235 method is invoked or the srcp232 attribute is changed, the
element won't attempt to load another resource.

Otherwise, the sourcep229 elements will be used; run these substeps:

1. ? Let pointer be a position defined by two adjacent nodes in the media elementp231 's child list,
treating the start of the list (before the first child in the list, if any) and end of the list (after the last
child in the list, if any) as nodes in their own right. One node is the node before pointer, and the
other node is the node after pointer. Initially, let pointer be the position between the candidate
node and the next node, if there are any, or the end of the list, if it is the last node.

As nodes are inserted and removed into the media elementp231, pointer must be updated as
follows:

If a new node is inserted between the two nodes that define pointer
Let pointer be the point between the node before pointer and the new node. In other words,
insertions at pointer go after pointer.

If the node before pointer is removed
Let pointer be the point between the node after pointer and the node before the node after
pointer. In other words, pointer doesn't move relative to the remaining nodes.

If the node after pointer is removed
Let pointer be the point between the node before pointer and the node after the node before
pointer. Just as with the previous case, pointer doesn't move relative to the remaining nodes.

Other changes don't affect pointer.

2. ? Process candidate: If candidate does not have a srcp229 attribute, or if its srcp229 attribute's value
is the empty string, then end the synchronous sectionp517, and jump down to the failed step below.

3. ? Let absolute URL be the absolute URLp55 that would have resulted from resolvingp55 the URLp54

specified by candidate's srcp229 attribute's value relative to the candidate when the srcp229

attribute was last changed.

4. ? If absolute URL was not obtained successfully, then end the synchronous sectionp517, and jump
down to the failed step below.

5. ? If candidate has a typep230 attribute whose value, when parsed as a MIME typep28 (including any
codecs described by the codecs parameter), represents a type that the user agent knows it cannot
renderp233, then end the synchronous sectionp517, and jump down to the failed step below.

6. ? If candidate has a mediap230 attribute whose value does not match the environmentp54, then end
the synchronous sectionp517, and jump down to the failed step below.

7. ? Set the currentSrcp233 attribute to absolute URL.

8. End the synchronous sectionp517, continuing the remaining steps asynchronously.

236

9. Run the resource fetch algorithmp237 with absolute URL. If that algorithm returns without aborting
this one, then the load failed.

10. Failed: Queue a taskp517 to fire a simple eventp523 named error at the candidate element, in the
context of the fetching processp58 that was used to try to obtain candidate's corresponding media
resourcep232 in the resource fetch algorithmp237.

11. Asynchronously await a stable statep517. The synchronous sectionp517 consists of all the remaining
steps of this algorithm until the algorithm says the synchronous sectionp517 has ended. (Steps in
synchronous sectionsp517 are marked with ?.)

12. ? Find next candidate: Let candidate be null.

13. ? Search loop: If the node after pointer is the end of the list, then jump to the waiting step below.

14. ? If the node after pointer is a sourcep229 element, let candidate be that element.

15. ? Advance pointer so that the node before pointer is now the node that was after pointer, and the
node after pointer is the node after the node that used to be after pointer, if any.

16. ? If candidate is null, jump back to the search loop step. Otherwise, jump back to the process
candidate step.

17. ? Waiting: Set the element's networkStatep234 attribute to the NETWORK_NO_SOURCEp234 value.

18. ? Set the element's delaying-the-load-event flagp234 to false. This stops delaying the load eventp653.

19. End the synchronous sectionp517, continuing the remaining steps asynchronously.

20. Wait until the node after pointer is a node other than the end of the list. (This step might wait
forever.)

21. Asynchronously await a stable statep517. The synchronous sectionp517 consists of all the remaining
steps of this algorithm until the algorithm says the synchronous sectionp517 has ended. (Steps in
synchronous sectionsp517 are marked with ?.)

22. ? Set the element's delaying-the-load-event flagp234 back to true (this delays the load eventp653

again, in case it hasn't been fired yet).

23. ? Set the networkStatep234 back to NETWORK_LOADINGp234.

24. ? Jump back to the find next candidate step above.

The resource fetch algorithm for a media elementp231 and a given absolute URLp55 is as follows:

1. Let the current media resource be the resource given by the absolute URLp55 passed to this algorithm. This is
now the element's media resourcep232.

2. Begin to fetchp58 the current media resource, from the media elementp231 's Documentp33 's originp474.

Every 350ms (±200ms) or for every byte received, whichever is least frequent, queue a taskp517 to fire a
simple eventp523 named progressp250 at the element.

If at any point the user agent has received no data for more than about three seconds, then queue a taskp517

to fire a simple eventp523 named stalledp250 at the element.

User agents may allow users to selectively block or slow media datap232 downloads. When a media
elementp231 's download has been blocked altogether, the user agent must act as if it was stalled (as opposed
to acting as if the connection was closed). The rate of the download may also be throttled automatically by
the user agent, e.g. to balance the download with other connections sharing the same bandwidth.

User agents may decide to not download more content at any time, e.g. after buffering five minutes of a one
hour media resource, while waiting for the user to decide whether to play the resource or not, or while
waiting for user input in an interactive resource. When a media elementp231 's download has been suspended,
the user agent must set the networkStatep234 to NETWORK_IDLEp234 and queue a taskp517 to fire a simple
eventp523 named suspendp250 at the element. If and when downloading of the resource resumes, the user
agent must set the networkStatep234 to NETWORK_LOADINGp234.

237

Note: The preloadp240 attribute provides a hint regarding how much buffering the author
thinks is advisable, even in the absence of the autoplayp243 attribute.

When a user agent decides to completely stall a download, e.g. if it is waiting until the user starts playback
before downloading any further content, the element's delaying-the-load-event flagp234 must be set to false.
This stops delaying the load eventp653.

The user agent may use whatever means necessary to fetch the resource (within the constraints put forward
by this and other specifications); for example, reconnecting to the server in the face of network errors, using
HTTP range retrieval requests, or switching to a streaming protocol. The user agent must consider a resource
erroneous only if it has given up trying to fetch it.

The networking task sourcep518 tasksp517 to process the data as it is being fetched must, when appropriate,
include the relevant substeps from the following list:

↪ If the media datap232 cannot be fetched at all, due to network errors, causing the user agent
to give up trying to fetch the resource

↪ If the media resourcep232 is found to have Content-Type metadatap61 that, when parsed as a
MIME typep28 (including any codecs described by the codecs parameter), represents a type
that the user agent knows it cannot renderp233 (even if the actual media datap232 is in a
supported format)

↪ If the media datap232 can be fetched but is found by inspection to be in an unsupported
format, or can otherwise not be rendered at all

DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and other fatal network
errors that occur before the user agent has established whether the current media resource is
usable, as well as the file using an unsupported container format, or using unsupported codecs for
all the data, must cause the user agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Abort this subalgorithm, returning to the resource selection algorithmp235.

↪ Once enough of the media datap232 has been fetched to determine the duration of the media
resourcep232, its dimensions, and other metadata

This indicates that the resource is usable. The user agent must follow these substeps:

1. Set the current playback positionp241 to the earliest possible positionp241.

2. Set the readyStatep243 attribute to HAVE_METADATAp242.

3. For videop225 elements, set the videoWidthp227 and videoHeightp227 attributes.

4. Set the durationp241 attribute to the duration of the resource.

Note: The user agent willp241 queue a taskp517 to fire a simple eventp523

named durationchangep251 at the element at this point.

5. Queue a taskp517 to fire a simple eventp523 named loadedmetadatap250 at the element.

Note: Before this task is run, as part of the event loop mechanism, the
rendering will have been updated to resize the videop225 element if
appropriate.

6. If either the media resourcep232 or the address of the current media resource indicate a
particular start time, then seekp247 to that time. Ignore any resulting exceptions (if the
position is out of range, it is effectively ignored).

For example, a fragment identifier could be used to indicate a start position.

7. Once the readyStatep243 attribute reaches HAVE_CURRENT_DATAp242, after the loadeddata
event has been firedp243, set the element's delaying-the-load-event flagp234 to false. This
stops delaying the load eventp653.

Note: A user agent that is attempting to reduce network usage while
still fetching the metadata for each media resourcep232 would also stop

238

buffering at this point, causing the networkStatep234 attribute to switch
to the NETWORK_IDLEp234 value.

Note: The user agent is required to determine the duration of the media
resourcep232 and go through this step before playing.

↪ Once the entire media resourcep232 has been fetchedp58 (but potentially before any of it has
been decoded)

Queue a taskp517 to fire a simple eventp523 named progressp250 at the media elementp231.

↪ If the connection is interrupted, causing the user agent to give up trying to fetch the
resource

Fatal network errors that occur after the user agent has established whether the current media
resource is usable must cause the user agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Set the errorp232 attribute to a new MediaErrorp232 object whose codep232 attribute is set
to MEDIA_ERR_NETWORKp232.

3. Queue a taskp517 to fire a simple eventp523 named errorp250 at the media elementp231.

4. Set the element's networkStatep234 attribute to the NETWORK_EMPTYp234 value and
queue a taskp517 to fire a simple eventp523 named emptiedp250 at the element.

5. Set the element's delaying-the-load-event flagp234 to false. This stops delaying the load
eventp653.

6. Abort the overall resource selection algorithmp235.

↪ If the media datap232 is corrupted
Fatal errors in decoding the media datap232 that occur after the user agent has established whether
the current media resource is usable must cause the user agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Set the errorp232 attribute to a new MediaErrorp232 object whose codep232 attribute is set
to MEDIA_ERR_DECODEp232.

3. Queue a taskp517 to fire a simple eventp523 named errorp250 at the media elementp231.

4. Set the element's networkStatep234 attribute to the NETWORK_EMPTYp234 value and
queue a taskp517 to fire a simple eventp523 named emptiedp250 at the element.

5. Set the element's delaying-the-load-event flagp234 to false. This stops delaying the load
eventp653.

6. Abort the overall resource selection algorithmp235.

↪ If the media datap232 fetching process is aborted by the user
The fetching process is aborted by the user, e.g. because the user navigated the browsing context
to another page, the user agent must execute the following steps. These steps are not followed if
the load()p235 method itself is invoked while these steps are running, as the steps above handle
that particular kind of abort.

1. The user agent should cancel the fetching process.

2. Set the errorp232 attribute to a new MediaErrorp232 object whose codep232 attribute is set
to MEDIA_ERR_ABORTEDp232.

3. Queue a taskp517 to fire a simple eventp523 named abortp250 at the media elementp231.

4. If the media elementp231 's readyStatep243 attribute has a value equal to
HAVE_NOTHINGp242, set the element's networkStatep234 attribute to the
NETWORK_EMPTYp234 value and queue a taskp517 to fire a simple eventp523 named
emptiedp250 at the element. Otherwise, set the element's networkStatep234 attribute to
the NETWORK_IDLEp234 value.

239

5. Set the element's delaying-the-load-event flagp234 to false. This stops delaying the load
eventp653.

6. Abort the overall resource selection algorithmp235.

↪ If the media datap232 can be fetched but has non-fatal errors or uses, in part, codecs that are
unsupported, preventing the user agent from rendering the content completely correctly but
not preventing playback altogether

The server returning data that is partially usable but cannot be optimally rendered must cause the
user agent to render just the bits it can handle, and ignore the rest.

When the networking task sourcep518 has queuedp517 the last taskp517 as part of fetchingp58 the media
resourcep232 (i.e. once the download has completed), if the fetching process completes without errors,
including decoding the media data, and if all of the data is available to the user agent without network
access, then, the user agent must move on to the next step. This might never happen, e.g. when streaming
an infinite resource such as Web radio, or if the resource is longer than the user agent's ability to cache data.

While the user agent might still need network access to obtain parts of the media resourcep232, the user
agent must remain on this step.

For example, if the user agent has discarded the first half of a video, the user agent will remain at this
step even once the playback has endedp244, because there is always the chance the user will seek
back to the start. In fact, in this situation, once playback has endedp244, the user agent will end up
dispatching a stalledp250 event, as described earlier.

3. If the user agent ever reaches this step (which can only happen if the entire resource gets loaded and kept
available): abort the overall resource selection algorithmp235.

The preload attribute is an enumerated attributep37. The following table lists the keywords and states for the attribute
— the keywords in the left column map to the states in the cell in the second column on the same row as the keyword.

Keyword State Brief description

none None Hints to the user agent that either the author does not expect the user to need the media resource, or that the server
wants to minimise unnecessary traffic.

metadata Metadata Hints to the user agent that the author does not expect the user to need the media resource, but that fetching the
resource metadata (dimensions, first frame, track list, duration, etc) is reasonable.

auto Automatic Hints to the user agent that the user agent can put the user's needs first without risk to the server, up to and
including optimistically downloading the entire resource.

The empty string is also a valid keyword, and maps to the Automaticp240 state. The attribute's missing value default is
user-agent defined, though the Metadatap240 state is suggested as a compromise between reducing server load and
providing an optimal user experience.

The preloadp240 attribute is intended to provide a hint to the user agent about what the author thinks will lead to the
best user experience. The attribute may be ignored altogether, for example based on explicit user preferences or
based on the available connectivity.

The preload IDL attribute must reflectp61 the content attribute of the same name.

Note: The autoplayp243 attribute can overrride the preloadp240 attribute (since if the media plays, it
naturally has to buffer first, regardless of the hint given by the preloadp240 attribute). Including
both is not an error, however.

This box is non-normative. Implementation requirements are given below this box.

media . bufferedp240

Returns a TimeRangesp249 object that represents the ranges of the media resourcep232 that the user agent
has buffered.

The buffered attribute must return a new static normalized TimeRanges objectp249 that represents the ranges of the
media resourcep232, if any, that the user agent has buffered, at the time the attribute is evaluated. Users agents must
accurately determine the ranges available, even for media streams where this can only be determined by tedious
inspection.

240

Note: Typically this will be a single range anchored at the zero point, but if, e.g. the user agent
uses HTTP range requests in response to seeking, then there could be multiple ranges.

User agents may discard previously buffered data.

Note: Thus, a time position included within a range of the objects return by the bufferedp240

attribute at one time can end up being not included in the range(s) of objects returned by the
same attribute at later times.

4.8.9.6 Offsets into the media resource

This box is non-normative. Implementation requirements are given below this box.

media . durationp241

Returns the length of the media resourcep232, in seconds.
Returns NaN if the duration isn't available.
Returns Infinity for unbounded streams.

media . currentTimep241 [= value]
Returns the current playback positionp241, in seconds.
Can be set, to seek to the given time.

Will throw an INVALID_STATE_ERRp74 exception if there is no selected media resourcep232. Will throw an
INDEX_SIZE_ERRp74 exception if the given time is not within the ranges to which the user agent can seek.

media . startTimep241

Returns the earliest possible positionp241, in seconds. This is the time for the start of the current clip. It
might not be zero if the clip's timeline is not zero-based, or if the resource is a streaming resource (in
which case it gives the earliest time that the user agent is able to seek back to).

The duration attribute must return the length of the media resourcep232, in seconds. If no media datap232 is available,
then the attributes must return the Not-a-Number (NaN) value. If the media resourcep232 is known to be unbounded
(e.g. a streaming radio), then the attribute must return the positive Infinity value.

The user agent must determine the duration of the media resourcep232 before playing any part of the media datap232

and before setting readyStatep243 to a value equal to or greater than HAVE_METADATAp242, even if doing so requires
seeking to multiple parts of the resource.

When the length of the media resourcep232 changes (e.g. from being unknown to known, or from a previously
established length to a new length) the user agent must queue a taskp517 to fire a simple eventp523 named
durationchangep251 at the media elementp231.

If an "infinite" stream ends for some reason, then the duration would change from positive Infinity to the time of
the last frame or sample in the stream, and the durationchangep251 event would be fired. Similarly, if the user
agent initially estimated the media resourcep232 's duration instead of determining it precisely, and later revises
the estimate based on new information, then the duration would change and the durationchangep251 event
would be fired.

Media elementsp231 have a current playback position, which must initially be zero. The current position is a time.

The currentTime attribute must, on getting, return the current playback positionp241, expressed in seconds. On
setting, the user agent must seekp247 to the new value (which might raise an exception).

If the media resourcep232 is a streaming resource, then the user agent might be unable to obtain certain parts of the
resource after it has expired from its buffer. Similarly, some media resourcesp232 might have a timeline that doesn't
start at zero. The earliest possible position is the earliest position in the stream or resource that the user agent can
ever obtain again.

The startTime attribute must, on getting, return the earliest possible positionp241, expressed in seconds.

When the earliest possible positionp241 changes, then: if the current playback positionp241 is before the earliest possible
positionp241, the user agent must seekp247 to the earliest possible positionp241; otherwise, if the user agent has not fired

241

a timeupdatep250 event at the element in the past 15 to 250ms and is not still running event handlers for such an
event, then the user agent must queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element.

Note: Because of the above requirement and the requirement in the resource fetch algorithmp237

that kicks in when the metadata of the clip becomes knownp238, the current playback positionp241

can never be less than the earliest possible positionp241.

User agents must act as if the timeline of the media resourcep232 increases linearly starting from the earliest possible
positionp241, even if the underlying media datap232 has out-of-order or even overlapping time codes.

For example, if two clips have been concatenated into one video file, but the video format exposes the original
times for the two clips, the video data might expose a timeline that goes, say, 00:15..00:29 and then
00:05..00:38. However, the user agent would not expose those times; it would instead expose the times as
00:15..00:29 and 00:29..01:02, as a single video.

The loop attribute is a boolean attributep37 that, if specified, indicates that the media elementp231 is to seek back to
the start of the media resourcep232 upon reaching the end.

The loop IDL attribute must reflectp61 the content attribute of the same name.

4.8.9.7 The ready states

This box is non-normative. Implementation requirements are given below this box.

media . readyStatep243

Returns a value that expresses the current state of the element with respect to rendering the current
playback positionp241, from the codes in the list below.

Media elementsp231 have a ready state, which describes to what degree they are ready to be rendered at the current
playback positionp241. The possible values are as follows; the ready state of a media element at any particular time is
the greatest value describing the state of the element:

HAVE_NOTHING (numeric value 0)
No information regarding the media resourcep232 is available. No data for the current playback positionp241 is
available. Media elementsp231 whose networkStatep234 attribute is NETWORK_EMPTYp234 are always in the
HAVE_NOTHINGp242 state.

HAVE_METADATA (numeric value 1)
Enough of the resource has been obtained that the duration of the resource is available. In the case of a
videop225 element, the dimensions of the video are also available. The API will no longer raise an exception when
seeking. No media datap232 is available for the immediate current playback positionp241.

HAVE_CURRENT_DATA (numeric value 2)
Data for the immediate current playback positionp241 is available, but either not enough data is available that the
user agent could successfully advance the current playback positionp241 in the direction of playbackp245 at all
without immediately reverting to the HAVE_METADATAp242 state, or there is no more data to obtain in the direction
of playbackp245. For example, in video this corresponds to the user agent having data from the current frame, but
not the next frame; and to when playback has endedp244.

HAVE_FUTURE_DATA (numeric value 3)
Data for the immediate current playback positionp241 is available, as well as enough data for the user agent to
advance the current playback positionp241 in the direction of playbackp245 at least a little without immediately
reverting to the HAVE_METADATAp242 state. For example, in video this corresponds to the user agent having data
for at least the current frame and the next frame. The user agent cannot be in this state if playback has
endedp244, as the current playback positionp241 can never advance in this case.

HAVE_ENOUGH_DATA (numeric value 4)
All the conditions described for the HAVE_FUTURE_DATAp242 state are met, and, in addition, the user agent
estimates that data is being fetched at a rate where the current playback positionp241, if it were to advance at the
rate given by the defaultPlaybackRatep245 attribute, would not overtake the available data before playback
reaches the end of the media resourcep232.

When the ready state of a media elementp231 whose networkStatep234 is not NETWORK_EMPTYp234 changes, the user
agent must follow the steps given below:

242

↪ If the previous ready state was HAVE_NOTHINGp242, and the new ready state is HAVE_METADATAp242

Note: A loadedmetadatap250 DOM event will be firedp238 as part of the load()p235 algorithm.

↪ If the previous ready state was HAVE_METADATAp242 and the new ready state is HAVE_CURRENT_DATAp242 or
greater

If this is the first time this occurs for this media elementp231 since the load()p235 algorithm was last invoked,
the user agent must queue a taskp517 to fire a simple eventp523 named loadeddatap250 at the element.

If the new ready state is HAVE_FUTURE_DATAp242 or HAVE_ENOUGH_DATAp242, then the relevant steps below must
then be run also.

↪ If the previous ready state was HAVE_FUTURE_DATAp242 or more, and the new ready state is
HAVE_CURRENT_DATAp242 or less

Note: A waitingp250 DOM event can be firedp244, depending on the current state of
playback.

↪ If the previous ready state was HAVE_CURRENT_DATAp242 or less, and the new ready state is
HAVE_FUTURE_DATAp242

The user agent must queue a taskp517 to fire a simple eventp523 named canplayp250.

If the element is potentially playingp244, the user agent must queue a taskp517 to fire a simple eventp523

named playingp250.

↪ If the new ready state is HAVE_ENOUGH_DATAp242

If the previous ready state was HAVE_CURRENT_DATAp242 or less, the user agent must queue a taskp517 to fire a
simple eventp523 named canplayp250, and, if the element is also potentially playingp244, queue a taskp517 to
fire a simple eventp523 named playingp250.

If the autoplaying flagp234 is true, and the pausedp244 attribute is true, and the media elementp231 has an
autoplayp243 attribute specified, and the media elementp231 is in a Documentp33 whose browsing contextp463

did not have the sandboxed automatic features browsing context flagp215 set when the Documentp33 was
created, then the user agent may also set the pausedp244 attribute to false, queue a taskp517 to fire a simple
eventp523 named playp250, and queue a taskp517 to fire a simple eventp523 named playingp250.

Note: User agents are not required to autoplay, and it is suggested that user agents
honor user preferences on the matter. Authors are urged to use the autoplayp243 attribute
rather than using script to force the video to play, so as to allow the user to override the
behavior if so desired.

In any case, the user agent must finally queue a taskp517 to fire a simple eventp523 named
canplaythroughp250.

Note: It is possible for the ready state of a media element to jump between these states
discontinuously. For example, the state of a media element can jump straight from
HAVE_METADATAp242 to HAVE_ENOUGH_DATAp242 without passing through the HAVE_CURRENT_DATAp242 and
HAVE_FUTURE_DATAp242 states.

The readyState IDL attribute must, on getting, return the value described above that describes the current ready
state of the media elementp231.

The autoplay attribute is a boolean attributep37. When present, the user agent (as described in the algorithm
described herein) will automatically begin playback of the media resourcep232 as soon as it can do so without stopping.

Note: Authors are urged to use the autoplayp243 attribute rather than using script to trigger
automatic playback, as this allows the user to override the automatic playback when it is not
desired, e.g. when using a screen reader. Authors are also encouraged to consider not using the
automatic playback behavior at all, and instead to let the user agent wait for the user to start
playback explicitly.

The autoplay IDL attribute must reflectp61 the content attribute of the same name.

243

4.8.9.8 Playing the media resource

This box is non-normative. Implementation requirements are given below this box.

media . pausedp244

Returns true if playback is paused; false otherwise.

media . endedp244

Returns true if playback has reached the end of the media resourcep232.

media . defaultPlaybackRatep245 [= value]
Returns the default rate of playback, for when the user is not fast-forwarding or reversing through the
media resourcep232.
Can be set, to change the default rate of playback.
The default rate has no direct effect on playback, but if the user switches to a fast-forward mode, when
they return to the normal playback mode, it is expected that the rate of playback will be returned to the
default rate of playback.

media . playbackRatep245 [= value]
Returns the current rate playback, where 1.0 is normal speed.
Can be set, to change the rate of playback.

media . playedp245

Returns a TimeRangesp249 object that represents the ranges of the media resourcep232 that the user agent
has played.

media . playp245()
Sets the pausedp244 attribute to false, loading the media resourcep232 and beginning playback if necessary.
If the playback had ended, will restart it from the start.

media . pausep246()
Sets the pausedp244 attribute to true, loading the media resourcep232 if necessary.

The paused attribute represents whether the media elementp231 is paused or not. The attribute must initially be true.

A media elementp231 is said to be potentially playing when its pausedp244 attribute is false, the readyStatep243

attribute is either HAVE_FUTURE_DATAp242 or HAVE_ENOUGH_DATAp242, the element has not ended playbackp244, playback
has not stopped due to errorsp244, and the element has not paused for user interactionp244.

A media elementp231 is said to have ended playback when the element's readyStatep243 attribute is
HAVE_METADATAp242 or greater, and either the current playback positionp241 is the end of the media resourcep232 and the
direction of playbackp245 is forwards and the media elementp231 does not have a loopp242 attribute specified, or the
current playback positionp241 is the earliest possible positionp241 and the direction of playbackp245 is backwards.

The ended attribute must return true if the media elementp231 has ended playbackp244 and the direction of playbackp245

is forwards, and false otherwise.

A media elementp231 is said to have stopped due to errors when the element's readyStatep243 attribute is
HAVE_METADATAp242 or greater, and the user agent encounters a non-fatal errorp240 during the processing of the media
datap232, and due to that error, is not able to play the content at the current playback positionp241.

A media elementp231 is said to have paused for user interaction when its pausedp244 attribute is false, the
readyStatep243 attribute is either HAVE_FUTURE_DATAp242 or HAVE_ENOUGH_DATAp242 and the user agent has reached a
point in the media resourcep232 where the user has to make a selection for the resource to continue.

It is possible for a media elementp231 to have both ended playbackp244 and paused for user interactionp244 at the same
time.

When a media elementp231 that is potentially playingp244 stops playing because it has paused for user interactionp244,
the user agent must queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element.

When a media elementp231 that is potentially playingp244 stops playing because its readyStatep243 attribute changes to
a value lower than HAVE_FUTURE_DATAp242, without the element having ended playbackp244, or playback having stopped

244

due to errorsp244, or playback having paused for user interactionp244, or the seeking algorithmp247 being invoked, the
user agent must queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element, and queue a
taskp517 to fire a simple eventp523 named waitingp250 at the element.

When the current playback positionp241 reaches the end of the media resourcep232 when the direction of playbackp245 is
forwards, then the user agent must follow these steps:

1. If the media elementp231 has a loopp242 attribute specified, then seekp247 to the earliest possible positionp241

of the media resourcep232 and abort these steps.

2. Stop playback.

Note: The endedp244 attribute becomes true.

3. The user agent must queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element.

4. The user agent must queue a taskp517 to fire a simple eventp523 named endedp250 at the element.

When the current playback positionp241 reaches the earliest possible positionp241 of the media resourcep232 when the
direction of playbackp245 is backwards, then the user agent must follow these steps:

1. Stop playback.

2. The user agent must queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element.

The defaultPlaybackRate attribute gives the desired speed at which the media resourcep232 is to play, as a multiple
of its intrinsic speed. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't
yet been set; on setting the attribute must be set to the new value.

The playbackRate attribute gives the speed at which the media resourcep232 plays, as a multiple of its intrinsic speed.
If it is not equal to the defaultPlaybackRatep245, then the implication is that the user is using a feature such as fast
forward or slow motion playback. The attribute is mutable: on getting it must return the last value it was set to, or 1.0
if it hasn't yet been set; on setting the attribute must be set to the new value, and the playback must change speed (if
the element is potentially playingp244).

If the playbackRatep245 is positive or zero, then the direction of playback is forwards. Otherwise, it is backwards.

The "play" function in a user agent's interface must set the playbackRatep245 attribute to the value of the
defaultPlaybackRatep245 attribute before invoking the play()p245 method's steps. Features such as fast-forward or
rewind must be implemented by only changing the playbackRatep245 attribute.

When the defaultPlaybackRatep245 or playbackRatep245 attributes change value (either by being set by script or by
being changed directly by the user agent, e.g. in response to user control) the user agent must queue a taskp517 to fire
a simple eventp523 named ratechangep251 at the media elementp231.

The played attribute must return a new static normalized TimeRanges objectp249 that represents the ranges of the
media resourcep232, if any, that the user agent has so far rendered, at the time the attribute is evaluated.

When the play() method on a media elementp231 is invoked, the user agent must run the following steps.

1. If the media elementp231 's networkStatep234 attribute has the value NETWORK_EMPTYp234, invoke the media
elementp231 's resource selection algorithmp235.

2. If the playback has endedp244 and the direction of playbackp245 is forwards, seekp247 to the earliest possible
positionp241 of the media resourcep232.

Note: This will causep247 the user agent to queue a taskp517 to fire a simple eventp523

named timeupdatep250 at the media elementp231.

3. If the media elementp231 's pausedp244 attribute is true, run the following substeps:

1. Change the value of pausedp244 to false.

2. Queue a taskp517 to fire a simple eventp523 named playp250 at the element.

3. If the media elementp231 's readyStatep243 attribute has the value HAVE_NOTHINGp242,
HAVE_METADATAp242, or HAVE_CURRENT_DATAp242, queue a taskp517 to fire a simple eventp523 named
waitingp250 at the element.

245

4. Otherwise, the media elementp231 's readyStatep243 attribute has the value HAVE_FUTURE_DATAp242

or HAVE_ENOUGH_DATAp242; queue a taskp517 to fire a simple eventp523 named playingp250 at the
element.

4. Set the media elementp231 's autoplaying flagp234 to false.

When the pause() method is invoked, the user agent must run the following steps:

1. If the media elementp231 's networkStatep234 attribute has the value NETWORK_EMPTYp234, invoke the media
elementp231 's resource selection algorithmp235.

2. Set the media elementp231 's autoplaying flagp234 to false.

3. If the media elementp231 's pausedp244 attribute is false, run the following steps:

1. Change the value of pausedp244 to true.

2. Queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element.

3. Queue a taskp517 to fire a simple eventp523 named pausep250 at the element.

When a media elementp231 is potentially playingp244 and its Documentp33 is a fully activep464 Documentp33, its current
playback positionp241 must increase monotonically at playbackRatep245 units of media time per unit time of wall clock
time.

Note: This specification doesn't define how the user agent achieves the appropriate playback rate
— depending on the protocol and media available, it is plausible that the user agent could
negotiate with the server to have the server provide the media data at the appropriate rate, so
that (except for the period between when the rate is changed and when the server updates the
stream's playback rate) the client doesn't actually have to drop or interpolate any frames.

When the playbackRatep245 is negative (playback is backwards), any corresponding audio must be muted. When the
playbackRatep245 is so low or so high that the user agent cannot play audio usefully, the corresponding audio must
also be muted. If the playbackRatep245 is not 1.0, the user agent may apply pitch adjustments to the audio as
necessary to render it faithfully.

The playbackRatep245 can be 0.0, in which case the current playback positionp241 doesn't move, despite playback not
being paused (pausedp244 doesn't become true, and the pausep250 event doesn't fire).

Media elementsp231 that are potentially playingp244 while not in a Documentp29 must not play any video, but should play
any audio component. Media elements must not stop playing just because all references to them have been removed;
only once a media element to which no references exist has reached a point where no further audio remains to be
played for that element (e.g. because the element is paused, or because the end of the clip has been reached, or
because its playbackRatep245 is 0.0) may the element be garbage collected.

When the current playback positionp241 of a media elementp231 changes (e.g. due to playback or seeking), the user
agent must run the following steps. If the current playback positionp241 changes while the steps are running, then the
user agent must wait for the steps to complete, and then must immediately rerun the steps. (These steps are thus run
as often as possible or needed — if one iteration takes a long time, this can cause certain ranges to be skipped over as
the user agent rushes ahead to "catch up".)

1. If the time was reached through the usual monotonic increase of the current playback position during normal
playback, and if the user agent has not fired a timeupdatep250 event at the element in the past 15 to 250ms
and is not still running event handlers for such an event, then the user agent must queue a taskp517 to fire a
simple eventp523 named timeupdatep250 at the element. (In the other cases, such as explicit seeks, relevant
events get fired as part of the overall process of changing the current playback position.)

Note: The event thus is not to be fired faster than about 66Hz or slower than 4Hz
(assuming the event handlers don't take longer than 250ms to run). User agents are
encouraged to vary the frequency of the event based on the system load and the average
cost of processing the event each time, so that the UI updates are not any more frequent
than the user agent can comfortably handle while decoding the video.

When a media elementp231 is removed from a Documentp29, if the media elementp231 's networkStatep234 attribute has a
value other than NETWORK_EMPTYp234 then the user agent must act as if the pause()p246 method had been invoked.

246

Note: If the media elementp231 's Documentp33 stops being a fully activep464 document, then the
playback will stopp246 until the document is active again.

4.8.9.9 Seeking

This box is non-normative. Implementation requirements are given below this box.

media . seekingp247

Returns true if the user agent is currently seeking.

media . seekablep248

Returns a TimeRangesp249 object that represents the ranges of the media resourcep232 to which it is
possible for the user agent to seek.

The seeking attribute must initially have the value false.

When the user agent is required to seek to a particular new playback position in the media resourcep232, it means that
the user agent must run the following steps. This algorithm interacts closely with the event loopp516 mechanism; in
particular, it has a synchronous sectionp517 (which is triggered as part of the event loopp516 algorithm). Steps in that
section are marked with ?.

1. If the media elementp231 's readyStatep243 is HAVE_NOTHINGp242, then raise an INVALID_STATE_ERRp74

exception (if the seek was in response to a DOM method call or setting of an IDL attribute), and abort these
steps.

2. If the element's seekingp247 IDL attribute is true, then another instance of this algorithm is already running.
Abort that other instance of the algorithm without waiting for the step that it is running to complete.

3. Set the seekingp247 IDL attribute to true.

4. Queue a taskp517 to fire a simple eventp523 named timeupdatep250 at the element.

5. If the seek was in response to a DOM method call or setting of an IDL attribute, then continue the script. The
remainder of these steps must be run asynchronously. With the exception of the steps marked with ?, they
could be aborted at any time by another instance of this algorithm being invoked.

6. If the new playback position is later than the end of the media resourcep232, then let it be the end of the
media resourcep232 instead.

7. If the new playback position is less than the earliest possible positionp241, let it be that position instead.

8. If the (possibly now changed) new playback position is not in one of the ranges given in the seekablep248

attribute, then let it be the position in one of the ranges given in the seekablep248 attribute that is the
nearest to the new playback position. If two positions both satisfy that constraint (i.e. the new playback
position is exactly in the middle between two ranges in the seekablep248 attribute) then use the position that
is closest to the current playback positionp241. If there are no ranges given in the seekablep248 attribute then
set the seekingp247 IDL attribute to false and abort these steps.

9. Set the current playback positionp241 to the given new playback position.

10. If the media elementp231 was potentially playingp244 immediately before it started seeking, but seeking
caused its readyStatep243 attribute to change to a value lower than HAVE_FUTURE_DATAp242, then queue a
taskp517 to fire a simple eventp523 named waitingp250 at the element.

11. If, when it reaches this step, the user agent has still not established whether or not the media datap232 for
the new playback position is available, and, if it is, decoded enough data to play back that position, then
queue a taskp517 to fire a simple eventp523 named seekingp250 at the element.

12. Wait until it has established whether or not the media datap232 for the new playback position is available,
and, if it is, until it has decoded enough data to play back that position.

13. Await a stable statep517. The synchronous sectionp517 consists of all the remaining steps of this algorithm.
(Steps in the synchronous sectionp517 are marked with ?.)

14. ? Set the seekingp247 IDL attribute to false.

247

15. ? Queue a taskp517 to fire a simple eventp523 named seekedp250 at the element.

The seekable attribute must return a new static normalized TimeRanges objectp249 that represents the ranges of the
media resourcep232, if any, that the user agent is able to seek to, at the time the attribute is evaluated.

Note: If the user agent can seek to anywhere in the media resourcep232, e.g. because it a simple
movie file and the user agent and the server support HTTP Range requests, then the attribute
would return an object with one range, whose start is the time of the first frame (typically zero),
and whose end is the same as the time of the first frame plus the durationp241 attribute's value
(which would equal the time of the last frame).

Note: The range might be continuously changing, e.g. if the user agent is buffering a sliding
window on an infinite stream. This is the behavior seen with DVRs viewing live TV, for instance.

Media resourcesp232 might be internally scripted or interactive. Thus, a media elementp231 could play in a non-linear
fashion. If this happens, the user agent must act as if the algorithm for seekingp247 was used whenever the current
playback positionp241 changes in a discontinuous fashion (so that the relevant events fire).

4.8.9.10 User interface

The controls attribute is a boolean attributep37. If present, it indicates that the author has not provided a scripted
controller and would like the user agent to provide its own set of controls.

If the attribute is present, or if scripting is disabledp514 for the media elementp231, then the user agent should expose a
user interface to the user. This user interface should include features to begin playback, pause playback, seek to
an arbitrary position in the content (if the content supports arbitrary seeking), change the volume, change the display
of closed captions or embedded sign-language tracks, select different audio tracks or turn on audio descriptions, and
show the media content in manners more suitable to the user (e.g. full-screen video or in an independent resizable
window). Other controls may also be made available.

Even when the attribute is absent, however, user agents may provide controls to affect playback of the media
resource (e.g. play, pause, seeking, and volume controls), but such features should not interfere with the page's
normal rendering. For example, such features could be exposed in the media elementp231 's context menu.

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for muting or changing the
volume of the audio, and for seeking), user interface features exposed by the user agent must be implemented in
terms of the DOM API described above, so that, e.g., all the same events fire.

The controls IDL attribute must reflectp61 the content attribute of the same name.

This box is non-normative. Implementation requirements are given below this box.

media . volumep248 [= value]
Returns the current playback volume, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and
1.0 the loudest.
Can be set, to change the volume.

Throws an INDEX_SIZE_ERRp74 if the new value is not in the range 0.0 .. 1.0.

media . mutedp249 [= value]
Returns true if audio is muted, overriding the volumep248 attribute, and false if the volumep248 attribute is
being honored.
Can be set, to change whether the audio is muted or not.

The volume attribute must return the playback volume of any audio portions of the media elementp231, in the range 0.0
(silent) to 1.0 (loudest). Initially, the volume must be 1.0, but user agents may remember the last set value across
sessions, on a per-site basis or otherwise, so the volume may start at other values. On setting, if the new value is in
the range 0.0 to 1.0 inclusive, the attribute must be set to the new value and the playback volume must be
correspondingly adjusted as soon as possible after setting the attribute, with 0.0 being silent, and 1.0 being the
loudest setting, values in between increasing in loudness. The range need not be linear. The loudest setting may be
lower than the system's loudest possible setting; for example the user could have set a maximum volume. If the new
value is outside the range 0.0 to 1.0 inclusive, then, on setting, an INDEX_SIZE_ERRp74 exception must be raised
instead.

248

The muted attribute must return true if the audio channels are muted and false otherwise. Initially, the audio channels
should not be muted (false), but user agents may remember the last set value across sessions, on a per-site basis or
otherwise, so the muted state may start as muted (true). On setting, the attribute must be set to the new value; if the
new value is true, audio playback for this media resourcep232 must then be muted, and if false, audio playback must
then be enabled.

Whenever either the mutedp249 or volumep248 attributes are changed, the user agent must queue a taskp517 to fire a
simple eventp523 named volumechangep251 at the media elementp231.

4.8.9.11 Time ranges

Objects implementing the TimeRangesp249 interface represent a list of ranges (periods) of time.

interface TimeRanges {
readonly attribute unsigned long length;
float start(in unsigned long index);
float end(in unsigned long index);

};

This box is non-normative. Implementation requirements are given below this box.

media . lengthp249

Returns the number of ranges in the object.

time = media . startp249(index)
Returns the time for the start of the range with the given index.

Throws an INDEX_SIZE_ERRp74 if the index is out of range.

time = media . endp249(index)
Returns the time for the end of the range with the given index.

Throws an INDEX_SIZE_ERRp74 if the index is out of range.

The length IDL attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range represented by the object, in
seconds measured from the start of the timeline that the object covers.

The end(index) method must return the position of the end of the indexth range represented by the object, in
seconds measured from the start of the timeline that the object covers.

These methods must raise INDEX_SIZE_ERRp74 exceptions if called with an index argument greater than or equal to the
number of ranges represented by the object.

When a TimeRangesp249 object is said to be a normalized TimeRanges object, the ranges it represents must obey the
following criteria:

• The start of a range must be greater than the end of all earlier ranges.

• The start of a range must be less than the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, aren't empty, and don't touch (adjacent ranges
are folded into one bigger range).

The timelines used by the objects returned by the bufferedp240, seekablep248 and playedp245 IDL attributes of media
elementsp231 must be the same as that element's media resourcep232 's timeline.

4.8.9.12 Event summary

This section is non-normative.

The following events fire on media elementsp231 as part of the processing model described above:

249

Event name Interface Dispatched when... Preconditions

loadstart Eventp33 The user agent begins looking for media
datap232, as part of the resource selection
algorithmp235.

networkStatep234 equals NETWORK_LOADINGp234

progress Eventp33 The user agent is fetching media datap232. networkStatep234 equals NETWORK_LOADINGp234

suspend Eventp33 The user agent is intentionally not currently
fetching media datap232, but does not have the
entire media resourcep232 downloaded.

networkStatep234 equals NETWORK_IDLEp234

abort Eventp33 The user agent stops fetching the media
datap232 before it is completely downloaded,
but not due to an error.

errorp232 is an object with the code MEDIA_ERR_ABORTEDp232.
networkStatep234 equals either NETWORK_EMPTYp234 or
NETWORK_IDLEp234, depending on when the download was
aborted.

error Eventp33 An error occurs while fetching the media
datap232.

errorp232 is an object with the code MEDIA_ERR_NETWORKp232 or
higher. networkStatep234 equals either NETWORK_EMPTYp234 or
NETWORK_IDLEp234, depending on when the download was
aborted.

emptied Eventp33 A media elementp231 whose networkStatep234

was previously not in the NETWORK_EMPTYp234

state has just switched to that state (either
because of a fatal error during load that's about
to be reported, or because the load()p235

method was invoked while the resource
selection algorithmp235 was already running).

networkStatep234 is NETWORK_EMPTYp234; all the IDL attributes
are in their initial states.

stalled Eventp33 The user agent is trying to fetch media
datap232, but data is unexpectedly not
forthcoming.

networkStatep234 is NETWORK_LOADINGp234.

play Eventp33 Playback has begun. Fired after the play()p245

method has returned.
pausedp244 is newly false.

pause Eventp33 Playback has been paused. Fired after the
pausep246 method has returned.

pausedp244 is newly true.

loadedmetadata Eventp33 The user agent has just determined the
duration and dimensions of the media
resourcep232.

readyStatep243 is newly equal to HAVE_METADATAp242 or greater
for the first time.

loadeddata Eventp33 The user agent can render the media datap232

at the current playback positionp241 for the first
time.

readyStatep243 newly increased to HAVE_CURRENT_DATAp242 or
greater for the first time.

waiting Eventp33 Playback has stopped because the next frame
is not available, but the user agent expects
that frame to become available in due course.

readyStatep243 is newly equal to or less than
HAVE_CURRENT_DATAp242, and pausedp244 is false. Either
seekingp247 is true, or the current playback positionp241 is not
contained in any of the ranges in bufferedp240. It is possible for
playback to stop for two other reasons without pausedp244

being false, but those two reasons do not fire this event:
maybe playback endedp244, or playback stopped due to
errorsp244.

playing Eventp33 Playback has started. readyStatep243 is newly equal to or greater than
HAVE_FUTURE_DATAp242, pausedp244 is false, seekingp247 is false,
or the current playback positionp241 is contained in one of the
ranges in bufferedp240.

canplay Eventp33 The user agent can resume playback of the
media datap232, but estimates that if playback
were to be started now, the media resourcep232

could not be rendered at the current playback
rate up to its end without having to stop for
further buffering of content.

readyStatep243 newly increased to HAVE_FUTURE_DATAp242 or
greater.

canplaythrough Eventp33 The user agent estimates that if playback were
to be started now, the media resourcep232 could
be rendered at the current playback rate all the
way to its end without having to stop for further
buffering.

readyStatep243 is newly equal to HAVE_ENOUGH_DATAp242.

seeking Eventp33 The seekingp247 IDL attribute changed to true
and the seek operation is taking long enough
that the user agent has time to fire the event.

seeked Eventp33 The seekingp247 IDL attribute changed to false.
timeupdate Eventp33 The current playback positionp241 changed as

part of normal playback or in an especially
interesting way, for example discontinuously.

ended Eventp33 Playback has stopped because the end of the
media resourcep232 was reached.

currentTimep241 equals the end of the media resourcep232;
endedp244 is true.

250

Event name Interface Dispatched when... Preconditions
ratechange Eventp33 Either the defaultPlaybackRatep245 or the

playbackRatep245 attribute has just been
updated.

durationchange Eventp33 The durationp241 attribute has just been
updated.

volumechange Eventp33 Either the volumep248 attribute or the mutedp249

attribute has changed. Fired after the relevant
attribute's setter has returned.

4.8.9.13 Security and privacy considerations

The main security and privacy implications of the videop225 and audiop228 elements come from the ability to embed
media cross-origin. There are two directions that threats can flow: from hostile content to a victim page, and from a
hostile page to victim content.

If a victim page embeds hostile content, the threat is that the content might contain scripted code that attempts to
interact with the Documentp33 that embeds the content. To avoid this, user agents must ensure that there is no access
from the content to the embedding page. In the case of media content that uses DOM concepts, the embedded
content must be treated as if it was in its own unrelated top-level browsing contextp464.

For instance, if an SVG animation was embedded in a videop225 element, the user agent would not give it access
to the DOM of the outer page. From the perspective of scripts in the SVG resource, the SVG file would appear to
be in a lone top-level browsing context with no parent.

If a hostile page embeds victim content, the threat is that the embedding page could obtain information from the
content that it would not otherwise have access to. The API does expose some information: the existence of the
media, its type, its duration, its size, and the performance characteristics of its host. Such information is already
potentially problematic, but in practice the same information can more or less be obtained using the imgp196 element,
and so it has been deemed acceptable.

However, significantly more sensitive information could be obtained if the user agent further exposes metadata within
the content such as subtitles or chapter titles. This version of the API does not expose such information. Future
extensions to this API will likely reuse a mechanism such as CORS to check that the embedded content's site has
opted in to exposing such information. [CORS]p738

An attacker could trick a user running within a corporate network into visiting a site that attempts to load a
video from a previously leaked location on the corporation's intranet. If such a video included confidential plans
for a new product, then being able to read the subtitles would present a confidentiality breach.

Categories
Flow contentp96.
Phrasing contentp96.
Embedded contentp97.

Contexts in which this element may be used:
Where embedded contentp97 is expected.

Content model:
Transparentp98.

Content attributes:
Global attributesp87

widthp252

heightp252

DOM interface:

interface HTMLCanvasElement : HTMLElement {
attribute unsigned long width;
attribute unsigned long height;

4.8.10 The canvas element

251

The canvasp251 element provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering
graphs, game graphics, or other visual images on the fly.

Authors should not use the canvasp251 element in a document when a more suitable element is available. For example,
it is inappropriate to use a canvasp251 element to render a page heading: if the desired presentation of the heading is
graphically intense, it should be marked up using appropriate elements (typically h1p147) and then styled using CSS
and supporting technologies such as XBL.

When authors use the canvasp251 element, they must also provide content that, when presented to the user, conveys
essentially the same function or purpose as the bitmap canvas. This content may be placed as content of the
canvasp251 element. The contents of the canvasp251 element, if any, are the element's fallback contentp97.

In interactive visual media, if scripting is enabledp514 for the canvasp251 element, and if support for canvasp251 elements
has been enabled, the canvasp251 element representsp672 embedded contentp97 consisting of a dynamically created
image.

In non-interactive, static, visual media, if the canvasp251 element has been previously painted on (e.g. if the page was
viewed in an interactive visual medium and is now being printed, or if some script that ran during the page layout
process painted on the element), then the canvasp251 element representsp672 embedded contentp97 with the current
image and size. Otherwise, the element represents its fallback contentp97 instead.

In non-visual media, and in visual media if scripting is disabledp514 for the canvasp251 element or if support for
canvasp251 elements has been disabled, the canvasp251 element representsp672 its fallback contentp97 instead.

When a canvasp251 element representsp672 embedded contentp97, the user can still focus descendants of the canvasp251

element (in the fallback contentp97). This allows authors to make an interactive canvas keyboard-focusable: authors
should have a one-to-one mapping of interactive regions to focusable elements in the fallback contentp97.

The canvasp251 element has two attributes to control the size of the coordinate space: width and height. These
attributes, when specified, must have values that are valid non-negative integersp37. The rules for parsing non-
negative integersp37 must be used to obtain their numeric values. If an attribute is missing, or if parsing its value
returns an error, then the default value must be used instead. The widthp252 attribute defaults to 300, and the
heightp252 attribute defaults to 150.

The intrinsic dimensions of the canvasp251 element equal the size of the coordinate space, with the numbers
interpreted in CSS pixels. However, the element can be sized arbitrarily by a style sheet. During rendering, the image
is scaled to fit this layout size.

The size of the coordinate space does not necessarily represent the size of the actual bitmap that the user agent will
use internally or during rendering. On high-definition displays, for instance, the user agent may internally use a bitmap
with two device pixels per unit in the coordinate space, so that the rendering remains at high quality throughout.

When the canvasp251 element is created, and subsequently whenever the widthp252 and heightp252 attributes are set
(whether to a new value or to the previous value), the bitmap and any associated contexts must be cleared back to
their initial state and reinitialized with the newly specified coordinate space dimensions.

When the canvas is initialized, its bitmap must be cleared to transparent black.

The width and height IDL attributes must reflectp61 the respective content attributes of the same name.

Only one square appears to be drawn in the following example:

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');
context.fillRect(0,0,50,50);
canvas.setAttribute('width', '300'); // clears the canvas
context.fillRect(0,100,50,50);
canvas.width = canvas.width; // clears the canvas
context.fillRect(100,0,50,50); // only this square remains

DOMString toDataURL(in optional DOMString type, in any... args);

object getContext(in DOMString contextId);
};

252

To draw on the canvas, authors must first obtain a reference to a context using the getContext(contextId) method
of the canvasp251 element.

This box is non-normative. Implementation requirements are given below this box.

context = canvas . getContextp253(contextId)
Returns an object that exposes an API for drawing on the canvas.
Returns null if the given context ID is not supported.

This specification only defines one context, with the name "2dp254". If getContext()p253 is called with that exact string
for its contextId argument, then the UA must return a reference to an object implementing
CanvasRenderingContext2Dp254. Other specifications may define their own contexts, which would return different
objects.

Vendors may also define experimental contexts using the syntax vendorname-context, for example, moz-3d.

When the UA is passed an empty string or a string specifying a context that it does not support, then it must return
null. String comparisons must be case-sensitivep35.

This box is non-normative. Implementation requirements are given below this box.

url = canvas . toDataURLp253([type, ...])
Returns a data: URL for the image in the canvas.
The first argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The
default is image/png; that type is also used if the given type isn't supported. The other arguments are
specific to the type, and control the way that the image is generated, as given in the table below.

The toDataURL() method must, when called with no arguments, return a data: URL containing a representation of the
image as a PNG file. [PNG]p740

If the canvas has no pixels (i.e. either its horizontal dimension or its vertical dimension is zero) then the method must
return the string "data:,". (This is the shortest data: URL; it represents the empty string in a text/plain resource.)

When the toDataURL(type)p253 method is called with one or more arguments, it must return a data: URL containing a
representation of the image in the format given by type. The possible values are MIME typesp28 with no parameters,
for example image/png, image/jpeg, or even maybe image/svg+xml if the implementation actually keeps enough
information to reliably render an SVG image from the canvas.

For image types that do not support an alpha channel, the image must be composited onto a solid black background
using the source-over operator, and the resulting image must be the one used to create the data: URL.

Only support for image/png is required. User agents may support other types. If the user agent does not support the
requested type, it must return the image using the PNG format.

User agents must convert the provided type to ASCII lowercasep36 before establishing if they support that type and
before creating the data: URL.

Note: When trying to use types other than image/png, authors can check if the image was really
returned in the requested format by checking to see if the returned string starts with one the
exact strings "data:image/png," or "data:image/png;". If it does, the image is PNG, and thus the
requested type was not supported. (The one exception to this is if the canvas has either no height
or no width, in which case the result might simply be "data:,".)

If the method is invoked with the first argument giving a type corresponding to one of the types given in the first
column of the following table, and the user agent supports that type, then the subsequent arguments, if any, must be
treated as described in the second cell of that row.

Type Other arguments

image/
jpeg

The second argument, if it is a number in the range 0.0 to 1.0 inclusive, must be treated as the desired quality level. If it is not a
number or is outside that range, the user agent must use its default value, as if the argument had been omitted.

For the purposes of these rules, an argument is considered to be a number if it is converted to an IDL double value by
the rules for handling arguments of type any in the Web IDL specification. [WEBIDL]p742

253

Other arguments must be ignored and must not cause the user agent to raise an exception. A future version of this
specification will probably define other parameters to be passed to toDataURL()p253 to allow authors to more carefully
control compression settings, image metadata, etc.

4.8.10.1 The 2D context

When the getContext()p253 method of a canvasp251 element is invoked with 2d as the argument, a
CanvasRenderingContext2Dp254 object is returned.

There is only one CanvasRenderingContext2Dp254 object per canvas, so calling the getContext()p253 method with the
2dp254 argument a second time must return the same object.

The 2D context represents a flat Cartesian surface whose origin (0,0) is at the top left corner, with the coordinate
space having x values increasing when going right, and y values increasing when going down.

interface CanvasRenderingContext2D {

// back-reference to the canvas
readonly attribute HTMLCanvasElement canvas;

// state
void save(); // push state on state stack
void restore(); // pop state stack and restore state

// transformations (default transform is the identity matrix)
void scale(in float x, in float y);
void rotate(in float angle);
void translate(in float x, in float y);
void transform(in float m11, in float m12, in float m21, in float m22, in float dx, in

float dy);
void setTransform(in float m11, in float m12, in float m21, in float m22, in float dx, in

float dy);

// compositing
attribute float globalAlpha; // (default 1.0)
attribute DOMString globalCompositeOperation; // (default source-over)

// colors and styles
attribute any strokeStyle; // (default black)
attribute any fillStyle; // (default black)

CanvasGradient createLinearGradient(in float x0, in float y0, in float x1, in float y1);
CanvasGradient createRadialGradient(in float x0, in float y0, in float r0, in float x1,

in float y1, in float r1);
CanvasPattern createPattern(in HTMLImageElement image, in DOMString repetition);
CanvasPattern createPattern(in HTMLCanvasElement image, in DOMString repetition);
CanvasPattern createPattern(in HTMLVideoElement image, in DOMString repetition);

// line caps/joins
attribute float lineWidth; // (default 1)
attribute DOMString lineCap; // "butt", "round", "square" (default "butt")
attribute DOMString lineJoin; // "round", "bevel", "miter" (default "miter")
attribute float miterLimit; // (default 10)

// shadows
attribute float shadowOffsetX; // (default 0)
attribute float shadowOffsetY; // (default 0)
attribute float shadowBlur; // (default 0)
attribute DOMString shadowColor; // (default transparent black)

// rects
void clearRect(in float x, in float y, in float w, in float h);
void fillRect(in float x, in float y, in float w, in float h);
void strokeRect(in float x, in float y, in float w, in float h);

254

// path API
void beginPath();
void closePath();
void moveTo(in float x, in float y);
void lineTo(in float x, in float y);
void quadraticCurveTo(in float cpx, in float cpy, in float x, in float y);
void bezierCurveTo(in float cp1x, in float cp1y, in float cp2x, in float cp2y, in float

x, in float y);
void arcTo(in float x1, in float y1, in float x2, in float y2, in float radius);
void rect(in float x, in float y, in float w, in float h);
void arc(in float x, in float y, in float radius, in float startAngle, in float endAngle,

in boolean anticlockwise);
void fill();
void stroke();
void clip();
boolean isPointInPath(in float x, in float y);

// focus management
boolean drawFocusRing(in Element element, in float xCaret, in float yCaret, in optional

boolean canDrawCustom);

// text
attribute DOMString font; // (default 10px sans-serif)
attribute DOMString textAlign; // "start", "end", "left", "right", "center"

(default: "start")
attribute DOMString textBaseline; // "top", "hanging", "middle", "alphabetic",

"ideographic", "bottom" (default: "alphabetic")
void fillText(in DOMString text, in float x, in float y, in optional float maxWidth);
void strokeText(in DOMString text, in float x, in float y, in optional float maxWidth);
TextMetrics measureText(in DOMString text);

// drawing images
void drawImage(in HTMLImageElement image, in float dx, in float dy, in optional float dw,

in float dh);
void drawImage(in HTMLImageElement image, in float sx, in float sy, in float sw, in float

sh, in float dx, in float dy, in float dw, in float dh);
void drawImage(in HTMLCanvasElement image, in float dx, in float dy, in optional float

dw, in float dh);
void drawImage(in HTMLCanvasElement image, in float sx, in float sy, in float sw, in

float sh, in float dx, in float dy, in float dw, in float dh);
void drawImage(in HTMLVideoElement image, in float dx, in float dy, in optional float dw,

in float dh);
void drawImage(in HTMLVideoElement image, in float sx, in float sy, in float sw, in float

sh, in float dx, in float dy, in float dw, in float dh);

// pixel manipulation
ImageData createImageData(in float sw, in float sh);
ImageData createImageData(in ImageData imagedata);
ImageData getImageData(in float sx, in float sy, in float sw, in float sh);
void putImageData(in ImageData imagedata, in float dx, in float dy, in optional float

dirtyX, in float dirtyY, in float dirtyWidth, in float dirtyHeight);
};

interface CanvasGradient {
// opaque object
void addColorStop(in float offset, in DOMString color);

};

interface CanvasPattern {
// opaque object

};

interface TextMetrics {
readonly attribute float width;

255

};

interface ImageData {
readonly attribute unsigned long width;
readonly attribute unsigned long height;
readonly attribute CanvasPixelArray data;

};

interface CanvasPixelArray {
readonly attribute unsigned long length;
getter octet (in unsigned long index);
setter void (in unsigned long index, in octet value);

};

This box is non-normative. Implementation requirements are given below this box.

context . canvasp256

Returns the canvasp251 element.

The canvas attribute must return the canvasp251 element that the context paints on.

Except where otherwise specified, for the 2D context interface, any method call with a numeric argument whose value
is infinite or a NaN value must be ignored.

Whenever the CSS value currentColor is used as a color in this API, the "computed value of the 'color' property" for
the purposes of determining the computed value of the currentColor keyword is the computed value of the 'color'
property on the element in question at the time that the color is specified (e.g. when the appropriate attribute is set,
or when the method is called; not when the color is rendered or otherwise used). If the computed value of the 'color'
property is undefined for a particular case (e.g. because the element is not in a Documentp29), then the "computed
value of the 'color' property" for the purposes of determining the computed value of the currentColor keyword is fully
opaque black. [CSSCOLOR]p738

4.8.10.1.1 The canvas state

Each context maintains a stack of drawing states. Drawing states consist of:

• The current transformation matrixp257.
• The current clipping regionp267.
• The current values of the following attributes: strokeStylep259, fillStylep259, globalAlphap258,

lineWidthp262, lineCapp262, lineJoinp262, miterLimitp263, shadowOffsetXp263, shadowOffsetYp263,
shadowBlurp263, shadowColorp263, globalCompositeOperationp258, fontp269, textAlignp270,
textBaselinep270.

Note: The current path and the current bitmap are not part of the drawing state. The current path
is persistent, and can only be reset using the beginPath()p265 method. The current bitmap is a
property of the canvas, not the context.

This box is non-normative. Implementation requirements are given below this box.

context . savep256()
Pushes the current state onto the stack.

context . restorep256()
Pops the top state on the stack, restoring the context to that state.

The save() method must push a copy of the current drawing state onto the drawing state stack.

The restore() method must pop the top entry in the drawing state stack, and reset the drawing state it describes. If
there is no saved state, the method must do nothing.

256

4.8.10.1.2 Transformations

The transformation matrix is applied to coordinates when creating shapes and paths.

When the context is created, the transformation matrix must initially be the identity transform. It may then be
adjusted using the transformation methods.

The transformations must be performed in reverse order. For instance, if a scale transformation that doubles the width
is applied, followed by a rotation transformation that rotates drawing operations by a quarter turn, and a rectangle
twice as wide as it is tall is then drawn on the canvas, the actual result will be a square.

This box is non-normative. Implementation requirements are given below this box.

context . scalep257(x, y)
Changes the transformation matrix to apply a scaling transformation with the given characteristics.

context . rotatep257(angle)
Changes the transformation matrix to apply a rotation transformation with the given characteristics. The
angle is in radians.

context . translatep257(x, y)
Changes the transformation matrix to apply a translation transformation with the given characteristics.

context . transformp257(m11, m12, m21, m22, dx, dy)
Changes the transformation matrix to apply the matrix given by the arguments as described below.

context . setTransformp257(m11, m12, m21, m22, dx, dy)
Changes the transformation matrix to the matrix given by the arguments as described below.

The scale(x, y) method must add the scaling transformation described by the arguments to the transformation
matrix. The x argument represents the scale factor in the horizontal direction and the y argument represents the scale
factor in the vertical direction. The factors are multiples.

The rotate(angle) method must add the rotation transformation described by the argument to the transformation
matrix. The angle argument represents a clockwise rotation angle expressed in radians.

The translate(x, y) method must add the translation transformation described by the arguments to the
transformation matrix. The x argument represents the translation distance in the horizontal direction and the y
argument represents the translation distance in the vertical direction. The arguments are in coordinate space units.

The transform(m11, m12, m21, m22, dx, dy) method must multiply the current transformation matrix with the
matrix described by:

m11 m21 dx
m12 m22 dy

0 0 1

The setTransform(m11, m12, m21, m22, dx, dy) method must reset the current transform to the identity matrix,
and then invoke the transformp257(m11, m12, m21, m22, dx, dy) method with the same arguments.

4.8.10.1.3 Compositing

This box is non-normative. Implementation requirements are given below this box.

context . globalAlphap258 [= value]
Returns the current alpha value applied to rendering operations.
Can be set, to change the alpha value. Values outside of the range 0.0 .. 1.0 are ignored.

context . globalCompositeOperationp258 [= value]
Returns the current composition operation, from the list below.
Can be set, to change the composition operation. Unknown values are ignored.

257

All drawing operations are affected by the global compositing attributes, globalAlphap258 and
globalCompositeOperationp258.

The globalAlpha attribute gives an alpha value that is applied to shapes and images before they are composited onto
the canvas. The value must be in the range from 0.0 (fully transparent) to 1.0 (no additional transparency). If an
attempt is made to set the attribute to a value outside this range, including Infinity and Not-a-Number (NaN) values,
the attribute must retain its previous value. When the context is created, the globalAlphap258 attribute must initially
have the value 1.0.

The globalCompositeOperation attribute sets how shapes and images are drawn onto the existing bitmap, once they
have had globalAlphap258 and the current transformation matrix applied. It must be set to a value from the following
list. In the descriptions below, the source image, A, is the shape or image being rendered, and the destination image,
B, is the current state of the bitmap.

source-atop
A atop B. Display the source image wherever both images are opaque. Display the destination image wherever
the destination image is opaque but the source image is transparent. Display transparency elsewhere.

source-in
A in B. Display the source image wherever both the source image and destination image are opaque. Display
transparency elsewhere.

source-out
A out B. Display the source image wherever the source image is opaque and the destination image is
transparent. Display transparency elsewhere.

source-over (default)
A over B. Display the source image wherever the source image is opaque. Display the destination image
elsewhere.

destination-atop
B atop A. Same as source-atopp258 but using the destination image instead of the source image and vice versa.

destination-in
B in A. Same as source-inp258 but using the destination image instead of the source image and vice versa.

destination-out
B out A. Same as source-outp258 but using the destination image instead of the source image and vice versa.

destination-over
B over A. Same as source-overp258 but using the destination image instead of the source image and vice versa.

lighter
A plus B. Display the sum of the source image and destination image, with color values approaching 1 as a limit.

copy
A (B is ignored). Display the source image instead of the destination image.

xor
A xor B. Exclusive OR of the source image and destination image.

vendorName-operationName
Vendor-specific extensions to the list of composition operators should use this syntax.

These values are all case-sensitive — they must be used exactly as shown. User agents must not recognize values that
are not a case-sensitivep35 match for one of the values given above.

The operators in the above list must be treated as described by the Porter-Duff operator given at the start of their
description (e.g. A over B). [PORTERDUFF]p740

On setting, if the user agent does not recognize the specified value, it must be ignored, leaving the value of
globalCompositeOperationp258 unaffected.

When the context is created, the globalCompositeOperationp258 attribute must initially have the value source-over.

258

4.8.10.1.4 Colors and styles

This box is non-normative. Implementation requirements are given below this box.

context . strokeStylep259 [= value]
Returns the current style used for stroking shapes.
Can be set, to change the stroke style.

The style can be either a string containing a CSS color, or a CanvasGradientp255 or CanvasPatternp255

object. Invalid values are ignored.

context . fillStylep259 [= value]
Returns the current style used for filling shapes.
Can be set, to change the fill style.

The style can be either a string containing a CSS color, or a CanvasGradientp255 or CanvasPatternp255

object. Invalid values are ignored.

The strokeStyle attribute represents the color or style to use for the lines around shapes, and the fillStyle
attribute represents the color or style to use inside the shapes.

Both attributes can be either strings, CanvasGradientp255s, or CanvasPatternp255s. On setting, strings must be parsed
as CSS <color> values and the color assigned, and CanvasGradientp255 and CanvasPatternp255 objects must be
assigned themselves. [CSSCOLOR]p738 If the value is a string but is not a valid color, or is neither a string, a
CanvasGradientp255, nor a CanvasPatternp255, then it must be ignored, and the attribute must retain its previous
value.

When set to a CanvasPatternp255 or CanvasGradientp255 object, the assignment is livep29, meaning that changes made
to the object after the assignment do affect subsequent stroking or filling of shapes.

On getting, if the value is a color, then the serialization of the colorp259 must be returned. Otherwise, if it is not a color
but a CanvasGradientp255 or CanvasPatternp255, then the respective object must be returned. (Such objects are
opaque and therefore only useful for assigning to other attributes or for comparison to other gradients or patterns.)

The serialization of a color for a color value is a string, computed as follows: if it has alpha equal to 1.0, then the
string is a lowercase six-digit hex value, prefixed with a "#" character (U+0023 NUMBER SIGN), with the first two digits
representing the red component, the next two digits representing the green component, and the last two digits
representing the blue component, the digits being in the range 0-9 a-f (U+0030 to U+0039 and U+0061 to U+0066).
Otherwise, the color value has alpha less than 1.0, and the string is the color value in the CSS rgba() functional-
notation format: the literal string rgba (U+0072 U+0067 U+0062 U+0061) followed by a U+0028 LEFT PARENTHESIS,
a base-ten integer in the range 0-255 representing the red component (using digits 0-9, U+0030 to U+0039, in the
shortest form possible), a literal U+002C COMMA and U+0020 SPACE, an integer for the green component, a comma
and a space, an integer for the blue component, another comma and space, a U+0030 DIGIT ZERO, a U+002E FULL
STOP (representing the decimal point), one or more digits in the range 0-9 (U+0030 to U+0039) representing the
fractional part of the alpha value, and finally a U+0029 RIGHT PARENTHESIS.

When the context is created, the strokeStylep259 and fillStylep259 attributes must initially have the string value
#000000.

There are two types of gradients, linear gradients and radial gradients, both represented by objects implementing the
opaque CanvasGradientp255 interface.

Once a gradient has been created (see below), stops are placed along it to define how the colors are distributed along
the gradient. The color of the gradient at each stop is the color specified for that stop. Between each such stop, the
colors and the alpha component must be linearly interpolated over the RGBA space without premultiplying the alpha
value to find the color to use at that offset. Before the first stop, the color must be the color of the first stop. After the
last stop, the color must be the color of the last stop. When there are no stops, the gradient is transparent black.

This box is non-normative. Implementation requirements are given below this box.

gradient . addColorStopp260(offset, color)
Adds a color stop with the given color to the gradient at the given offset. 0.0 is the offset at one end of the
gradient, 1.0 is the offset at the other end.

259

Throws an INDEX_SIZE_ERRp74 exception if the offset is out of range. Throws a SYNTAX_ERRp74 exception if
the color cannot be parsed.

gradient = context . createLinearGradientp260(x0, y0, x1, y1)
Returns a CanvasGradientp255 object that represents a linear gradient that paints along the line given by
the coordinates represented by the arguments.

If any of the arguments are not finite numbers, throws a NOT_SUPPORTED_ERRp74 exception.

gradient = context . createRadialGradientp260(x0, y0, r0, x1, y1, r1)
Returns a CanvasGradientp255 object that represents a radial gradient that paints along the cone given by
the circles represented by the arguments.

If any of the arguments are not finite numbers, throws a NOT_SUPPORTED_ERRp74 exception. If either of the
radii are negative, throws an INDEX_SIZE_ERRp74 exception.

The addColorStop(offset, color) method on the CanvasGradientp255 interface adds a new stop to a gradient. If the
offset is less than 0, greater than 1, infinite, or NaN, then an INDEX_SIZE_ERRp74 exception must be raised. If the color
cannot be parsed as a CSS color, then a SYNTAX_ERRp74 exception must be raised. Otherwise, the gradient must have a
new stop placed, at offset offset relative to the whole gradient, and with the color obtained by parsing color as a CSS
<color> value. If multiple stops are added at the same offset on a gradient, they must be placed in the order added,
with the first one closest to the start of the gradient, and each subsequent one infinitesimally further along towards
the end point (in effect causing all but the first and last stop added at each point to be ignored).

The createLinearGradient(x0, y0, x1, y1) method takes four arguments that represent the start point (x0, y0)
and end point (x1, y1) of the gradient. If any of the arguments to createLinearGradient()p260 are infinite or NaN, the
method must raise a NOT_SUPPORTED_ERRp74 exception. Otherwise, the method must return a linear
CanvasGradientp255 initialized with the specified line.

Linear gradients must be rendered such that all points on a line perpendicular to the line that crosses the start and
end points have the color at the point where those two lines cross (with the colors coming from the interpolation and
extrapolationp259 described above). The points in the linear gradient must be transformed as described by the current
transformation matrixp257 when rendering.

If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.

The createRadialGradient(x0, y0, r0, x1, y1, r1) method takes six arguments, the first three representing the
start circle with origin (x0, y0) and radius r0, and the last three representing the end circle with origin (x1, y1) and
radius r1. The values are in coordinate space units. If any of the arguments are infinite or NaN, a
NOT_SUPPORTED_ERRp74 exception must be raised. If either of r0 or r1 are negative, an INDEX_SIZE_ERRp74 exception
must be raised. Otherwise, the method must return a radial CanvasGradientp255 initialized with the two specified
circles.

Radial gradients must be rendered by following these steps:

1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Abort these steps.

2. Let x(ω) = (x1-x0)ω + x0

Let y(ω) = (y1-y0)ω + y0

Let r(ω) = (r1-r0)ω + r0

Let the color at ω be the color at that position on the gradient (with the colors coming from the interpolation
and extrapolationp259 described above).

3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive infinity and ending with
the value of ω nearest to negative infinity, draw the circumference of the circle with radius r(ω) at position
(x(ω), y(ω)), with the color at ω, but only painting on the parts of the canvas that have not yet been painted
on by earlier circles in this step for this rendering of the gradient.

Note: This effectively creates a cone, touched by the two circles defined in the creation of the
gradient, with the part of the cone before the start circle (0.0) using the color of the first offset,
the part of the cone after the end circle (1.0) using the color of the last offset, and areas outside
the cone untouched by the gradient (transparent black).

260

The points in the radial gradient must be transformed as described by the current transformation matrixp257 when
rendering.

Gradients must be painted only where the relevant stroking or filling effects requires that they be drawn.

Patterns are represented by objects implementing the opaque CanvasPatternp255 interface.

This box is non-normative. Implementation requirements are given below this box.

pattern = context . createPatternp261(image, repetition)
Returns a CanvasPatternp255 object that uses the given image and repeats in the direction(s) given by the
repetition argument.
The allowed values for repetition are repeat (both directions), repeat-x (horizontal only), repeat-y
(vertical only), and no-repeat (neither). If the repetition argument is empty or null, the value repeat is
used.

If the first argument isn't an imgp196, canvasp251, or videop225 element, throws a TYPE_MISMATCH_ERRp74

exception. If the image has no image data, throws an INVALID_STATE_ERRp74 exception. If the second
argument isn't one of the allowed values, throws a SYNTAX_ERRp74 exception. If the image isn't yet fully
decoded, then the method returns null.

To create objects of this type, the createPattern(image, repetition) method is used. The first argument gives the
image to use as the pattern (either an HTMLImageElementp197, HTMLCanvasElementp251, or HTMLVideoElementp226

object). Modifying this image after calling the createPattern()p261 method must not affect the pattern. The second
argument must be a string with one of the following values: repeat, repeat-x, repeat-y, no-repeat. If the empty
string or null is specified, repeat must be assumed. If an unrecognized value is given, then the user agent must raise
a SYNTAX_ERRp74 exception. User agents must recognize the four values described above exactly (e.g. they must not
do case folding). The method must return a CanvasPatternp255 object suitably initialized.

The image argument is an instance of either HTMLImageElementp197, HTMLCanvasElementp251, or HTMLVideoElementp226.
If the image is null, the implementation must raise a TYPE_MISMATCH_ERRp74 exception.

If the image argument is an HTMLImageElementp197 object whose completep200 attribute is false, or if the image
argument is an HTMLVideoElementp226 object whose readyStatep243 attribute is either HAVE_NOTHINGp242 or
HAVE_METADATAp242, then the implementation must return null.

If the image argument is an HTMLCanvasElementp251 object with either a horizontal dimension or a vertical dimension
equal to zero, then the implementation must raise an INVALID_STATE_ERRp74 exception.

Patterns must be painted so that the top left of the first image is anchored at the origin of the coordinate space, and
images are then repeated horizontally to the left and right (if the repeat-x string was specified) or vertically up and
down (if the repeat-y string was specified) or in all four directions all over the canvas (if the repeat string was
specified). The images are not scaled by this process; one CSS pixel of the image must be painted on one coordinate
space unit. Of course, patterns must actually be painted only where the stroking or filling effect requires that they be
drawn, and are affected by the current transformation matrix.

When the createPattern()p261 method is passed an animated image as its image argument, the user agent must use
the poster frame of the animation, or, if there is no poster frame, the first frame of the animation.

When the image argument is an HTMLVideoElementp226, then the frame at the current playback positionp241 must be
used as the source image, and the source image's dimensions must be the intrinsic widthp227 and intrinsic heightp227 of
the media resourcep232 (i.e. after any aspect-ratio correction has been applied).

4.8.10.1.5 Line styles

This box is non-normative. Implementation requirements are given below this box.

context . lineWidthp262 [= value]
Returns the current line width.
Can be set, to change the line width. Values that are not finite values greater than zero are ignored.

261

context . lineCapp262 [= value]
Returns the current line cap style.
Can be set, to change the line cap style.
The possible line cap styles are butt, round, and square. Other values are ignored.

context . lineJoinp262 [= value]
Returns the current line join style.
Can be set, to change the line join style.
The possible line join styles are bevel, round, and miter. Other values are ignored.

context . miterLimitp263 [= value]
Returns the current miter limit ratio.
Can be set, to change the miter limit ratio. Values that are not finite values greater than zero are ignored.

The lineWidth attribute gives the width of lines, in coordinate space units. On getting, it must return the current
value. On setting, zero, negative, infinite, and NaN values must be ignored, leaving the value unchanged; other values
must change the current value to the new value.

When the context is created, the lineWidthp262 attribute must initially have the value 1.0.

The lineCap attribute defines the type of endings that UAs will place on the end of lines. The three valid values are
butt, round, and square. The butt value means that the end of each line has a flat edge perpendicular to the
direction of the line (and that no additional line cap is added). The round value means that a semi-circle with the
diameter equal to the width of the line must then be added on to the end of the line. The square value means that a
rectangle with the length of the line width and the width of half the line width, placed flat against the edge
perpendicular to the direction of the line, must be added at the end of each line.

On getting, it must return the current value. On setting, if the new value is one of the literal strings butt, round, and
square, then the current value must be changed to the new value; other values must ignored, leaving the value
unchanged.

When the context is created, the lineCapp262 attribute must initially have the value butt.

The lineJoin attribute defines the type of corners that UAs will place where two lines meet. The three valid values are
bevel, round, and miter.

On getting, it must return the current value. On setting, if the new value is one of the literal strings bevel, round, and
miter, then the current value must be changed to the new value; other values must be ignored, leaving the value
unchanged.

When the context is created, the lineJoinp262 attribute must initially have the value miter.

A join exists at any point in a subpath shared by two consecutive lines. When a subpath is closed, then a join also
exists at its first point (equivalent to its last point) connecting the first and last lines in the subpath.

In addition to the point where the join occurs, two additional points are relevant to each join, one for each line: the two
corners found half the line width away from the join point, one perpendicular to each line, each on the side furthest
from the other line.

A filled triangle connecting these two opposite corners with a straight line, with the third point of the triangle being the
join point, must be rendered at all joins. The lineJoinp262 attribute controls whether anything else is rendered. The
three aforementioned values have the following meanings:

The bevel value means that this is all that is rendered at joins.

The round value means that a filled arc connecting the two aforementioned corners of the join, abutting (and not
overlapping) the aforementioned triangle, with the diameter equal to the line width and the origin at the point of the
join, must be rendered at joins.

The miter value means that a second filled triangle must (if it can given the miter length) be rendered at the join, with
one line being the line between the two aforementioned corners, abutting the first triangle, and the other two being

262

continuations of the outside edges of the two joining lines, as long as required to intersect without going over the
miter length.

The miter length is the distance from the point where the join occurs to the intersection of the line edges on the
outside of the join. The miter limit ratio is the maximum allowed ratio of the miter length to half the line width. If the
miter length would cause the miter limit ratio to be exceeded, this second triangle must not be rendered.

The miter limit ratio can be explicitly set using the miterLimit attribute. On getting, it must return the current value.
On setting, zero, negative, infinite, and NaN values must be ignored, leaving the value unchanged; other values must
change the current value to the new value.

When the context is created, the miterLimitp263 attribute must initially have the value 10.0.

4.8.10.1.6 Shadows

All drawing operations are affected by the four global shadow attributes.

This box is non-normative. Implementation requirements are given below this box.

context . shadowColorp263 [= value]
Returns the current shadow color.
Can be set, to change the shadow color. Values that cannot be parsed as CSS colors are ignored.

context . shadowOffsetXp263 [= value]
context . shadowOffsetYp263 [= value]

Returns the current shadow offset.
Can be set, to change the shadow offset. Values that are not finite numbers are ignored.

context . shadowBlurp263 [= value]
Returns the current level of blur applied to shadows.
Can be set, to change the blur level. Values that are not finite numbers greater than or equal to zero are
ignored.

The shadowColor attribute sets the color of the shadow.

When the context is created, the shadowColorp263 attribute initially must be fully-transparent black.

On getting, the serialization of the colorp259 must be returned.

On setting, the new value must be parsed as a CSS <color> value and the color assigned. If the value is not a valid
color, then it must be ignored, and the attribute must retain its previous value. [CSSCOLOR]p738

The shadowOffsetX and shadowOffsetY attributes specify the distance that the shadow will be offset in the positive
horizontal and positive vertical distance respectively. Their values are in coordinate space units. They are not affected
by the current transformation matrix.

When the context is created, the shadow offset attributes must initially have the value 0.

On getting, they must return their current value. On setting, the attribute being set must be set to the new value,
except if the value is infinite or NaN, in which case the new value must be ignored.

The shadowBlur attribute specifies the size of the blurring effect. (The units do not map to coordinate space units, and
are not affected by the current transformation matrix.)

When the context is created, the shadowBlurp263 attribute must initially have the value 0.

On getting, the attribute must return its current value. On setting the attribute must be set to the new value, except if
the value is negative, infinite or NaN, in which case the new value must be ignored.

Shadows are only drawn if the opacity component of the alpha component of the color of shadowColorp263 is non-
zero and either the shadowBlurp263 is non-zero, or the shadowOffsetXp263 is non-zero, or the shadowOffsetYp263 is non-
zero.

When shadows are drawnp263, they must be rendered as follows:

263

1. Let A be an infinite transparent black bitmap on which the source image for which a shadow is being created
has been rendered.

2. Let B be an infinite transparent black bitmap, with a coordinate space and an origin identical to A.

3. Copy the alpha channel of A to B, offset by shadowOffsetXp263 in the positive x direction, and
shadowOffsetYp263 in the positive y direction.

4. If shadowBlurp263 is greater than 0:

1. If shadowBlurp263 is less than 8, let σ be half the value of shadowBlurp263; otherwise, let σ be the
square root of multiplying the value of shadowBlurp263 by 2.

2. Perform a 2D Gaussian Blur on B, using σ as the standard deviation.

User agents may limit values of σ to an implementation-specific maximum value to avoid exceeding
hardware limitations during the Gaussian blur operation.

5. Set the red, green, and blue components of every pixel in B to the red, green, and blue components
(respectively) of the color of shadowColorp263.

6. Multiply the alpha component of every pixel in B by the alpha component of the color of shadowColorp263.

7. The shadow is in the bitmap B, and is rendered as part of the drawing model described below.

If the current composition operation is copyp258, shadows effectively won't render (since the shape will overwrite the
shadow).

4.8.10.1.7 Simple shapes (rectangles)

There are three methods that immediately draw rectangles to the bitmap. They each take four arguments; the first
two give the x and y coordinates of the top left of the rectangle, and the second two give the width w and height h of
the rectangle, respectively.

The current transformation matrixp257 must be applied to the following four coordinates, which form the path that must
then be closed to get the specified rectangle: (x, y), (x+w, y), (x+w, y+h), (x, y+h).

Shapes are painted without affecting the current path, and are subject to the clipping regionp267, and, with the
exception of clearRect()p264, also shadow effectsp263, global alphap258, and global composition operatorsp258.

This box is non-normative. Implementation requirements are given below this box.

context . clearRectp264(x, y, w, h)
Clears all pixels on the canvas in the given rectangle to transparent black.

context . fillRectp264(x, y, w, h)
Paints the given rectangle onto the canvas, using the current fill style.

context . strokeRectp264(x, y, w, h)
Paints the box that outlines the given rectangle onto the canvas, using the current stroke style.

The clearRect(x, y, w, h) method must clear the pixels in the specified rectangle that also intersect the current
clipping region to a fully transparent black, erasing any previous image. If either height or width are zero, this method
has no effect.

The fillRect(x, y, w, h) method must paint the specified rectangular area using the fillStylep259. If either height
or width are zero, this method has no effect.

The strokeRect(x, y, w, h) method must stroke the specified rectangle's path using the strokeStylep259,
lineWidthp262, lineJoinp262, and (if appropriate) miterLimitp263 attributes. If both height and width are zero, this
method has no effect, since there is no path to stroke (it's a point). If only one of the two is zero, then the method will
draw a line instead (the path for the outline is just a straight line along the non-zero dimension).

4.8.10.1.8 Complex shapes (paths)

The context always has a current path. There is only one current path, it is not part of the drawing statep256.

264

A path has a list of zero or more subpaths. Each subpath consists of a list of one or more points, connected by straight
or curved lines, and a flag indicating whether the subpath is closed or not. A closed subpath is one where the last point
of the subpath is connected to the first point of the subpath by a straight line. Subpaths with fewer than two points are
ignored when painting the path.

This box is non-normative. Implementation requirements are given below this box.

context . beginPathp265()
Resets the current path.

context . moveTop266(x, y)
Creates a new subpath with the given point.

context . closePathp266()
Marks the current subpath as closed, and starts a new subpath with a point the same as the start and end
of the newly closed subpath.

context . lineTop266(x, y)
Adds the given point to the current subpath, connected to the previous one by a straight line.

context . quadraticCurveTop266(cpx, cpy, x, y)
Adds the given point to the current path, connected to the previous one by a quadratic Bézier curve with
the given control point.

context . bezierCurveTop266(cp1x, cp1y, cp2x, cp2y, x, y)
Adds the given point to the current path, connected to the previous one by a cubic Bézier curve with the
given control points.

context . arcTop266(x1, y1, x2, y2, radius)
Adds a point to the current path, connected to the previous one by a straight line, then adds a second
point to the current path, connected to the previous one by an arc whose properties are described by the
arguments.

Throws an INDEX_SIZE_ERRp74 exception if the given radius is negative.

context . arcp266(x, y, radius, startAngle, endAngle, anticlockwise)
Adds points to the subpath such that the arc described by the circumference of the circle described by the
arguments, starting at the given start angle and ending at the given end angle, going in the given
direction, is added to the path, connected to the previous point by a straight line.

Throws an INDEX_SIZE_ERRp74 exception if the given radius is negative.

context . rectp267(x, y, w, h)
Adds a new closed subpath to the path, representing the given rectangle.

context . fillp267()
Fills the subpaths with the current fill style.

context . strokep267()
Strokes the subpaths with the current stroke style.

context . clipp267()
Further constrains the clipping region to the given path.

context . isPointInPathp267(x, y)
Returns true if the given point is in the current path.

Initially, the context's path must have zero subpaths.

The points and lines added to the path by these methods must be transformed according to the current transformation
matrixp257 as they are added.

The beginPath() method must empty the list of subpaths so that the context once again has zero subpaths.

265

The moveTo(x, y) method must create a new subpath with the specified point as its first (and only) point.

When the user agent is to ensure there is a subpath for a coordinate (x, y), the user agent must check to see if the
context has any subpaths, and if it does not, then the user agent must create a new subpath with the point (x, y) as its
first (and only) point, as if the moveTo()p266 method had been called.

The closePath() method must do nothing if the context has no subpaths. Otherwise, it must mark the last subpath as
closed, create a new subpath whose first point is the same as the previous subpath's first point, and finally add this
new subpath to the path.

Note: If the last subpath had more than one point in its list of points, then this is equivalent to
adding a straight line connecting the last point back to the first point, thus "closing" the shape,
and then repeating the last (possibly implied) moveTo()p266 call.

New points and the lines connecting them are added to subpaths using the methods described below. In all cases, the
methods only modify the last subpath in the context's paths.

The lineTo(x, y) method must ensure there is a subpathp266 for (x, y) if the context has no subpaths. Otherwise, it
must connect the last point in the subpath to the given point (x, y) using a straight line, and must then add the given
point (x, y) to the subpath.

The quadraticCurveTo(cpx, cpy, x, y) method must ensure there is a subpathp266 for (cpx, cpy), and then must
connect the last point in the subpath to the given point (x, y) using a quadratic Bézier curve with control point (cpx,
cpy), and must then add the given point (x, y) to the subpath. [BEZIER]p738

The bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) method must ensure there is a subpathp266 for (cp1x, cp1y),
and then must connect the last point in the subpath to the given point (x, y) using a cubic Bézier curve with control
points (cp1x, cp1y) and (cp2x, cp2y). Then, it must add the point (x, y) to the subpath. [BEZIER]p738

The arcTo(x1, y1, x2, y2, radius) method must first ensure there is a subpathp266 for (x1, y1). Then, the behavior
depends on the arguments and the last point in the subpath, as described below.

Negative values for radius must cause the implementation to raise an INDEX_SIZE_ERRp74 exception.

Let the point (x0, y0) be the last point in the subpath.

If the point (x0, y0) is equal to the point (x1, y1), or if the point (x1, y1) is equal to the point (x2, y2), or if the radius
radius is zero, then the method must add the point (x1, y1) to the subpath, and connect that point to the previous
point (x0, y0) by a straight line.

Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line, then the method must add the
point (x1, y1) to the subpath, and connect that point to the previous point (x0, y0) by a straight line.

Otherwise, let The Arc be the shortest arc given by circumference of the circle that has radius radius, and that has one
point tangent to the half-infinite line that crosses the point (x0, y0) and ends at the point (x1, y1), and that has a
different point tangent to the half-infinite line that ends at the point (x1, y1) and crosses the point (x2, y2). The points
at which this circle touches these two lines are called the start and end tangent points respectively. The method must
connect the point (x0, y0) to the start tangent point by a straight line, adding the start tangent point to the subpath,
and then must connect the start tangent point to the end tangent point by The Arc, adding the end tangent point to
the subpath.

The arc(x, y, radius, startAngle, endAngle, anticlockwise) method draws an arc. If the context has any
subpaths, then the method must add a straight line from the last point in the subpath to the start point of the arc. In
any case, it must draw the arc between the start point of the arc and the end point of the arc, and add the start and
end points of the arc to the subpath. The arc and its start and end points are defined as follows:

Consider a circle that has its origin at (x, y) and that has radius radius. The points at startAngle and endAngle along
this circle's circumference, measured in radians clockwise from the positive x-axis, are the start and end points
respectively.

If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2π, or, if the anticlockwise
argument is true and startAngle-endAngle is equal to or greater than 2π, then the arc is the whole circumference of
this circle.

Otherwise, the arc is the path along the circumference of this circle from the start point to the end point, going anti-
clockwise if the anticlockwise argument is true, and clockwise otherwise. Since the points are on the circle, as opposed

266

to being simply angles from zero, the arc can never cover an angle greater than 2π radians. If the two points are the
same, or if the radius is zero, then the arc is defined as being of zero length in both directions.

Negative values for radius must cause the implementation to raise an INDEX_SIZE_ERRp74 exception.

The rect(x, y, w, h) method must create a new subpath containing just the four points (x, y), (x+w, y), (x+w, y+h),
(x, y+h), with those four points connected by straight lines, and must then mark the subpath as closed. It must then
create a new subpath with the point (x, y) as the only point in the subpath.

The fill() method must fill all the subpaths of the current path, using fillStylep259, and using the non-zero winding
number rule. Open subpaths must be implicitly closed when being filled (without affecting the actual subpaths).

Note: Thus, if two overlapping but otherwise independent subpaths have opposite windings, they
cancel out and result in no fill. If they have the same winding, that area just gets painted once.

The stroke() method must calculate the strokes of all the subpaths of the current path, using the lineWidthp262,
lineCapp262, lineJoinp262, and (if appropriate) miterLimitp263 attributes, and then fill the combined stroke area using
the strokeStylep259 attribute.

Note: Since the subpaths are all stroked as one, overlapping parts of the paths in one stroke
operation are treated as if their union was what was painted.

Paths, when filled or stroked, must be painted without affecting the current path, and must be subject to shadow
effectsp263, global alphap258, the clipping regionp267, and global composition operatorsp258. (Transformations affect the
path when the path is created, not when it is painted, though the stroke style is still affected by the transformation
during painting.)

Zero-length line segments must be pruned before stroking a path. Empty subpaths must be ignored.

The clip() method must create a new clipping region by calculating the intersection of the current clipping region
and the area described by the current path, using the non-zero winding number rule. Open subpaths must be implicitly
closed when computing the clipping region, without affecting the actual subpaths. The new clipping region replaces
the current clipping region.

When the context is initialized, the clipping region must be set to the rectangle with the top left corner at (0,0) and the
width and height of the coordinate space.

The isPointInPath(x, y) method must return true if the point given by the x and y coordinates passed to the
method, when treated as coordinates in the canvas coordinate space unaffected by the current transformation, is
inside the current path as determined by the non-zero winding number rule; and must return false otherwise. Points on
the path itself are considered to be inside the path. If either of the arguments is infinite or NaN, then the method must
return false.

4.8.10.1.9 Focus management

When a canvas is interactive, authors should include focusable elements in the element's fallback content
corresponding to each focusable part of the canvas.

To indicate which focusable part of the canvas is currently focused, authors should use the drawFocusRing()p268

method, passing it the element for which a ring is being drawn. This method only draws the focus ring if the element is
focused, so that it can simply be called whenever drawing the element, without checking whether the element is
focused or not first. The position of the center of the control, or of the editing caret if the control has one, should be
given in the x and y arguments.

This box is non-normative. Implementation requirements are given below this box.

shouldDraw = context . drawFocusRingp268(element, x, y, [canDrawCustom])
If the given element is focused, draws a focus ring around the current path, following the platform
conventions for focus rings. The given coordinate is used if the user's attention needs to be brought to a
particular position (e.g. if a magnifier is following the editing caret in a text field).
If the canDrawCustom argument is true, then the focus ring is only drawn if the user has configured his
system to draw focus rings in a particular manner. (For example, high contrast focus rings.)

267

Returns true if the given element is focused, the canDrawCustom argument is true, and the user has not
configured his system to draw focus rings in a particular manner. Otherwise, returns false.
When the method returns true, the author is expected to manually draw a focus ring.

The drawFocusRing(element, x, y, [canDrawCustom]) method, when invoked, must run the following steps:

1. If element is not focused or is not a descendant of the element with whose context the method is associated,
then return false and abort these steps.

2. Transform the given point (x, y) according to the current transformation matrixp257.

3. Optionally, inform the user that the focus is at the given (transformed) coordinate on the canvas. (For
example, this could involve moving the user's magnification tool.)

4. If the user has requested the use of particular focus rings (e.g. high-contrast focus rings), or if the
canDrawCustom argument is absent or false, then draw a focus ring of the appropriate style along the path,
following platform conventions, return false, and abort these steps.

The focus ring should not be subject to the shadow effectsp263, the global alphap258, or the global composition
operatorsp258, but should be subject to the clipping regionp267.

5. Return true.

This canvasp251 element has a couple of checkboxes:

<canvas height=400 width=750>
<label><input type=checkbox id=showA> Show As</label>
<label><input type=checkbox id=showB> Show Bs</label>
<!-- ... -->

</canvas>
<script>
function drawCheckbox(context, element, x, y) {

context.save();
context.font = '10px sans-serif';
context.textAlign = 'left';
context.textBaseline = 'middle';
var metrics = context.measureText(element.labels[0].textContent);
context.beginPath();
context.strokeStyle = 'black';
context.rect(x-5, y-5, 10, 10);
context.stroke();
if (element.checked) {

context.fillStyle = 'black';
context.fill();

}
context.fillText(element.labels[0].textContent, x+5, y);
context.beginPath();
context.rect(x-7, y-7, 12 + metrics.width+2, 14);
if (context.drawFocusRing(element, x, y, true)) {

context.strokeStyle = 'silver';
context.stroke();

}
context.restore();

}
function drawBase() { /* ... */ }
function drawAs() { /* ... */ }
function drawBs() { /* ... */ }
function redraw() {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
context.clearRect(0, 0, canvas.width, canvas.height);
drawCheckbox(context, document.getElementById('showA'), 20, 40);
drawCheckbox(context, document.getElementById('showB'), 20, 60);
drawBase();
if (document.getElementById('showA').checked)

268

drawAs();
if (document.getElementById('showB').checked)

drawBs();
}
function processClick(event) {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');
var x = event.clientX - canvas.offsetLeft;
var y = event.clientY - canvas.offsetTop;
drawCheckbox(context, document.getElementById('showA'), 20, 40);
if (context.isPointInPath(x, y))

document.getElementById('showA').checked =
!(document.getElementById('showA').checked);

drawCheckbox(context, document.getElementById('showB'), 20, 60);
if (context.isPointInPath(x, y))

document.getElementById('showB').checked =
!(document.getElementById('showB').checked);

redraw();
}
document.getElementsByTagName('canvas')[0].addEventListener('focus', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('blur', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('change', redraw, true);
document.getElementsByTagName('canvas')[0].addEventListener('click', processClick,

false);
redraw();

</script>

4.8.10.1.10 Text

This box is non-normative. Implementation requirements are given below this box.

context . fontp269 [= value]
Returns the current font settings.
Can be set, to change the font. The syntax is the same as for the CSS 'font' property; values that cannot
be parsed as CSS font values are ignored.

Relative keywords and lengths are computed relative to the font of the canvasp251 element.

context . textAlignp270 [= value]
Returns the current text alignment settings.
Can be set, to change the alignment. The possible values are start, end, left, right, and center. Other
values are ignored. The default is start.

context . textBaselinep270 [= value]
Returns the current baseline alignment settings.
Can be set, to change the baseline alignment. The possible values and their meanings are given below.
Other values are ignored. The default is alphabetic.

context . fillTextp271(text, x, y [, maxWidth])
context . strokeTextp271(text, x, y [, maxWidth])

Fills or strokes (respectively) the given text at the given position. If a maximum width is provided, the text
will be scaled to fit that width if necessary.

metrics = context . measureTextp272(text)
Returns a TextMetricsp255 object with the metrics of the given text in the current font.

metrics . widthp272

Returns the advance width of the text that was passed to the measureText()p272 method.

The font IDL attribute, on setting, must be parsed the same way as the 'font' property of CSS (but without supporting
property-independent style sheet syntax like 'inherit'), and the resulting font must be assigned to the context, with the

269

'line-height' component forced to 'normal', with the 'font-size' component converted to CSS pixels, and with system
fonts being computed to explicit values. If the new value is syntactically incorrect (including using property-
independent style sheet syntax like 'inherit' or 'initial'), then it must be ignored, without assigning a new font value.
[CSS]p738

Font names must be interpreted in the context of the canvasp251 element's stylesheets; any fonts embedded using
@font-face must therefore be available once they are loaded. (If a font is referenced before it is fully loaded, then it
must be treated as if it was an unknown font, falling back to another as described by the relevant CSS specifications.)
[CSSFONTS]p738

Only vector fonts should be used by the user agent; if a user agent were to use bitmap fonts then transformations
would likely make the font look very ugly.

On getting, the fontp269 attribute must return the serialized form of the current font of the context (with no 'line-
height' component). [CSSOM]p739

For example, after the following statement:

context.font = 'italic 400 12px/2 Unknown Font, sans-serif';

...the expression context.font would evaluate to the string "italic 12px "Unknown Font", sans-serif".
The "400" font-weight doesn't appear because that is the default value. The line-height doesn't appear because
it is forced to "normal", the default value.

When the context is created, the font of the context must be set to 10px sans-serif. When the 'font-size' component is
set to lengths using percentages, 'em' or 'ex' units, or the 'larger' or 'smaller' keywords, these must be interpreted
relative to the computed value of the 'font-size' property of the corresponding canvasp251 element at the time that the
attribute is set. When the 'font-weight' component is set to the relative values 'bolder' and 'lighter', these must be
interpreted relative to the computed value of the 'font-weight' property of the corresponding canvasp251 element at the
time that the attribute is set. If the computed values are undefined for a particular case (e.g. because the canvasp251

element is not in a Documentp29), then the relative keywords must be interpreted relative to the normal-weight 10px
sans-serif default.

The textAlign IDL attribute, on getting, must return the current value. On setting, if the value is one of start, end,
left, right, or center, then the value must be changed to the new value. Otherwise, the new value must be ignored.
When the context is created, the textAlignp270 attribute must initially have the value start.

The textBaseline IDL attribute, on getting, must return the current value. On setting, if the value is one of topp270,
hangingp271, middlep271, alphabeticp271, ideographicp271, or bottomp271, then the value must be changed to the new
value. Otherwise, the new value must be ignored. When the context is created, the textBaselinep270 attribute must
initially have the value alphabetic.

The textBaselinep270 attribute's allowed keywords correspond to alignment points in the font:

The keywords map to these alignment points as follows:

top
The top of the em square

270

hanging
The hanging baseline

middle
The middle of the em square

alphabetic
The alphabetic baseline

ideographic
The ideographic baseline

bottom
The bottom of the em square

The fillText() and strokeText() methods take three or four arguments, text, x, y, and optionally maxWidth, and
render the given text at the given (x, y) coordinates ensuring that the text isn't wider than maxWidth if specified,
using the current fontp269, textAlignp270, and textBaselinep270 values. Specifically, when the methods are called, the
user agent must run the following steps:

1. Let font be the current font of the context, as given by the fontp269 attribute.

2. Replace all the space charactersp36 in text with U+0020 SPACE characters.

3. Form a hypothetical infinitely wide CSS line box containing a single inline box containing the text text, with
all the properties at their initial values except the 'font' property of the inline box set to font and the
'direction' property of the inline box set to the directionalityp91 of the canvasp251 element. [CSS]p738

4. If the maxWidth argument was specified and the hypothetical width of the inline box in the hypothetical line
box is greater than maxWidth CSS pixels, then change font to have a more condensed font (if one is
available or if a reasonably readable one can be synthesized by applying a horizontal scale factor to the
font) or a smaller font, and return to the previous step.

5. Let the anchor point be a point on the inline box, determined by the textAlignp270 and textBaselinep270

values, as follows:

Horizontal position:

If textAlignp270 is left
If textAlignp270 is start and the directionalityp91 of the canvasp251 element is 'ltr'
If textAlignp270 is end and the directionalityp91 of the canvasp251 element is 'rtl'

Let the anchor point's horizontal position be the left edge of the inline box.

If textAlignp270 is right
If textAlignp270 is end and the directionalityp91 of the canvasp251 element is 'ltr'
If textAlignp270 is start and the directionalityp91 of the canvasp251 element is 'rtl'

Let the anchor point's horizontal position be the right edge of the inline box.

If textAlignp270 is center
Let the anchor point's horizontal position be half way between the left and right edges of the inline box.

Vertical position:

If textBaselinep270 is topp270

Let the anchor point's vertical position be the top of the em box of the first available font of the inline
box.

If textBaselinep270 is hangingp271

Let the anchor point's vertical position be the hanging baseline of the first available font of the inline
box.

If textBaselinep270 is middlep271

Let the anchor point's vertical position be half way between the bottom and the top of the em box of
the first available font of the inline box.

If textBaselinep270 is alphabeticp271

Let the anchor point's vertical position be the alphabetic baseline of the first available font of the inline
box.

271

If textBaselinep270 is ideographicp271

Let the anchor point's vertical position be the ideographic baseline of the first available font of the
inline box.

If textBaselinep270 is bottomp271

Let the anchor point's vertical position be the bottom of the em box of the first available font of the
inline box.

6. Paint the hypothetical inline box as the shape given by the text's glyphs, as transformed by the current
transformation matrixp257, and anchored and sized so that before applying the current transformation
matrixp257, the anchor point is at (x, y) and each CSS pixel is mapped to one coordinate space unit.

For fillText()p271 fillStylep259 must be applied to the glyphs and strokeStylep259 must be ignored. For
strokeText()p271 the reverse holds and strokeStylep259 must be applied to the glyph outlines and
fillStylep259 must be ignored.

Text is painted without affecting the current path, and is subject to shadow effectsp263, global alphap258, the
clipping regionp267, and global composition operatorsp258.

The measureText() method takes one argument, text. When the method is invoked, the user agent must replace all
the space charactersp36 in text with U+0020 SPACE characters, and then must form a hypothetical infinitely wide CSS
line box containing a single inline box containing the text text, with all the properties at their initial values except the
'font' property of the inline element set to the current font of the context, as given by the fontp269 attribute, and must
then return a new TextMetricsp255 object with its widthp272 attribute set to the width of that inline box, in CSS pixels.
[CSS]p738

The TextMetricsp255 interface is used for the objects returned from measureText()p272. It has one attribute, width,
which is set by the measureText()p272 method.

Note: Glyphs rendered using fillText()p271 and strokeText()p271 can spill out of the box given by
the font size (the em square size) and the width returned by measureText()p272 (the text width).
This version of the specification does not provide a way to obtain the bounding box dimensions of
the text. If the text is to be rendered and removed, care needs to be taken to replace the entire
area of the canvas that the clipping region covers, not just the box given by the em square height
and measured text width.

Note: A future version of the 2D context API may provide a way to render fragments of
documents, rendered using CSS, straight to the canvas. This would be provided in preference to a
dedicated way of doing multiline layout.

4.8.10.1.11 Images

To draw images onto the canvas, the drawImage method can be used.

This method can be invoked with three different sets of arguments:

• drawImage(image, dx, dy)
• drawImage(image, dx, dy, dw, dh)
• drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

Each of those three can take either an HTMLImageElementp197, an HTMLCanvasElementp251, or an HTMLVideoElementp226

for the image argument.

This box is non-normative. Implementation requirements are given below this box.

context . drawImagep272(image, dx, dy)
context . drawImagep272(image, dx, dy, dw, dh)
context . drawImagep272(image, sx, sy, sw, sh, dx, dy, dw, dh)

Draws the given image onto the canvas. The arguments are interpreted as follows:

272

If the first argument isn't an imgp196, canvasp251, or videop225 element, throws a TYPE_MISMATCH_ERRp74

exception. If the image has no image data, throws an INVALID_STATE_ERRp74 exception. If the numeric
arguments don't make sense (e.g. the destination is a 0×0 rectangle), throws an INDEX_SIZE_ERRp74

exception. If the image isn't yet fully decoded, then nothing is drawn.

If not specified, the dw and dh arguments must default to the values of sw and sh, interpreted such that one CSS pixel
in the image is treated as one unit in the canvas coordinate space. If the sx, sy, sw, and sh arguments are omitted,
they must default to 0, 0, the image's intrinsic width in image pixels, and the image's intrinsic height in image pixels,
respectively.

The image argument is an instance of either HTMLImageElementp197, HTMLCanvasElementp251, or HTMLVideoElementp226.
If the image is null, the implementation must raise a TYPE_MISMATCH_ERRp74 exception.

If the image argument is an HTMLImageElementp197 object whose completep200 attribute is false, or if the image
argument is an HTMLVideoElementp226 object whose readyStatep243 attribute is either HAVE_NOTHINGp242 or
HAVE_METADATAp242, then the implementation must return without drawing anything.

If the image argument is an HTMLCanvasElementp251 object with either a horizontal dimension or a vertical dimension
equal to zero, then the implementation must raise an INVALID_STATE_ERRp74 exception.

The source rectangle is the rectangle whose corners are the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx,
sy+sh).

If the source rectangle is not entirely within the source image, or if one of the sw or sh arguments is zero, the
implementation must raise an INDEX_SIZE_ERRp74 exception.

The destination rectangle is the rectangle whose corners are the four points (dx, dy), (dx+dw, dy), (dx+dw, dy+dh),
(dx, dy+dh).

When drawImage()p272 is invoked, the region of the image specified by the source rectangle must be painted on the
region of the canvas specified by the destination rectangle, after applying the current transformation matrixp257 to the
points of the destination rectangle.

The original image data of the source image must be used, not the image as it is rendered (e.g. widthp286 and
heightp286 attributes on the source element have no effect). The image data must be processed in the original
direction, even if the dimensions given are negative.

Note: This specification does not define the algorithm to use when scaling the image, if
necessary.

273

Note: When a canvas is drawn onto itself, the drawing model requires the source to be copied
before the image is drawn back onto the canvas, so it is possible to copy parts of a canvas onto
overlapping parts of itself.

When the drawImage()p272 method is passed an animated image as its image argument, the user agent must use the
poster frame of the animation, or, if there is no poster frame, the first frame of the animation.

When the image argument is an HTMLVideoElementp226, then the frame at the current playback positionp241 must be
used as the source image, and the source image's dimensions must be the intrinsic widthp227 and intrinsic heightp227 of
the media resourcep232 (i.e. after any aspect-ratio correction has been applied).

Images are painted without affecting the current path, and are subject to shadow effectsp263, global alphap258, the
clipping regionp267, and global composition operatorsp258.

4.8.10.1.12 Pixel manipulation

This box is non-normative. Implementation requirements are given below this box.

imagedata = context . createImageDatap274(sw, sh)
Returns an ImageDatap256 object with the given dimensions in CSS pixels (which might map to a different
number of actual device pixels exposed by the object itself). All the pixels in the returned object are
transparent black.

imagedata = context . createImageDatap274(imagedata)
Returns an ImageDatap256 object with the same dimensions as the argument. All the pixels in the returned
object are transparent black.

Throws a NOT_SUPPORTED_ERRp74 exception if the argument is null.

imagedata = context . getImageDatap274(sx, sy, sw, sh)
Returns an ImageDatap256 object containing the image data for the given rectangle of the canvas.

Throws a NOT_SUPPORTED_ERRp74 exception if any of the arguments are not finite. Throws an
INDEX_SIZE_ERRp74 exception if the either of the width or height arguments are zero.

imagedata . widthp275

imagedata . heightp275

Returns the actual dimensions of the data in the ImageDatap256 object, in device pixels.

imagedata . datap275

Returns the one-dimensional array containing the data in RGBA order, as integers in the range 0 to 255.

context . putImageDatap275(imagedata, dx, dy [, dirtyX, dirtyY, dirtyWidth, dirtyHeight])
Paints the data from the given ImageDatap256 object onto the canvas. If a dirty rectangle is provided, only
the pixels from that rectangle are painted.

The globalAlphap258 and globalCompositeOperationp258 attributes, as well as the shadow attributes, are
ignored for the purposes of this method call; pixels in the canvas are replaced wholesale, with no
composition, alpha blending, no shadows, etc.

If the first argument isn't an ImageDatap256 object, throws a TYPE_MISMATCH_ERRp74 exception. Throws a
NOT_SUPPORTED_ERRp74 exception if any of the other arguments are not finite.

The createImageData() method is used to instantiate new blank ImageDatap256 objects. When the method is invoked
with two arguments sw and sh, it must return an ImageDatap256 object representing a rectangle with a width in CSS
pixels equal to the absolute magnitude of sw and a height in CSS pixels equal to the absolute magnitude of sh. When
invoked with a single imagedata argument, it must return an ImageDatap256 object representing a rectangle with the
same dimensions as the ImageDatap256 object passed as the argument. The ImageDatap256 object return must be filled
with transparent black.

The getImageData(sx, sy, sw, sh) method must return an ImageDatap256 object representing the underlying pixel
data for the area of the canvas denoted by the rectangle whose corners are the four points (sx, sy), (sx+sw, sy),
(sx+sw, sy+sh), (sx, sy+sh), in canvas coordinate space units. Pixels outside the canvas must be returned as
transparent black. Pixels must be returned as non-premultiplied alpha values.

274

If any of the arguments to createImageData()p274 or getImageData()p274 are infinite or NaN, or if the
createImageData()p274 method is invoked with only one argument but that argument is null, the method must instead
raise a NOT_SUPPORTED_ERRp74 exception. If either the sw or sh arguments are zero, the method must instead raise an
INDEX_SIZE_ERRp74 exception.

ImageDatap256 objects must be initialized so that their width attribute is set to w, the number of physical device pixels
per row in the image data, their height attribute is set to h, the number of rows in the image data, and their data
attribute is initialized to a CanvasPixelArrayp256 object holding the image data. At least one pixel's worth of image
data must be returned.

The CanvasPixelArrayp256 object provides ordered, indexed access to the color components of each pixel of the image
data. The data must be represented in left-to-right order, row by row top to bottom, starting with the top left, with
each pixel's red, green, blue, and alpha components being given in that order for each pixel. Each component of each
device pixel represented in this array must be in the range 0..255, representing the 8 bit value for that component.
The components must be assigned consecutive indices starting with 0 for the top left pixel's red component.

The CanvasPixelArrayp256 object thus represents h×w×4 integers. The length attribute of a CanvasPixelArrayp256

object must return this number.

The object's indices of the supported indexed properties are the numbers in the range 0 .. h×w×4-1.

When a CanvasPixelArrayp256 object is indexed to retrieve an indexed property index, the value returned must
be the value of the indexth component in the array.

When a CanvasPixelArrayp256 object is indexed to modify an indexed property index with value value, the value
of the indexth component in the array must be set to value.

Note: The width and height (w and h) might be different from the sw and sh arguments to the
above methods, e.g. if the canvas is backed by a high-resolution bitmap, or if the sw and sh
arguments are negative.

The putImageData(imagedata, dx, dy, dirtyX, dirtyY, dirtyWidth, dirtyHeight) method writes data from
ImageDatap256 structures back to the canvas.

If any of the arguments to the method are infinite or NaN, the method must raise a NOT_SUPPORTED_ERRp74 exception.

If the first argument to the method is null or not an ImageDatap256 object then the putImageData()p275 method must
raise a TYPE_MISMATCH_ERRp74 exception.

When the last four arguments are omitted, they must be assumed to have the values 0, 0, the widthp275 member of
the imagedata structure, and the heightp275 member of the imagedata structure, respectively.

When invoked with arguments that do not, per the last few paragraphs, cause an exception to be raised, the
putImageData()p275 method must act as follows:

1. Let dxdevice be the x-coordinate of the device pixel in the underlying pixel data of the canvas corresponding
to the dx coordinate in the canvas coordinate space.

Let dydevice be the y-coordinate of the device pixel in the underlying pixel data of the canvas corresponding
to the dy coordinate in the canvas coordinate space.

2. If dirtyWidth is negative, let dirtyX be dirtyX+dirtyWidth, and let dirtyWidth be equal to the absolute
magnitude of dirtyWidth.

If dirtyHeight is negative, let dirtyY be dirtyY+dirtyHeight, and let dirtyHeight be equal to the absolute
magnitude of dirtyHeight.

3. If dirtyX is negative, let dirtyWidth be dirtyWidth+dirtyX, and let dirtyX be zero.

If dirtyY is negative, let dirtyHeight be dirtyHeight+dirtyY, and let dirtyY be zero.

4. If dirtyX+dirtyWidth is greater than the widthp275 attribute of the imagedata argument, let dirtyWidth be the
value of that widthp275 attribute, minus the value of dirtyX.

If dirtyY+dirtyHeight is greater than the heightp275 attribute of the imagedata argument, let dirtyHeight be
the value of that heightp275 attribute, minus the value of dirtyY.

5. If, after those changes, either dirtyWidth or dirtyHeight is negative or zero, stop these steps without
affecting the canvas.

275

6. Otherwise, for all integer values of x and y where dirtyX ≤ x < dirtyX+dirtyWidth and
dirtyY ≤ y < dirtyY+dirtyHeight, copy the four channels of the pixel with coordinate (x, y) in the imagedata
data structure to the pixel with coordinate (dxdevice+x, dydevice+y) in the underlying pixel data of the
canvas.

The handling of pixel rounding when the specified coordinates do not exactly map to the device coordinate space is
not defined by this specification, except that the following must result in no visible changes to the rendering:

context.putImageData(context.getImageData(x, y, w, h), p, q);

...for any value of x, y, w, and h and where p is the smaller of x and the sum of x and w, and q is the smaller of y and
the sum of y and h; and except that the following two calls:

context.createImageData(w, h);
context.getImageData(0, 0, w, h);

...must return ImageDatap256 objects with the same dimensions, for any value of w and h. In other words, while user
agents may round the arguments of these methods so that they map to device pixel boundaries, any rounding
performed must be performed consistently for all of the createImageData()p274, getImageData()p274 and
putImageData()p275 operations.

Note: Due to the lossy nature of converting to and from premultiplied alpha color values, pixels
that have just been set using putImageData()p275 might be returned to an equivalent
getImageData()p274 as different values.

The current path, transformation matrixp257, shadow attributesp263, global alphap258, the clipping regionp267, and global
composition operatorp258 must not affect the getImageData()p274 and putImageData()p275 methods.

The data returned by getImageData()p274 is at the resolution of the canvas backing store, which is likely to not
be one device pixel to each CSS pixel if the display used is a high resolution display.

In the following example, the script generates an ImageDatap256 object so that it can draw onto it.

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');

// create a blank slate
var data = context.createImageData(canvas.width, canvas.height);

// create some plasma
FillPlasma(data, 'green'); // green plasma

// add a cloud to the plasma
AddCloud(data, data.width/2, data.height/2); // put a cloud in the middle

// paint the plasma+cloud on the canvas
context.putImageData(data, 0, 0);

// support methods
function FillPlasma(data, color) { ... }
function AddCloud(data, x, y) { ... }

Here is an example of using getImageData()p274 and putImageData()p275 to implement an edge detection filter.

<!DOCTYPE HTML>
<html>
<head>
<title>Edge detection demo</title>
<script>
var image = new Image();
function init() {

image.onload = demo;
image.src = "image.jpeg";

}
function demo() {

var canvas = document.getElementsByTagName('canvas')[0];
var context = canvas.getContext('2d');

276

// draw the image onto the canvas
context.drawImage(image, 0, 0);

// get the image data to manipulate
var input = context.getImageData(0, 0, canvas.width, canvas.height);

// get an empty slate to put the data into
var output = context.createImageData(canvas.width, canvas.height);

// alias some variables for convenience
// notice that we are using input.width and input.height here
// as they might not be the same as canvas.width and canvas.height
// (in particular, they might be different on high-res displays)
var w = input.width, h = input.height;
var inputData = input.data;
var outputData = output.data;

// edge detection
for (var y = 1; y < h-1; y += 1) {

for (var x = 1; x < w-1; x += 1) {
for (var c = 0; c < 3; c += 1) {

var i = (y*w + x)*4 + c;
outputData[i] = 127 + -inputData[i - w*4 - 4] - inputData[i - w*4] -

inputData[i - w*4 + 4] +
-inputData[i - 4] + 8*inputData[i] -

inputData[i + 4] +
-inputData[i + w*4 - 4] - inputData[i + w*4] -

inputData[i + w*4 + 4];
}
outputData[(y*w + x)*4 + 3] = 255; // alpha

}
}

// put the image data back after manipulation
context.putImageData(output, 0, 0);

}
</script>

</head>
<body onload="init()">
<canvas></canvas>

</body>
</html>

4.8.10.1.13 Drawing model

When a shape or image is painted, user agents must follow these steps, in the order given (or act as if they do):

1. Render the shape or image onto an infinite transparent black bitmap, creating image A, as described in the
previous sections. For shapes, the current fill, stroke, and line styles must be honored, and the stroke must
itself also be subjected to the current transformation matrix.

2. When shadows are drawnp263, render the shadow from image A, using the current shadow styles, creating
image B.

3. When shadows are drawnp263, multiply the alpha component of every pixel in B by globalAlphap258.

4. When shadows are drawnp263, composite B within the clipping region over the current canvas bitmap using
the current composition operator.

5. Multiply the alpha component of every pixel in A by globalAlphap258.

6. Composite A within the clipping region over the current canvas bitmap using the current composition
operator.

277

4.8.10.1.14 Examples

This section is non-normative.

Here is an example of a script that uses canvas to draw pretty glowing lines.

<canvas width="800" height="450"></canvas>
<script>

var context = document.getElementsByTagName('canvas')[0].getContext('2d');

var lastX = context.canvas.width * Math.random();
var lastY = context.canvas.height * Math.random();
var hue = 0;
function line() {

context.save();
context.translate(context.canvas.width/2, context.canvas.height/2);
context.scale(0.9, 0.9);
context.translate(-context.canvas.width/2, -context.canvas.height/2);
context.beginPath();
context.lineWidth = 5 + Math.random() * 10;
context.moveTo(lastX, lastY);
lastX = context.canvas.width * Math.random();
lastY = context.canvas.height * Math.random();
context.bezierCurveTo(context.canvas.width * Math.random(),

context.canvas.height * Math.random(),
context.canvas.width * Math.random(),
context.canvas.height * Math.random(),
lastX, lastY);

hue = hue + 10 * Math.random();
context.strokeStyle = 'hsl(' + hue + ', 50%, 50%)';
context.shadowColor = 'white';
context.shadowBlur = 10;
context.stroke();
context.restore();

}
setInterval(line, 50);

function blank() {
context.fillStyle = 'rgba(0,0,0,0.1)';
context.fillRect(0, 0, context.canvas.width, context.canvas.height);

}
setInterval(blank, 40);

</script>

4.8.10.2 Color spaces and color correction

The canvasp251 APIs must perform color correction at only two points: when rendering images with their own gamma
correction and color space information onto the canvas, to convert the image to the color space used by the canvas
(e.g. using the 2D Context's drawImage()p272 method with an HTMLImageElementp197 object), and when rendering the
actual canvas bitmap to the output device.

Note: Thus, in the 2D context, colors used to draw shapes onto the canvas will exactly match
colors obtained through the getImageData()p274 method.

The toDataURL()p253 method must not include color space information in the resource returned. Where the output
format allows it, the color of pixels in resources created by toDataURL()p253 must match those returned by the
getImageData()p274 method.

In user agents that support CSS, the color space used by a canvasp251 element must match the color space used for
processing any colors for that element in CSS.

The gamma correction and color space information of images must be handled in such a way that an image rendered
directly using an imgp196 element would use the same colors as one painted on a canvasp251 element that is then itself

278

rendered. Furthermore, the rendering of images that have no color correction information (such as those returned by
the toDataURL()p253 method) must be rendered with no color correction.

Note: Thus, in the 2D context, calling the drawImage()p272 method to render the output of the
toDataURL()p253 method to the canvas, given the appropriate dimensions, has no visible effect.

4.8.10.3 Security with canvasp251 elements

Information leakage can occur if scripts from one originp474 can access information (e.g. read pixels) from images
from another origin (one that isn't the samep476).

To mitigate this, canvasp251 elements are defined to have a flag indicating whether they are origin-clean. All canvasp251

elements must start with their origin-clean set to true. The flag must be set to false if any of the following actions
occur:

• The element's 2D context's drawImage()p272 method is called with an HTMLImageElementp197 or an
HTMLVideoElementp226 whose originp474 is not the samep476 as that of the Documentp33 object that owns the
canvasp251 element.

• The element's 2D context's drawImage()p272 method is called with an HTMLCanvasElementp251 whose origin-
clean flag is false.

• The element's 2D context's fillStylep259 attribute is set to a CanvasPatternp255 object that was created
from an HTMLImageElementp197 or an HTMLVideoElementp226 whose originp474 was not the samep476 as that of
the Documentp33 object that owns the canvasp251 element when the pattern was created.

• The element's 2D context's fillStylep259 attribute is set to a CanvasPatternp255 object that was created
from an HTMLCanvasElementp251 whose origin-clean flag was false when the pattern was created.

• The element's 2D context's strokeStylep259 attribute is set to a CanvasPatternp255 object that was created
from an HTMLImageElementp197 or an HTMLVideoElementp226 whose originp474 was not the samep476 as that of
the Documentp33 object that owns the canvasp251 element when the pattern was created.

• The element's 2D context's strokeStylep259 attribute is set to a CanvasPatternp255 object that was created
from an HTMLCanvasElementp251 whose origin-clean flag was false when the pattern was created.

Whenever the toDataURL()p253 method of a canvasp251 element whose origin-clean flag is set to false is called, the
method must raise a SECURITY_ERRp74 exception.

Whenever the getImageData()p274 method of the 2D context of a canvasp251 element whose origin-clean flag is set to
false is called with otherwise correct arguments, the method must raise a SECURITY_ERRp74 exception.

Note: Even resetting the canvas state by changing its widthp252 or heightp252 attributes doesn't
reset the origin-clean flag.

Categories
Flow contentp96.
When the element only contains phrasing contentp96: phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Transparentp98.

Content attributes:
Global attributesp87

namep280

DOM interface:

interface HTMLMapElement : HTMLElement {
attribute DOMString name;

4.8.11 The map element

279

The mapp279 element, in conjunction with any areap280 element descendants, defines an image mapp282. The element
representsp672 its children.

The name attribute gives the map a name so that it can be referenced. The attribute must be present and must have a
non-empty value with no space charactersp36. The value of the namep280 attribute must not be a compatibility-
caselessp36 match for the value of the namep280 attribute of another mapp279 element in the same document. If the idp89

attribute is also specified, both attributes must have the same value.

This box is non-normative. Implementation requirements are given below this box.

map . areasp280

Returns an HTMLCollectionp63 of the areap280 elements in the mapp279.

map . imagesp280

Returns an HTMLCollectionp63 of the imgp196 and objectp220 elements that use the mapp279.

The areas attribute must return an HTMLCollectionp63 rooted at the mapp279 element, whose filter matches only
areap280 elements.

The images attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
imgp196 and objectp220 elements that are associated with this mapp279 element according to the image mapp282

processing model.

The IDL attribute name must reflectp61 the content attribute of the same name.

readonly attribute HTMLCollection areas;
readonly attribute HTMLCollection images;

};

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected, but only if there is a mapp279 element ancestor.

Content model:
Empty.

Content attributes:
Global attributesp87

altp281

coordsp281

shapep281

hrefp404

targetp404

pingp404

relp404

mediap404

hreflangp404

typep405

DOM interface:

interface HTMLAreaElement : HTMLElement {
attribute DOMString alt;
attribute DOMString coords;
attribute DOMString shape;

stringifier attribute DOMString href;

4.8.12 The area element

280

The areap280 element representsp672 either a hyperlink with some text and a corresponding area on an image mapp282,
or a dead area on an image map.

If the areap280 element has an hrefp404 attribute, then the areap280 element represents a hyperlinkp404. In this case, the
alt attribute must be present. It specifies the text of the hyperlink. Its value must be text that, when presented with
the texts specified for the other hyperlinks of the image mapp282, and with the alternative text of the image, but
without the image itself, provides the user with the same kind of choice as the hyperlink would when used without its
text but with its shape applied to the image. The altp281 attribute may be left blank if there is another areap280

element in the same image mapp282 that points to the same resource and has a non-blank altp281 attribute.

If the areap280 element has no hrefp404 attribute, then the area represented by the element cannot be selected, and
the altp281 attribute must be omitted.

In both cases, the shapep281 and coordsp281 attributes specify the area.

The shape attribute is an enumerated attributep37. The following table lists the keywords defined for this attribute. The
states given in the first cell of the rows with keywords give the states to which those keywords map. Some of the
keywords are non-conforming, as noted in the last column.

State Keywords Notes

circleCircle statep281

circ Non-conforming
Default statep281 default

polyPolygon statep281

polygon Non-conforming
rectRectangle statep282

rectangle Non-conforming

The attribute may be omitted. The missing value default is the rectanglep282 state.

The coords attribute must, if specified, contain a valid list of integersp41. This attribute gives the coordinates for the
shape described by the shapep281 attribute. The processing for this attribute is described as part of the image mapp282

processing model.

In the circle state, areap280 elements must have a coordsp281 attribute present, with three integers, the last of which
must be non-negative. The first integer must be the distance in CSS pixels from the left edge of the image to the
center of the circle, the second integer must be the distance in CSS pixels from the top edge of the image to the
center of the circle, and the third integer must be the radius of the circle, again in CSS pixels.

In the default state state, areap280 elements must not have a coordsp281 attribute. (The area is the whole image.)

In the polygon state, areap280 elements must have a coordsp281 attribute with at least six integers, and the number
of integers must be even. Each pair of integers must represent a coordinate given as the distances from the left and

attribute DOMString target;

attribute DOMString ping;

attribute DOMString rel;
readonly attribute DOMTokenList relList;

attribute DOMString media;
attribute DOMString hreflang;
attribute DOMString type;

// URL decomposition IDL attributes
attribute DOMString protocol;
attribute DOMString host;
attribute DOMString hostname;
attribute DOMString port;
attribute DOMString pathname;
attribute DOMString search;
attribute DOMString hash;

};

281

the top of the image in CSS pixels respectively, and all the coordinates together must represent the points of the
polygon, in order.

In the rectangle state, areap280 elements must have a coordsp281 attribute with exactly four integers, the first of
which must be less than the third, and the second of which must be less than the fourth. The four points must
represent, respectively, the distance from the left edge of the image to the left side of the rectangle, the distance from
the top edge to the top side, the distance from the left edge to the right side, and the distance from the top edge to
the bottom side, all in CSS pixels.

When user agents allow users to follow hyperlinksp405 created using the areap280 element, as described in the next
section, the hrefp404, targetp404 and pingp404 attributes decide how the link is followed. The relp404, mediap404,
hreflangp404, and typep405 attributes may be used to indicate to the user the likely nature of the target resource
before the user follows the link.

The targetp404, pingp404, relp404, mediap404, hreflangp404, and typep405 attributes must be omitted if the hrefp404

attribute is not present.

The activation behaviorp98 of areap280 elements is to run the following steps:

1. If the DOMActivatep33 event in question is not trustedp29 (i.e. a click()p537 method call was the reason for
the event being dispatched), and the areap280 element's targetp404 attribute is such that applying the rules
for choosing a browsing context given a browsing context namep466, using the value of the targetp404

attribute as the browsing context name, would result in there not being a chosen browsing context, then
raise an INVALID_ACCESS_ERRp74 exception and abort these steps.

2. Otherwise, the user agent must follow the hyperlinkp405 defined by the areap280 element, if any.

The IDL attributes alt, coords, href, target, ping, rel, media, hreflang, and type, each must reflectp61 the
respective content attributes of the same name.

The IDL attribute shape must reflectp61 the shapep281 content attribute, limited to only known valuesp61.

The IDL attribute relList must reflectp61 the relp404 content attribute.

The areap280 element also supports the complement of URL decomposition IDL attributesp56, protocol, host, port,
hostname, pathname, search, and hash. These must follow the rules given for URL decomposition IDL attributes, with
the inputp57 being the result of resolvingp55 the element's hrefp404 attribute relative to the element, if there is such an
attribute and resolving it is successful, or the empty string otherwise; and the common setter actionp57 being the same
as setting the element's hrefp404 attribute to the new output value.

4.8.13.1 Authoring

An image map allows geometric areas on an image to be associated with hyperlinksp404.

An image, in the form of an imgp196 element or an objectp220 element representing an image, may be associated with
an image map (in the form of a mapp279 element) by specifying a usemap attribute on the imgp196 or objectp220 element.
The usemapp282 attribute, if specified, must be a valid hash-name referencep54 to a mapp279 element.

Consider an image that looks as follows:

If we wanted just the colored areas to be clickable, we could do it as follows:

<p>
Please select a shape:

4.8.13 Image maps

282

<img src="shapes.png" usemap="#shapes"
alt="Four shapes are available: a red hollow box, a green circle, a blue triangle,

and a yellow four-pointed star.">
<map name="shapes">
<area shape=rect coords="50,50,100,100"> <!-- the hole in the red box -->
<area shape=rect coords="25,25,125,125" href="red.html" alt="Red box.">
<area shape=circle coords="200,75,50" href="green.html" alt="Green circle.">
<area shape=poly coords="325,25,262,125,388,125" href="blue.html" alt="Blue triangle.">
<area shape=poly coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60"

href="yellow.html" alt="Yellow star.">
</map>

</p>

4.8.13.2 Processing model

If an imgp196 element or an objectp220 element representing an image has a usemapp282 attribute specified, user agents
must process it as follows:

1. First, rules for parsing a hash-name referencep54 to a mapp279 element must be followed. This will return either
an element (the map) or null.

2. If that returned null, then abort these steps. The image is not associated with an image map after all.

3. Otherwise, the user agent must collect all the areap280 elements that are descendants of the map. Let those
be the areas.

Having obtained the list of areap280 elements that form the image map (the areas), interactive user agents must
process the list in one of two ways.

If the user agent intends to show the text that the imgp196 element represents, then it must use the following steps.

Note: In user agents that do not support images, or that have images disabled, objectp220

elements cannot represent images, and thus this section never applies (the fallback contentp97 is
shown instead). The following steps therefore only apply to imgp196 elements.

1. Remove all the areap280 elements in areas that have no hrefp404 attribute.

2. Remove all the areap280 elements in areas that have no altp281 attribute, or whose altp281 attribute's value is
the empty string, if there is another areap280 element in areas with the same value in the hrefp404 attribute
and with a non-empty altp281 attribute.

3. Each remaining areap280 element in areas represents a hyperlinkp404. Those hyperlinks should all be made
available to the user in a manner associated with the text of the imgp196.

In this context, user agents may represent areap280 and imgp196 elements with no specified alt attributes, or
whose alt attributes are the empty string or some other non-visible text, in a user-agent-defined fashion
intended to indicate the lack of suitable author-provided text.

If the user agent intends to show the image and allow interaction with the image to select hyperlinks, then the image
must be associated with a set of layered shapes, taken from the areap280 elements in areas, in reverse tree order (so
the last specified areap280 element in the map is the bottom-most shape, and the first element in the map, in tree
order, is the top-most shape).

Each areap280 element in areas must be processed as follows to obtain a shape to layer onto the image:

1. Find the state that the element's shapep281 attribute represents.

2. Use the rules for parsing a list of integersp41 to parse the element's coordsp281 attribute, if it is present, and
let the result be the coords list. If the attribute is absent, let the coords list be the empty list.

3. If the number of items in the coords list is less than the minimum number given for the areap280 element's
current state, as per the following table, then the shape is empty; abort these steps.

State Minimum number of items

Circle statep281 3

Default statep281 0

Polygon statep281 6

283

State Minimum number of items

Rectangle statep282 4

4. Check for excess items in the coords list as per the entry in the following list corresponding to the shapep281

attribute's state:

↪ Circle statep281

Drop any items in the list beyond the third.

↪ Default statep281

Drop all items in the list.

↪ Polygon statep281

Drop the last item if there's an odd number of items.

↪ Rectangle statep282

Drop any items in the list beyond the fourth.

5. If the shapep281 attribute represents the rectangle statep282, and the first number in the list is numerically
less than the third number in the list, then swap those two numbers around.

6. If the shapep281 attribute represents the rectangle statep282, and the second number in the list is numerically
less than the fourth number in the list, then swap those two numbers around.

7. If the shapep281 attribute represents the circle statep281, and the third number in the list is less than or equal
to zero, then the shape is empty; abort these steps.

8. Now, the shape represented by the element is the one described for the entry in the list below corresponding
to the state of the shapep281 attribute:

↪ Circle statep281

Let x be the first number in coords, y be the second number, and r be the third number.

The shape is a circle whose center is x CSS pixels from the left edge of the image and x CSS pixels
from the top edge of the image, and whose radius is r pixels.

↪ Default statep281

The shape is a rectangle that exactly covers the entire image.

↪ Polygon statep281

Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords (the first entry in coords
being the one with index 0).

Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the top left of the image,
for all integer values of i from 0 to (N/2)-1, where N is the number of items in coords.

The shape is a polygon whose vertices are given by the coordinates, and whose interior is
established using the even-odd rule. [GRAPHICS]p739

↪ Rectangle statep282

Let x1 be the first number in coords, y1 be the second number, x2 be the third number, and y2 be
the fourth number.

The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1) and whose
bottom right corner is given by the coordinate (x2, y2), those coordinates being interpreted as CSS
pixels from the top left corner of the image.

For historical reasons, the coordinates must be interpreted relative to the displayed image, even if it
stretched using CSS or the image element's width and height attributes.

Mouse clicks on an image associated with a set of layered shapes per the above algorithm must be dispatched to the
top-most shape covering the point that the pointing device indicated (if any), and then, must be dispatched again
(with a new Eventp33 object) to the image element itself. User agents may also allow individual areap280 elements
representing hyperlinksp404 to be selected and activated (e.g. using a keyboard); events from this are not also
propagated to the image.

284

Note: Because a mapp279 element (and its areap280 elements) can be associated with multiple imgp196

and objectp220 elements, it is possible for an areap280 element to correspond to multiple focusable
areas of the document.

Image maps are livep29; if the DOM is mutated, then the user agent must act as if it had rerun the algorithms for image
maps.

The math element from the MathML namespacep74 falls into the embedded contentp97, phrasing contentp96, and flow
contentp96 categories for the purposes of the content models in this specification.

User agents must handle text other than inter-element whitespacep94 found in MathML elements whose content
models do not allow straight text by pretending for the purposes of MathML content models, layout, and rendering that
that text is actually wrapped in an mtext element in the MathML namespacep74. (Such text is not, however,
conforming.)

User agents must act as if any MathML element whose contents does not match the element's content model was
replaced, for the purposes of MathML layout and rendering, by an merror element in the MathML namespacep74

containing some appropriate error message.

To enable authors to use MathML tools that only accept MathML in its XML form, interactive HTML user agents are
encouraged to provide a way to export any MathML fragment as an XML namespace-well-formed XML fragment.

The semantics of MathML elements are defined by the MathML specification and other relevant specifications.
[MATHML]p740

Here is an example of the use of MathML in an HTML document:

<!DOCTYPE html>
<html>
<head>
<title>The quadratic formula</title>

</head>
<body>
<h1>The quadratic formula</h1>
<p>
<math>
<mi>x</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mo form="prefix">−</mo> <mi>b</mi>
<mo>±</mo>
<msqrt>
<msup> <mi>b</mi> <mn>2</mn> </msup>
<mo>−</mo>
<mn>4</mn> <mo></mo> <mi>a</mi> <mo></mo> <mi>c</mi>

</msqrt>
</mrow>
<mrow>
<mn>2</mn> <mo></mo> <mi>a</mi>

</mrow>
</mfrac>

</math>
</p>

</body>
</html>

The svg element from the SVG namespacep74 falls into the embedded contentp97, phrasing contentp96, and flow
contentp96 categories for the purposes of the content models in this specification.

4.8.14 MathML

4.8.15 SVG

285

To enable authors to use SVG tools that only accept SVG in its XML form, interactive HTML user agents are encouraged
to provide a way to export any SVG fragment as an XML namespace-well-formed XML fragment.

When the SVG foreignObject element contains elements from the HTML namespacep74, such elements must all be
flow contentp96. [SVG]p742

The content model for title elements in the SVG namespacep74 inside HTML documentsp75 is phrasing contentp96.
(This further constrains the requirements given in the SVG specification.)

The semantics of SVG elements are defined by the SVG specification and other relevant specifications. [SVG]p742

The SVG specification includes requirements regarding the handling of elements in the DOM that are not in the SVG
namespace, that are in SVG fragments, and that are not included in a foreignObject element. This specification does
not define any processing for elements in SVG fragments that are not in the HTML namespace; they are considered
neither conforming nor non-conforming from the perspective of this specification.

Author requirements: The width and height attributes on imgp196, iframep211, embedp217, objectp220, videop225, and,
when their typep321 attribute is in the Image Buttonp339 state, inputp320 elements may be specified to give the
dimensions of the visual content of the element (the width and height respectively, relative to the nominal direction of
the output medium), in CSS pixels. The attributes, if specified, must have values that are valid non-negative
integersp37.

The specified dimensions given may differ from the dimensions specified in the resource itself, since the resource may
have a resolution that differs from the CSS pixel resolution. (On screens, CSS pixels have a resolution of 96ppi, but in
general the CSS pixel resolution depends on the reading distance.) If both attributes are specified, then one of the
following statements must be true:

• specified width - 0.5 ≤ specified height * target ratio ≤ specified width + 0.5

• specified height - 0.5 ≤ specified width / target ratio ≤ specified height + 0.5

• specified height = specified width = 0

The target ratio is the ratio of the intrinsic width to the intrinsic height in the resource. The specified width and
specified height are the values of the widthp286 and heightp286 attributes respectively.

The two attributes must be omitted if the resource in question does not have both an intrinsic width and an intrinsic
height.

If the two attributes are both zero, it indicates that the element is not intended for the user (e.g. it might be a part of a
service to count page views).

Note: The dimension attributes are not intended to be used to stretch the image.

User agent requirements: User agents are expected to use these attributes as hints for the renderingp685.

The width and height IDL attributes on the iframep211, embedp217, objectp220, and videop225 elements must reflectp61

the respective content attributes of the same name.

4.9 Tabular data

Categories
Flow contentp96.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
In this order: optionally a captionp292 element, followed by either zero or more colgroupp293 elements,
followed optionally by a theadp295 element, followed optionally by a tfootp296 element, followed by either
zero or more tbodyp294 elements or one or more trp296 elements, followed optionally by a tfootp296 element
(but there can only be one tfootp296 element child in total).

4.8.16 Dimension attributes

4.9.1 The table element

286

The tablep286 element representsp672 data with more than one dimension, in the form of a tablep301.

The tablep286 element takes part in the table modelp301.

Tables must not be used as layout aids. Historically, some Web authors have misused tables in HTML as a way to
control their page layout. This usage is non-conforming, because tools attempting to extract tabular data from such
documents would obtain very confusing results. In particular, users of accessibility tools like screen readers are likely
to find it very difficult to navigate pages with tables used for layout.

Note: There are a variety of alternatives to using HTML tables for layout, primarily using CSS
positioning and the CSS table model.

User agents that do table analysis on arbitrary content are encouraged to find heuristics to determine which tables
actually contain data and which are merely being used for layout. This specification does not define a precise heuristic.

Tables have rows and columns given by their descendants. A table must not have an empty row or column, as
described in the description of the table modelp301.

For tables that consist of more than just a grid of cells with headers in the first row and headers in the first column,
and for any table in general where the reader might have difficulty understanding the content, authors should include
explanatory information introducing the table. This information is useful for all users, but is especially useful for users
who cannot see the table, e.g. users of screen readers.

Such explanatory information should introduce the purpose of the table, outline its basic cell structure, highlight any
trends or patterns, and generally teach the user how to use the table.

For instance, the following table:

Characteristics with positive and
negative sides

Negative Characteristic Positive

Sad Mood Happy
Failing Grade Passing

...might benefit from a description explaining the way the table is laid out, something like "Characteristics are
given in the second column, with the negative side in the left column and the positive side in the right column".

There are a variety of ways to include this information, such as:

In prose, surrounding the table
<p>In the following table, characteristics are given in the second
column, with the negative side in the left column and the positive

Content attributes:
Global attributesp87

summaryp290 (but see prose)

DOM interface:

interface HTMLTableElement : HTMLElement {
attribute HTMLTableCaptionElement caption;

HTMLElement createCaption();
void deleteCaption();

attribute HTMLTableSectionElement tHead;
HTMLElement createTHead();
void deleteTHead();

attribute HTMLTableSectionElement tFoot;
HTMLElement createTFoot();
void deleteTFoot();
readonly attribute HTMLCollection tBodies;
HTMLElement createTBody();
readonly attribute HTMLCollection rows;
HTMLElement insertRow(in optional long index);
void deleteRow(in long index);

attribute DOMString summary;
};

287

side in the right column.</p>
<table>
<caption>Characteristics with positive and negative sides</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

In the table's captionp292

<table>
<caption>
Characteristics with positive and negative sides.
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>

In the table's captionp292, in a detailsp387 element
<table>
<caption>
Characteristics with positive and negative sides.
<details>
<summary>Help</summary>
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</details>
</caption>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade

288

<td> Passing
</table>

Next to the table, in the same figurep167

<figure>
<figcaption>Characteristics with positive and negative sides</figcaption>
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>
<table>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>
</figure>

Next to the table, in a figurep167's figcaptionp168

<figure>
<figcaption>
Characteristics with positive and negative sides
<p>Characteristics are given in the second column, with the
negative side in the left column and the positive side in the right
column.</p>

</figcaption>
<table>
<thead>
<tr>
<th id="n"> Negative
<th> Characteristic
<th> Positive

<tbody>
<tr>
<td headers="n r1"> Sad
<th id="r1"> Mood
<td> Happy

<tr>
<td headers="n r2"> Failing
<th id="r2"> Grade
<td> Passing

</table>
</figure>

Authors may also use other techniques, or combinations of the above techniques, as appropriate.

The best option, of course, rather than writing a description explaining the way the table is laid out, is to adjust the
table such that no explanation is needed.

In the case of the table used in the examples above, a simple rearrangement of the table so that the headers
are on the top and left sides removes the need for an explanation as well as removing the need for the use of
headersp300 attributes:

<table>
<caption>Characteristics with positive and negative sides</caption>
<thead>
<tr>
<th> Characteristic
<th> Negative

289

<th> Positive
<tbody>
<tr>
<th> Mood
<td> Sad
<td> Happy

<tr>
<th> Grade
<td> Failing
<td> Passing

</table>

The summary attribute on tablep286 elements was suggested in earlier versions of the language as a technique for
providing explanatory text for complex tables for users of screen readers. One of the techniquesp287 described above
should be used instead.

Note: In particular, authors are encouraged to consider whether their explanatory text for tables
is likely to be useful to the visually impaired: if their text would not be useful, then it is best to
not include a summaryp290 attribute. Similarly, if their explanatory text could help someone who is
not visually impaired, e.g. someone who is seeing the table for the first time, then the text would
be more useful before the table or in the captionp292. For example, describing the conclusions of
the data in a table is useful to everyone; explaining how to read the table, if not obvious from the
headers alone, is useful to everyone; describing the structure of the table, if it is easy to grasp
visually, may not be useful to everyone, but it might also not be useful to users who can quickly
navigate the table with an accessibility tool.

If a tablep286 element has a summaryp290 attribute, the user agent may report the contents of that attribute to the user.

This box is non-normative. Implementation requirements are given below this box.

table . captionp291 [= value]
Returns the table's captionp292 element.

Can be set, to replace the captionp292 element. If the new value is not a captionp292 element, throws a
HIERARCHY_REQUEST_ERRp74 exception.

caption = table . createCaptionp291()
Ensures the table has a captionp292 element, and returns it.

table . deleteCaptionp291()
Ensures the table does not have a captionp292 element.

table . tHeadp291 [= value]
Returns the table's theadp295 element.

Can be set, to replace the theadp295 element. If the new value is not a theadp295 element, throws a
HIERARCHY_REQUEST_ERRp74 exception.

thead = table . createTHeadp291()
Ensures the table has a theadp295 element, and returns it.

table . deleteTHeadp291()
Ensures the table does not have a theadp295 element.

table . tFootp291 [= value]
Returns the table's tfootp296 element.

Can be set, to replace the tfootp296 element. If the new value is not a tfootp296 element, throws a
HIERARCHY_REQUEST_ERRp74 exception.

tfoot = table . createTFootp292()
Ensures the table has a tfootp296 element, and returns it.

290

table . deleteTFootp292()
Ensures the table does not have a tfootp296 element.

table . tBodiesp292

Returns an HTMLCollectionp63 of the tbodyp294 elements of the table.

tbody = table . createTBodyp292()
Creates a tbodyp294 element, inserts it into the table, and returns it.

table . rowsp292

Returns an HTMLCollectionp63 of the trp296 elements of the table.

tr = table . insertRowp292(index)
Creates a trp296 element, along with a tbodyp294 if required, inserts them into the table at the position
given by the argument, and returns the trp296.
The position is relative to the rows in the table. The index −1 is equivalent to inserting at the end of the
table.

If the given position is less than −1 or greater than the number of rows, throws an INDEX_SIZE_ERRp74

exception.

table . deleteRowp292(index)
Removes the trp296 element with the given position in the table.
The position is relative to the rows in the table. The index −1 is equivalent to deleting the last row of the
table.
If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws
an INDEX_SIZE_ERRp74 exception.

The caption IDL attribute must return, on getting, the first captionp292 element child of the tablep286 element, if any,
or null otherwise. On setting, if the new value is a captionp292 element, the first captionp292 element child of the
tablep286 element, if any, must be removed, and the new value must be inserted as the first node of the tablep286

element. If the new value is not a captionp292 element, then a HIERARCHY_REQUEST_ERRp74 DOM exception must be
raised instead.

The createCaption() method must return the first captionp292 element child of the tablep286 element, if any;
otherwise a new captionp292 element must be created, inserted as the first node of the tablep286 element, and then
returned.

The deleteCaption() method must remove the first captionp292 element child of the tablep286 element, if any.

The tHead IDL attribute must return, on getting, the first theadp295 element child of the tablep286 element, if any, or
null otherwise. On setting, if the new value is a theadp295 element, the first theadp295 element child of the tablep286

element, if any, must be removed, and the new value must be inserted immediately before the first element in the
tablep286 element that is neither a captionp292 element nor a colgroupp293 element, if any, or at the end of the table if
there are no such elements. If the new value is not a theadp295 element, then a HIERARCHY_REQUEST_ERRp74 DOM
exception must be raised instead.

The createTHead() method must return the first theadp295 element child of the tablep286 element, if any; otherwise a
new theadp295 element must be created and inserted immediately before the first element in the tablep286 element
that is neither a captionp292 element nor a colgroupp293 element, if any, or at the end of the table if there are no such
elements, and then that new element must be returned.

The deleteTHead() method must remove the first theadp295 element child of the tablep286 element, if any.

The tFoot IDL attribute must return, on getting, the first tfootp296 element child of the tablep286 element, if any, or
null otherwise. On setting, if the new value is a tfootp296 element, the first tfootp296 element child of the tablep286

element, if any, must be removed, and the new value must be inserted immediately before the first element in the
tablep286 element that is neither a captionp292 element, a colgroupp293 element, nor a theadp295 element, if any, or at
the end of the table if there are no such elements. If the new value is not a tfootp296 element, then a
HIERARCHY_REQUEST_ERRp74 DOM exception must be raised instead.

291

The createTFoot() method must return the first tfootp296 element child of the tablep286 element, if any; otherwise a
new tfootp296 element must be created and inserted immediately before the first element in the tablep286 element
that is neither a captionp292 element, a colgroupp293 element, nor a theadp295 element, if any, or at the end of the
table if there are no such elements, and then that new element must be returned.

The deleteTFoot() method must remove the first tfootp296 element child of the tablep286 element, if any.

The tBodies attribute must return an HTMLCollectionp63 rooted at the tablep286 node, whose filter matches only
tbodyp294 elements that are children of the tablep286 element.

The createTBody() method must create a new tbodyp294 element, insert it immediately after the last tbodyp294

element in the tablep286 element, if any, or at the end of the tablep286 element if the tablep286 element has no
tbodyp294 element children, and then must return the new tbodyp294 element.

The rows attribute must return an HTMLCollectionp63 rooted at the tablep286 node, whose filter matches only trp296

elements that are either children of the tablep286 element, or children of theadp295, tbodyp294, or tfootp296 elements
that are themselves children of the tablep286 element. The elements in the collection must be ordered such that those
elements whose parent is a theadp295 are included first, in tree order, followed by those elements whose parent is
either a tablep286 or tbodyp294 element, again in tree order, followed finally by those elements whose parent is a
tfootp296 element, still in tree order.

The behavior of the insertRow(index) method depends on the state of the table. When it is called, the method must
act as required by the first item in the following list of conditions that describes the state of the table and the index
argument:

↪ If index is less than −1 or greater than the number of elements in rowsp292 collection:
The method must raise an INDEX_SIZE_ERRp74 exception.

↪ If the rowsp292 collection has zero elements in it, and the tablep286 has no tbodyp294 elements in it:
The method must create a tbodyp294 element, then create a trp296 element, then append the trp296 element
to the tbodyp294 element, then append the tbodyp294 element to the tablep286 element, and finally return the
trp296 element.

↪ If the rowsp292 collection has zero elements in it:
The method must create a trp296 element, append it to the last tbodyp294 element in the table, and return the
trp296 element.

↪ If index is missing, equal to −1, or equal to the number of items in rowsp292 collection:
The method must create a trp296 element, and append it to the parent of the last trp296 element in the
rowsp292 collection. Then, the newly created trp296 element must be returned.

↪ Otherwise:
The method must create a trp296 element, insert it immediately before the indexth trp296 element in the
rowsp292 collection, in the same parent, and finally must return the newly created trp296 element.

When the deleteRow(index) method is called, the user agent must run the following steps:

1. If index is equal to −1, then index must be set to the number if items in the rowsp292 collection, minus one.

2. Now, if index is less than zero, or greater than or equal to the number of elements in the rowsp292 collection,
the method must instead raise an INDEX_SIZE_ERRp74 exception, and these steps must be aborted.

3. Otherwise, the method must remove the indexth element in the rowsp292 collection from its parent.

The summary IDL attribute must reflectp61 the content attribute of the same name.

Categories
None.

Contexts in which this element may be used:
As the first element child of a tablep286 element.

Content model:
Flow contentp96, but with no descendant tablep286 elements.

4.9.2 The caption element

292

The captionp292 element representsp672 the title of the tablep286 that is its parent, if it has a parent and that is a
tablep286 element.

The captionp292 element takes part in the table modelp301.

When a tablep286 element is the only content in a figurep167 element other than the figcaptionp168, the captionp292

element should be omitted in favor of the figcaptionp168.

A caption can introduce context for a table, making it significantly easier to understand.

Consider, for instance, the following table:

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 1011
6 7 8 9 101112

In the abstract, this table is not clear. However, with a caption giving the table's number (for reference in the
main prose) and explaining its use, it makes more sense:

<caption>
<p>Table 1.
<p>This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first die,
the first column the value of the second die. The total is given in
the cell that corresponds to the values of the two dice.
</caption>

This provides the user with more context:

Table 1.

This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first
die, the first column the value of the second die. The total
is given in the cell that corresponds to the values of the
two dice.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 1011
6 7 8 9 101112

Content attributes:
Global attributesp87

DOM interface:

interface HTMLTableCaptionElement : HTMLElement {};

Categories
None.

Contexts in which this element may be used:
As a child of a tablep286 element, after any captionp292 elements and before any theadp295, tbodyp294,
tfootp296, and trp296 elements.

Content model:
If the spanp294 attribute is present: Empty.
If the spanp294 attribute is absent: Zero or more colp294 elements.

4.9.3 The colgroup element

293

The colgroupp293 element representsp672 a groupp301 of one or more columnsp301 in the tablep286 that is its parent, if it
has a parent and that is a tablep286 element.

If the colgroupp293 element contains no colp294 elements, then the element may have a span content attribute
specified, whose value must be a valid non-negative integerp37 greater than zero.

The colgroupp293 element and its spanp294 attribute take part in the table modelp301.

The span IDL attribute must reflectp61 the content attribute of the same name. The value must be limited to only non-
negative numbers greater than zerop62.

If a colp294 element has a parent and that is a colgroupp293 element that itself has a parent that is a tablep286

element, then the colp294 element representsp672 one or more columnsp301 in the column groupp301 represented by that
colgroupp293.

The element may have a span content attribute specified, whose value must be a valid non-negative integerp37

greater than zero.

The colp294 element and its spanp294 attribute take part in the table modelp301.

The span IDL attribute must reflectp61 the content attribute of the same name. The value must be limited to only non-
negative numbers greater than zerop62.

Content attributes:
Global attributesp87

spanp294

DOM interface:

interface HTMLTableColElement : HTMLElement {
attribute unsigned long span;

};

Categories
None.

Contexts in which this element may be used:
As a child of a colgroupp293 element that doesn't have a spanp294 attribute.

Content model:
Empty.

Content attributes:
Global attributesp87

spanp294

DOM interface:
HTMLTableColElementp294, same as for colgroupp293 elements. This interface defines one member, spanp294.

Categories
None.

Contexts in which this element may be used:
As a child of a tablep286 element, after any captionp292, colgroupp293, and theadp295 elements, but only if
there are no trp296 elements that are children of the tablep286 element.

Content model:
Zero or more trp296 elements

4.9.4 The col element

4.9.5 The tbody element

294

The tbodyp294 element representsp672 a blockp301 of rowsp301 that consist of a body of data for the parent tablep286

element, if the tbodyp294 element has a parent and it is a tablep286.

The tbodyp294 element takes part in the table modelp301.

This box is non-normative. Implementation requirements are given below this box.

tbody . rowsp295

Returns an HTMLCollectionp63 of the trp296 elements of the table section.

tr = tbody . insertRowp295([index])
Creates a trp296 element, inserts it into the table section at the position given by the argument, and
returns the trp296.
The position is relative to the rows in the table section. The index −1, which is the default if the argument
is omitted, is equivalent to inserting at the end of the table section.

If the given position is less than −1 or greater than the number of rows, throws an INDEX_SIZE_ERRp74

exception.

tbody . deleteRowp295(index)
Removes the trp296 element with the given position in the table section.
The position is relative to the rows in the table section. The index −1 is equivalent to deleting the last row
of the table section.
If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws
an INDEX_SIZE_ERRp74 exception.

The rows attribute must return an HTMLCollectionp63 rooted at the element, whose filter matches only trp296

elements that are children of the element.

The insertRow(index) method must, when invoked on an element table section, act as follows:

If index is less than −1 or greater than the number of elements in the rowsp295 collection, the method must raise an
INDEX_SIZE_ERRp74 exception.

If index is missing, equal to −1, or equal to the number of items in the rowsp295 collection, the method must create a
trp296 element, append it to the element table section, and return the newly created trp296 element.

Otherwise, the method must create a trp296 element, insert it as a child of the table section element, immediately
before the indexth trp296 element in the rowsp295 collection, and finally must return the newly created trp296 element.

The deleteRow(index) method must remove the indexth element in the rowsp295 collection from its parent. If index is
less than zero or greater than or equal to the number of elements in the rowsp295 collection, the method must instead
raise an INDEX_SIZE_ERRp74 exception.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLTableSectionElement : HTMLElement {
readonly attribute HTMLCollection rows;
HTMLElement insertRow(in optional long index);
void deleteRow(in long index);

};

The HTMLTableSectionElementp295 interface is also used for theadp295 and tfootp296 elements.

Categories
None.

4.9.6 The thead element

295

The theadp295 element representsp672 the blockp301 of rowsp301 that consist of the column labels (headers) for the
parent tablep286 element, if the theadp295 element has a parent and it is a tablep286.

The theadp295 element takes part in the table modelp301.

The tfootp296 element representsp672 the blockp301 of rowsp301 that consist of the column summaries (footers) for the
parent tablep286 element, if the tfootp296 element has a parent and it is a tablep286.

The tfootp296 element takes part in the table modelp301.

Contexts in which this element may be used:
As a child of a tablep286 element, after any captionp292, and colgroupp293 elements and before any
tbodyp294, tfootp296, and trp296 elements, but only if there are no other theadp295 elements that are children
of the tablep286 element.

Content model:
Zero or more trp296 elements

Content attributes:
Global attributesp87

DOM interface:
HTMLTableSectionElementp295, as defined for tbodyp294 elements.

Categories
None.

Contexts in which this element may be used:
As a child of a tablep286 element, after any captionp292, colgroupp293, and theadp295 elements and before
any tbodyp294 and trp296 elements, but only if there are no other tfootp296 elements that are children of the
tablep286 element.
As a child of a tablep286 element, after any captionp292, colgroupp293, theadp295, tbodyp294, and trp296

elements, but only if there are no other tfootp296 elements that are children of the tablep286 element.

Content model:
Zero or more trp296 elements

Content attributes:
Global attributesp87

DOM interface:
HTMLTableSectionElementp295, as defined for tbodyp294 elements.

Categories
None.

Contexts in which this element may be used:
As a child of a theadp295 element.
As a child of a tbodyp294 element.
As a child of a tfootp296 element.
As a child of a tablep286 element, after any captionp292, colgroupp293, and theadp295 elements, but only if
there are no tbodyp294 elements that are children of the tablep286 element.

Content model:
When the parent node is a theadp295 element: Zero or more thp298 elements
Otherwise: Zero or more tdp298 or thp298 elements

Content attributes:
Global attributesp87

4.9.7 The tfoot element

4.9.8 The tr element

296

The trp296 element representsp672 a rowp301 of cellsp301 in a tablep301.

The trp296 element takes part in the table modelp301.

This box is non-normative. Implementation requirements are given below this box.

tr . rowIndexp297

Returns the position of the row in the table's rowsp292 list.
Returns −1 if the element isn't in a table.

tr . sectionRowIndexp297

Returns the position of the row in the table section's rowsp295 list.
Returns −1 if the element isn't in a table section.

tr . cellsp297

Returns an HTMLCollectionp63 of the tdp298 and thp298 elements of the row.

cell = tr . insertCellp297([index])
Creates a tdp298 element, inserts it into the table row at the position given by the argument, and returns
the tdp298.
The position is relative to the cells in the row. The index −1, which is the default if the argument is
omitted, is equivalent to inserting at the end of the row.

If the given position is less than −1 or greater than the number of cells, throws an INDEX_SIZE_ERRp74

exception.

tr . deleteCellp298(index)
Removes the tdp298 or thp298 element with the given position in the row.
The position is relative to the cells in the row. The index −1 is equivalent to deleting the last cell of the
row.
If the given position is less than −1 or greater than the index of the last cell, or if there are no cells, throws
an INDEX_SIZE_ERRp74 exception.

The rowIndex attribute must, if the element has a parent tablep286 element, or a parent tbodyp294, theadp295, or
tfootp296 element and a grandparent tablep286 element, return the index of the trp296 element in that tablep286

element's rowsp292 collection. If there is no such tablep286 element, then the attribute must return −1.

The sectionRowIndex attribute must, if the element has a parent tablep286, tbodyp294, theadp295, or tfootp296 element,
return the index of the trp296 element in the parent element's rows collection (for tables, that's the
HTMLTableElement.rowsp292 collection; for table sections, that's the HTMLTableRowElement.rowsp295 collection). If
there is no such parent element, then the attribute must return −1.

The cells attribute must return an HTMLCollectionp63 rooted at the trp296 element, whose filter matches only tdp298

and thp298 elements that are children of the trp296 element.

The insertCell(index) method must act as follows:

If index is less than −1 or greater than the number of elements in the cellsp297 collection, the method must raise an
INDEX_SIZE_ERRp74 exception.

DOM interface:

interface HTMLTableRowElement : HTMLElement {
readonly attribute long rowIndex;
readonly attribute long sectionRowIndex;
readonly attribute HTMLCollection cells;
HTMLElement insertCell(in optional long index);
void deleteCell(in long index);

};

297

If index is missing, equal to −1, or equal to the number of items in cellsp297 collection, the method must create a
tdp298 element, append it to the trp296 element, and return the newly created tdp298 element.

Otherwise, the method must create a tdp298 element, insert it as a child of the trp296 element, immediately before the
indexth tdp298 or thp298 element in the cellsp297 collection, and finally must return the newly created tdp298 element.

The deleteCell(index) method must remove the indexth element in the cellsp297 collection from its parent. If index
is less than zero or greater than or equal to the number of elements in the cellsp297 collection, the method must
instead raise an INDEX_SIZE_ERRp74 exception.

The tdp298 element representsp672 a data cellp301 in a table.

The tdp298 element and its colspanp300, rowspanp300, and headersp300 attributes take part in the table modelp301.

The thp298 element representsp672 a header cellp301 in a table.

The thp298 element may have a scope content attribute specified. The scopep298 attribute is an enumerated attributep37

with five states, four of which have explicit keywords:

The row keyword, which maps to the row state
The row state means the header cell applies to some of the subsequent cells in the same row(s).

Categories
Sectioning rootp152.

Contexts in which this element may be used:
As a child of a trp296 element.

Content model:
Flow contentp96.

Content attributes:
Global attributesp87

colspanp300

rowspanp300

headersp300

DOM interface:

interface HTMLTableDataCellElement : HTMLTableCellElement {};

Categories
None.

Contexts in which this element may be used:
As a child of a trp296 element.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

colspanp300

rowspanp300

headersp300

scopep298

DOM interface:

interface HTMLTableHeaderCellElement : HTMLTableCellElement {
attribute DOMString scope;

};

4.9.9 The td element

4.9.10 The th element

298

The col keyword, which maps to the column state
The column state means the header cell applies to some of the subsequent cells in the same column(s).

The rowgroup keyword, which maps to the row group state
The row group state means the header cell applies to all the remaining cells in the row group. A thp298 element's
scopep298 attribute must not be in the row groupp299 state if the element is not anchored in a row groupp301.

The colgroup keyword, which maps to the column group state
The column group state means the header cell applies to all the remaining cells in the column group. A thp298

element's scopep298 attribute must not be in the column groupp299 state if the element is not anchored in a
column groupp301.

The auto state
The auto state makes the header cell apply to a set of cells selected based on context.

The scopep298 attribute's missing value default is the auto state.

The thp298 element and its colspanp300, rowspanp300, headersp300, and scopep298 attributes take part in the table
modelp301.

The scope IDL attribute must reflectp61 the content attribute of the same name.

The following example shows how the scopep298 attribute's rowgroupp299 value affects which data cells a header
cell applies to.

Here is a markup fragment showing a table:

<table>
<thead>
<tr> <th> ID <th> Measurement <th> Average <th> Maximum

<tbody>
<tr> <td> <th scope=rowgroup> Cats <td> <td>
<tr> <td> 93 <th> Legs <td> 3.5 <td> 4
<tr> <td> 10 <th> Tails <td> 1 <td> 1

<tbody>
<tr> <td> <th scope=rowgroup> English speakers <td> <td>
<tr> <td> 32 <th> Legs <td> 2.67 <td> 4
<tr> <td> 35 <th> Tails <td> 0.33 <td> 1

</table>

This would result in the following table:

ID Measurement Average Maximum

Cats
93 Legs 3.5 4
10 Tails 1 1

English speakers
32 Legs 2.67 4
35 Tails 0.33 1

The headers in the first row all apply directly down to the rows in their column.

The headers with the explicit scopep298 attributes apply to all the cells in their row group other than the cells in
the first column.

The remaining headers apply just to the cells to the right of them.

299

The tdp298 and thp298 elements may have a colspan content attribute specified, whose value must be a valid non-
negative integerp37 greater than zero.

The tdp298 and thp298 elements may also have a rowspan content attribute specified, whose value must be a valid non-
negative integerp37.

These attributes give the number of columns and rows respectively that the cell is to span. These attributes must not
be used to overlap cells, as described in the description of the table modelp301.

The tdp298 and thp298 element may have a headers content attribute specified. The headersp300 attribute, if specified,
must contain a string consisting of an unordered set of unique space-separated tokensp52, each of which must have
the value of an ID of a thp298 element taking part in the same tablep301 as the tdp298 or thp298 element (as defined by
the table modelp301).

A thp298 element with ID id is said to be directly targeted by all tdp298 and thp298 elements in the same tablep301 that
have headersp300 attributes whose values include as one of their tokens the ID id. A thp298 element A is said to be
targeted by a thp298 or tdp298 element B if either A is directly targeted by B or if there exists an element C that is itself
targeted by the element B and A is directly targeted by C.

A thp298 element must not be targeted by itself.

The colspanp300, rowspanp300, and headersp300 attributes take part in the table modelp301.

The tdp298 and thp298 elements implement interfaces that inherit from the HTMLTableCellElementp300 interface:

interface HTMLTableCellElement : HTMLElement {
attribute unsigned long colSpan;
attribute unsigned long rowSpan;

[PutForwards=value] readonly attribute DOMSettableTokenList headers;
readonly attribute long cellIndex;

};

This box is non-normative. Implementation requirements are given below this box.

4.9.11 Attributes common to tdp298 and thp298 elements

300

cell . cellIndexp301

Returns the position of the cell in the row's cellsp297 list. This does not necessarily correspond to the x-
position of the cell in the table, since earlier cells might cover multiple rows or columns.
Returns 0 if the element isn't in a row.

The colSpan IDL attribute must reflectp61 the content attribute of the same name. The value must be limited to only
non-negative numbers greater than zerop62.

The rowSpan IDL attribute must reflectp61 the content attribute of the same name. Its default value, which must be
used if parsing the attribute as a non-negative integerp37 returns an error, is 1.

The headers IDL attribute must reflectp61 the content attribute of the same name.

The cellIndex IDL attribute must, if the element has a parent trp296 element, return the index of the cell's element in
the parent element's cellsp297 collection. If there is no such parent element, then the attribute must return 0.

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x, y). The grid is finite, and is
either empty or has one or more slots. If the grid has one or more slots, then the x coordinates are always in the range
0 ≤ x < xwidth, and the y coordinates are always in the range 0 ≤ y < yheight. If one or both of xwidth and yheight are
zero, then the table is empty (has no slots). Tables correspond to tablep286 elements.

A cell is a set of slots anchored at a slot (cellx, celly), and with a particular width and height such that the cell covers
all the slots with coordinates (x, y) where cellx ≤ x < cellx+width and celly ≤ y < celly+height. Cells can either be data
cells or header cells. Data cells correspond to tdp298 elements, and header cells correspond to thp298 elements. Cells of
both types can have zero or more associated header cells.

It is possible, in certain error cases, for two cells to occupy the same slot.

A row is a complete set of slots from x=0 to x=xwidth-1, for a particular value of y. Rows correspond to trp296

elements.

A column is a complete set of slots from y=0 to y=yheight-1, for a particular value of x. Columns can correspond to
colp294 elements. In the absence of colp294 elements, columns are implied.

A row group is a set of rowsp301 anchored at a slot (0, groupy) with a particular height such that the row group covers
all the slots with coordinates (x, y) where 0 ≤ x < xwidth and groupy ≤ y < groupy+height. Row groups correspond to
tbodyp294, theadp295, and tfootp296 elements. Not every row is necessarily in a row group.

A column group is a set of columnsp301 anchored at a slot (groupx, 0) with a particular width such that the column
group covers all the slots with coordinates (x, y) where groupx ≤ x < groupx+width and 0 ≤ y < yheight. Column
groups correspond to colgroupp293 elements. Not every column is necessarily in a column group.

Row groupsp301 cannot overlap each other. Similarly, column groupsp301 cannot overlap each other.

A cellp301 cannot cover slots that are from two or more row groupsp301. It is, however, possible for a cell to be in
multiple column groupsp301. All the slots that form part of one cell are part of zero or one row groupsp301 and zero or
more column groupsp301.

In addition to cellsp301, columnsp301, rowsp301, row groupsp301, and column groupsp301, tablesp301 can have a captionp292

element associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by tablep286 elements and their descendants. Documents
must not have table model errors.

4.9.12.1 Forming a table

To determine which elements correspond to which slots in a tablep301 associated with a tablep286 element, to
determine the dimensions of the table (xwidth and yheight), and to determine if there are any table model errorsp301,
user agents must use the following algorithm:

4.9.12 Processing model

301

1. Let xwidth be zero.

2. Let yheight be zero.

3. Let pending tfootp296 elements be a list of tfootp296 elements, initially empty.

4. Let the table be the tablep301 represented by the tablep286 element. The xwidth and yheight variables give the
table's dimensions. The table is initially empty.

5. If the tablep286 element has no children elements, then return the table (which will be empty), and abort
these steps.

6. Associate the first captionp292 element child of the tablep286 element with the table. If there are no such
children, then it has no associated captionp292 element.

7. Let the current element be the first element child of the tablep286 element.

If a step in this algorithm ever requires the current element to be advanced to the next child of the
table when there is no such next child, then the user agent must jump to the step labeled end, near the end
of this algorithm.

8. While the current element is not one of the following elements, advancep302 the current element to the next
child of the tablep286:

• colgroupp293

• theadp295

• tbodyp294

• tfootp296

• trp296

9. If the current element is a colgroupp293, follow these substeps:

1. Column groups: Process the current element according to the appropriate case below:

↪ If the current element has any colp294 element children
Follow these steps:

1. Let xstart have the value of xwidth.

2. Let the current column be the first colp294 element child of the colgroupp293

element.

3. Columns: If the current column colp294 element has a spanp294 attribute, then
parse its value using the rules for parsing non-negative integersp37.

If the result of parsing the value is not an error or zero, then let span be that
value.

Otherwise, if the colp294 element has no spanp294 attribute, or if trying to parse
the attribute's value resulted in an error or zero, then let span be 1.

4. Increase xwidth by span.

5. Let the last span columnsp301 in the table correspond to the current column
colp294 element.

6. If current column is not the last colp294 element child of the colgroupp293

element, then let the current column be the next colp294 element child of the
colgroupp293 element, and return to the step labeled columns.

7. Let all the last columnsp301 in the table from x=xstart to x=xwidth-1 form a new
column groupp301, anchored at the slot (xstart, 0), with width xwidth-xstart,
corresponding to the colgroupp293 element.

↪ If the current element has no colp294 element children

1. If the colgroupp293 element has a spanp294 attribute, then parse its value using
the rules for parsing non-negative integersp37.

If the result of parsing the value is not an error or zero, then let span be that
value.

302

Otherwise, if the colgroupp293 element has no spanp294 attribute, or if trying to
parse the attribute's value resulted in an error or zero, then let span be 1.

2. Increase xwidth by span.

3. Let the last span columnsp301 in the table form a new column groupp301,
anchored at the slot (xwidth-span, 0), with width span, corresponding to the
colgroupp293 element.

2. Advancep302 the current element to the next child of the tablep286.

3. While the current element is not one of the following elements, advancep302 the current element to
the next child of the tablep286:

• colgroupp293

• theadp295

• tbodyp294

• tfootp296

• trp296

4. If the current element is a colgroupp293 element, jump to the step labeled column groups above.

10. Let ycurrent be zero.

11. Let the list of downward-growing cells be an empty list.

12. Rows: While the current element is not one of the following elements, advancep302 the current element to
the next child of the tablep286:

• theadp295

• tbodyp294

• tfootp296

• trp296

13. If the current element is a trp296, then run the algorithm for processing rowsp304, advancep302 the current
element to the next child of the tablep286, and return to the step labeled rows.

14. Run the algorithm for ending a row groupp304.

15. If the current element is a tfootp296, then add that element to the list of pending tfootp296 elements,
advancep302 the current element to the next child of the tablep286, and return to the step labeled rows.

16. The current element is either a theadp295 or a tbodyp294.

Run the algorithm for processing row groupsp303.

17. Advancep302 the current element to the next child of the tablep286.

18. Return to the step labeled rows.

19. End: For each tfootp296 element in the list of pending tfootp296 elements, in tree order, run the algorithm for
processing row groupsp303.

20. If there exists a rowp301 or columnp301 in the table containing only slotsp301 that do not have a cellp301

anchored to them, then this is a table model errorp301.

21. Return the table.

The algorithm for processing row groups, which is invoked by the set of steps above for processing theadp295,
tbodyp294, and tfootp296 elements, is:

1. Let ystart have the value of yheight.

2. For each trp296 element that is a child of the element being processed, in tree order, run the algorithm for
processing rowsp304.

3. If yheight > ystart, then let all the last rowsp301 in the table from y=ystart to y=yheight-1 form a new row
groupp301, anchored at the slot with coordinate (0, ystart), with height yheight-ystart, corresponding to the
element being processed.

4. Run the algorithm for ending a row groupp304.

303

The algorithm for ending a row group, which is invoked by the set of steps above when starting and ending a
block of rows, is:

1. While ycurrent is less than yheight, follow these steps:

1. Run the algorithm for growing downward-growing cellsp305.

2. Increase ycurrent by 1.

2. Empty the list of downward-growing cells.

The algorithm for processing rows, which is invoked by the set of steps above for processing trp296 elements, is:

1. If yheight is equal to ycurrent, then increase yheight by 1. (ycurrent is never greater than yheight.)

2. Let xcurrent be 0.

3. Run the algorithm for growing downward-growing cellsp305.

4. If the trp296 element being processed has no tdp298 or thp298 element children, then increase ycurrent by 1,
abort this set of steps, and return to the algorithm above.

5. Let current cell be the first tdp298 or thp298 element in the trp296 element being processed.

6. Cells: While xcurrent is less than xwidth and the slot with coordinate (xcurrent, ycurrent) already has a cell
assigned to it, increase xcurrent by 1.

7. If xcurrent is equal to xwidth, increase xwidth by 1. (xcurrent is never greater than xwidth.)

8. If the current cell has a colspanp300 attribute, then parse that attribute's valuep37, and let colspan be the
result.

If parsing that value failed, or returned zero, or if the attribute is absent, then let colspan be 1, instead.

9. If the current cell has a rowspanp300 attribute, then parse that attribute's valuep37, and let rowspan be the
result.

If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

10. If rowspan is zero, then let cell grows downward be true, and set rowspan to 1. Otherwise, let cell grows
downward be false.

11. If xwidth < xcurrent+colspan, then let xwidth be xcurrent+colspan.

12. If yheight < ycurrent+rowspan, then let yheight be ycurrent+rowspan.

13. Let the slots with coordinates (x, y) such that xcurrent ≤ x < xcurrent+colspan and
ycurrent ≤ y < ycurrent+rowspan be covered by a new cellp301 c, anchored at (xcurrent, ycurrent), which has
width colspan and height rowspan, corresponding to the current cell element.

If the current cell element is a thp298 element, let this new cell c be a header cell; otherwise, let it be a data
cell.

To establish which header cells apply to the current cell element, use the algorithm for assigning header
cellsp305 described in the next section.

If any of the slots involved already had a cellp301 covering them, then this is a table model errorp301. Those
slots now have two cells overlapping.

14. If cell grows downward is true, then add the tuple {c, xcurrent, colspan} to the list of downward-growing cells.

15. Increase xcurrent by colspan.

16. If current cell is the last tdp298 or thp298 element in the trp296 element being processed, then increase ycurrent
by 1, abort this set of steps, and return to the algorithm above.

17. Let current cell be the next tdp298 or thp298 element in the trp296 element being processed.

18. Return to the step labelled cells.

304

When the algorithms above require the user agent to run the algorithm for growing downward-growing cells, the
user agent must, for each {cell, cellx, width} tuple in the list of downward-growing cells, if any, extend the cellp301 cell
so that it also covers the slots with coordinates (x, ycurrent), where cellx ≤ x < cellx+width.

4.9.12.2 Forming relationships between data cells and header cells

Each cell can be assigned zero or more header cells. The algorithm for assigning header cells to a cell principal
cell is as follows.

1. Let header list be an empty list of cells.

2. Let (principalx, principaly) be the coordinate of the slot to which the principal cell is anchored.

3.↪ If the principal cell has a headersp300 attribute specified

1. Take the value of the principal cell's headersp300 attribute and split it on spacesp52, letting
id list be the list of tokens obtained.

2. For each token in the id list, if the first element in the Documentp33 with an ID equal to the
token is a cell in the same tablep301, and that cell is not the principal cell, then add that
cell to header list.

↪ If principal cell does not have a headersp300 attribute specified

1. Let principalwidth be the width of the principal cell.

2. Let principalheight be the height of the principal cell.

3. For each value of y from principaly to principaly+principalheight-1, run the internal
algorithm for scanning and assigning header cellsp305, with the principal cell, the header
list, the initial coordinate (principalx,y), and the increments Δx=−1 and Δy=0.

4. For each value of x from principalx to principalx+principalwidth-1, run the internal
algorithm for scanning and assigning header cellsp305, with the principal cell, the header
list, the initial coordinate (x,principaly), and the increments Δx=0 and Δy=−1.

5. If the principal cell is anchored in a row groupp301, then add all header cells that are row
group headersp306 and are anchored in the same row group with an x-coordinate less
than or equal to principalx+principalwidth-1 and a y-coordinate less than or equal to
principaly+principalheight-1 to header list.

6. If the principal cell is anchored in a column groupp301, then add all header cells that are
column group headersp306 and are anchored in the same column group with an x-
coordinate less than or equal to principalx+principalwidth-1 and a y-coordinate less than
or equal to principaly+principalheight-1 to header list.

4. Remove all the empty cellsp306 from the header list.

5. Remove any duplicates from the header list.

6. Remove principal cell from the header list if it is there.

7. Assign the headers in the header list to the principal cell.

The internal algorithm for scanning and assigning header cells, given a principal cell, a header list, an initial
coordinate (initialx, initialy), and Δx and Δy increments, is as follows:

1. Let x equal initialx.

2. Let y equal initialy.

3. Let opaque headers be an empty list of cells.

4.↪ If principal cell is a header cell
Let in header block be true, and let headers from current header block be a list of cells containing
just the principal cell.

↪ Otherwise
Let in header block be false and let headers from current header block be an empty list of cells.

305

5. Loop: Increment x by Δx; increment y by Δy.

Note: For each invocation of this algorithm, one of Δx and Δy will be −1, and the other
will be 0.

6. If either x or y is less than 0, then abort this internal algorithm.

7. If there is no cell covering slot (x, y), or if there is more than one cell covering slot (x, y), return to the
substep labeled loop.

8. Let current cell be the cell covering slot (x, y).

9.↪ If current cell is a header cell

1. Set in header block to true.

2. Add current cell to headers from current header block.

3. Let blocked be false.

4.↪ If Δx is 0
If there are any cells in the opaque headers list anchored with the same x-
coordinate as the current cell, and with the same width as current cell, then let
blocked be true.

If the current cell is not a column headerp306, then let blocked be true.

↪ If Δy is 0
If there are any cells in the opaque headers list anchored with the same y-
coordinate as the current cell, and with the same height as current cell, then let
blocked be true.

If the current cell is not a row headerp306, then let blocked be true.

5. If blocked is false, then add the current cell to the headers list.

↪ If current cell is a data cell and in header block is true
Set in header block to false. Add all the cells in headers from current header block to the opaque
headers list, and empty the headers from current header block list.

10. Return to the step labeled loop.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a column
header if any of the following conditions are true:

• The cell's scopep298 attribute is in the columnp299 state, or

• The cell's scopep298 attribute is in the autop299 state, and there are no data cells in any of the cells covering
slots with y-coordinates y .. y+height-1.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a row header
if any of the following conditions are true:

• The cell's scopep298 attribute is in the rowp298 state, or

• The cell's scopep298 attribute is in the autop299 state, the cell is not a column headerp306, and there are no
data cells in any of the cells covering slots with x-coordinates x .. x+width-1.

A header cell is said to be a column group header if its scopep298 attribute is in the column groupp299 state.

A header cell is said to be a row group header if its scopep298 attribute is in the row groupp299 state.

A cell is said to be an empty cell if it contains no elements and its text content, if any, consists only of White_Spacep36

characters.

This section is non-normative.

4.9.13 Examples

306

The following shows how might one mark up the bottom part of table 45 of the Smithsonian physical tables, Volume
71:

<table>
<caption>Specification values: Steel, Castings,
Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.</caption>
<thead>
<tr>
<th rowspan=2>Grade.</th>
<th rowspan=2>Yield Point.</th>
<th colspan=2>Ultimate tensile strength</th>
<th rowspan=2>Per cent elong. 50.8mm or 2 in.</th>
<th rowspan=2>Per cent reduct. area.</th>

</tr>
<tr>
<th>kg/mm²</th>
<th>lb/in²</th>

</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>0.45 ultimate</td>
<td>56.2</td>
<td>80,000</td>
<td>15</td>
<td>20</td>

</tr>
<tr>
<td>Medium</td>
<td>0.45 ultimate</td>
<td>49.2</td>
<td>70,000</td>
<td>18</td>
<td>25</td>

</tr>
<tr>
<td>Soft</td>
<td>0.45 ultimate</td>
<td>42.2</td>
<td>60,000</td>
<td>22</td>
<td>30</td>

</tr>
</tbody>

</table>

This table could look like this:

Specification values: Steel, Castings, Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.
Ultimate tensile strength

Grade. Yield Point.
kg/mm2 lb/in2

Per cent
elong.

50.8 mm
or 2 in.

Per cent
reduct.
area.

Hard 0.45 ultimate 56.2 80,000 15 20
Medium 0.45 ultimate 49.2 70,000 18 25
Soft 0.45 ultimate 42.2 60,000 22 30

The following shows how one might mark up the gross margin table on page 46 of Apple, Inc's 10-K filing for fiscal year
2008:

<table>
<thead>
<tr>
<th>
<th>2008
<th>2007

307

<th>2006
<tbody>
<tr>
<th>Net sales
<td>$ 32,479
<td>$ 24,006
<td>$ 19,315

<tr>
<th>Cost of sales
<td> 21,334
<td> 15,852
<td> 13,717

<tbody>
<tr>
<th>Gross margin
<td>$ 11,145
<td>$ 8,154
<td>$ 5,598

<tfoot>
<tr>
<th>Gross margin percentage
<td>34.3%
<td>34.0%
<td>29.0%

</table>

This table could look like this:

2008 2007 2006

Net sales . $ 32,479 $ 24,006 $ 19,315
Cost of sales . 21,334 15,852 13,717
Gross margin . $ 11,145 $ 8,154 $ 5,598

Gross margin percentage 34.3% 34.0% 29.0%

The following shows how one might mark up the operating expenses table from lower on the same page of that
document:

<table>
<colgroup> <col>
<colgroup> <col> <col> <col>
<thead>
<tr> <th> <th>2008 <th>2007 <th>2006

<tbody>
<tr> <th scope=rowgroup> Research and development

<td> $ 1,109 <td> $ 782 <td> $ 712
<tr> <th scope=row> Percentage of net sales

<td> 3.4% <td> 3.3% <td> 3.7%
<tbody>
<tr> <th scope=rowgroup> Selling, general, and administrative

<td> $ 3,761 <td> $ 2,963 <td> $ 2,433
<tr> <th scope=row> Percentage of net sales

<td> 11.6% <td> 12.3% <td> 12.6%
</table>

This table could look like this:

2008 2007 2006

Research and development . $ 1,109 $ 782 $ 712
Percentage of net sales . 3.4% 3.3% 3.7%

Selling, general, and administrative $ 3,761 $ 2,963 $ 2,433
Percentage of net sales . 11.6% 12.3% 12.6%

308

4.10 Forms

This section is non-normative.

Forms allow unscripted client-server interaction: given a form, a user can provide data, submit it to the server, and
have the server act on it accordingly (e.g. returning the results of a search or calculation). The elements used in forms
can also be used for user interaction with no associated submission mechanism, in conjunction with scripts.

Writing a form consists of several steps, which can be performed in any order: writing the user interface, implementing
the server-side processing, and configuring the user interface to communicate with the server.

4.10.1.1 Writing a form's user interface

This section is non-normative.

For the purposes of this brief introduction, we will create a pizza ordering form.

Any form starts with a formp314 element, inside which are placed the controls. Most controls are represented by the
inputp320 element, which by default provides a one-line text field. To label a control, the labelp319 element is used; the
label text and the control itself go inside the labelp319 element. Each part of a form is considered a paragraphp98, and
is typically separated from other parts using pp157 elements. Putting this together, here is how one might ask for the
customer's name:

<form>
<p><label>Customer name: <input></label></p>

</form>

To let the user select the size of the pizza, we can use a set of radio buttons. Radio buttons also use the inputp320

element, this time with a typep321 attribute with the value radiop337. To make the radio buttons work as a group, they
are given a common name using the namep374 attribute. To group a batch of controls together, such as, in this case, the
radio buttons, one can use the fieldsetp317 element. The title of such a group of controls is given by the first element
in the fieldsetp317, which has to be a legendp318 element.

<form>
<p><label>Customer name: <input></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
</form>

Note: Changes from the previous step are highlighted.

To pick toppings, we can use checkboxes. These use the inputp320 element with a typep321 attribute with the value
checkboxp336:

<form>
<p><label>Customer name: <input></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
</form>

4.10.1 Introduction

309

The pizzeria for which this form is being written is always making mistakes, so it needs a way to contact the customer.
For this purpose, we can use form controls specifically for telephone numbers (inputp320 elements with their typep321

attribute set to telp325) and e-mail addresses (inputp320 elements with their typep321 attribute set to emailp327):

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>E-mail address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
</form>

We can use an inputp320 element with its typep321 attribute set to timep331 to ask for a delivery time. Many of these
form controls have attributes to control exactly what values can be specified; in this case, three attributes of particular
interest are minp346, maxp346, and stepp347. These set the minimum time, the maximum time, and the interval between
allowed values (in seconds). This pizzeria only delivers between 11am and 9pm, and doesn't promise anything better
than 15 minute increments, which we can mark up as follows:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>E-mail address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00"

step="900"></label></p>
</form>

The textareap360 element can be used to provide a free-form text field. In this instance, we are going to use it to
provide a space for the customer to give delivery instructions:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>E-mail address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>

310

<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00"

step="900"></label></p>
<p><label>Delivery instructions: <textarea></textarea></label></p>

</form>

Finally, to make the form submittable we use the buttonp351 element:

<form>
<p><label>Customer name: <input></label></p>
<p><label>Telephone: <input type=tel></label></p>
<p><label>E-mail address: <input type=email></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size> Small </label></p>
<p><label> <input type=radio name=size> Medium </label></p>
<p><label> <input type=radio name=size> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox> Bacon </label></p>
<p><label> <input type=checkbox> Extra Cheese </label></p>
<p><label> <input type=checkbox> Onion </label></p>
<p><label> <input type=checkbox> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00"

step="900"></label></p>
<p><label>Delivery instructions: <textarea></textarea></label></p>
<p><button>Submit order</button><p>

</form>

4.10.1.2 Implementing the server-side processing for a form

This section is non-normative.

The exact details for writing a server-side processor are out of scope for this specification. For the purposes of this
introduction, we will assume that the script at https://pizza.example.com/order.cgi is configured to accept
submissions using the application/x-www-form-urlencodedp376 format, expecting the following parameters sent in
an HTTP POST body:

custname
Customer's name

custtel
Customer's telephone number

custemail
Customer's e-mail address

size
The pizza size, either small, medium, or large

toppings
The topping, specified once for each selected topping, with the allowed values being bacon, cheese, onion, and
mushroom

delivery
The requested delivery time

comments
The delivery instructions

4.10.1.3 Configuring a form to communicate with a server

This section is non-normative.

311

Form submissions are exposed to servers in a variety of ways, most commonly as HTTP GET or POST requests. To
specify the exact method used, the methodp375 attribute is specified on the formp314 element. This doesn't specify how
the form data is encoded, though; to specify that, you use the enctypep376 attribute. You also have to specify the
URLp54 of the service that will handle the submitted data, using the actionp375 attribute.

For each form control you want submitted, you then have to give a name that will be used to refer to the data in the
submission. We already specified the name for the group of radio buttons; the same attribute (namep374) also specifies
the submission name. Radio buttons can be distinguished from each other in the submission by giving them different
values, using the valuep323 attribute.

Multiple controls can have the same name; for example, here we give all the checkboxes the same name, and the
server distinguishes which checkbox was checked by seeing which values are submitted with that name — like the
radio buttons, they are also given unique values with the valuep323 attribute.

Given the settings in the previous section, this all becomes:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname"></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>E-mail address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size value="small"> Small </label></p>
<p><label> <input type=radio name=size value="medium"> Medium </label></p>
<p><label> <input type=radio name=size value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery"></label></p>
<p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<p><button>Submit order</button><p>

</form>

For example, if the customer entered "Denise Lawrence" as their name, "555-321-8642" as their telephone number,
did not specify an e-mail address, asked for a medium-sized pizza, selected the Extra Cheese and Mushroom toppings,
entered a delivery time of 7pm, and left the delivery instructions text field blank, the user agent would submit the
following to the online Web service:

custname=Denise+Lawrence&custtel=555-321-8624&custemail=&size=medium&topping=cheese&topping=mushroom&delivery=19%3A00&comments=

4.10.1.4 Client-side form validation

This section is non-normative.

Forms can be annotated in such a way that the user agent will check the user's input before the form is submitted. The
server still has to verify the input is valid (since hostile users can easily bypass the form validation), but it allows the
user to avoid the wait incurred by having the server be the sole checker of the user's input.

The simplest annotation is the requiredp344 attribute, which can be specified on inputp320 elements to indicate that
the form is not to be submitted until a value is given. By adding this attribute to the customer name and delivery time
fields, we allow the user agent to notify the user when the user submits the form without filling in those fields:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>E-mail address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>

312

<p><label> <input type=radio name=size value="small"> Small </label></p>
<p><label> <input type=radio name=size value="medium"> Medium </label></p>
<p><label> <input type=radio name=size value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
<p><button>Submit order</button><p>

</form>

It is also possible to limit the length of the input, using the maxlengthp375 attribute. By adding this to the textareap360

element, we can limit users to 1000 characters, preventing them from writing huge essays to the busy delivery drivers
instead of staying focused and to the point:

<form method="post"
enctype="application/x-www-form-urlencoded"
action="https://pizza.example.com/order.cgi">

<p><label>Customer name: <input name="custname" required></label></p>
<p><label>Telephone: <input type=tel name="custtel"></label></p>
<p><label>E-mail address: <input type=email name="custemail"></label></p>
<fieldset>
<legend> Pizza Size </legend>
<p><label> <input type=radio name=size value="small"> Small </label></p>
<p><label> <input type=radio name=size value="medium"> Medium </label></p>
<p><label> <input type=radio name=size value="large"> Large </label></p>

</fieldset>
<fieldset>
<legend> Pizza Toppings </legend>
<p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
<p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
<p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
<p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>

</fieldset>
<p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"

name="delivery" required></label></p>
<p><label>Delivery instructions: <textarea name="comments"

maxlength=1000></textarea></label></p>
<p><button>Submit order</button><p>

</form>

Mostly for historical reasons, elements in this section fall into several overlapping (but subtly different) categories in
addition to the usual ones like flow contentp96, phrasing contentp96, and interactive contentp97.

A number of the elements are form-associated elements, which means they can have a form ownerp373 and, to
expose this, have a formp373 content attribute with a matching formp374 IDL attribute.

⇒ buttonp351, fieldsetp317, inputp320, keygenp363, labelp319, meterp369, objectp220, outputp366, progressp367,
selectp353, textareap360

The form-associated elementsp313 fall into several subcategories:

Listed elements
Denotes elements that are listed in the form.elementsp316 and fieldset.elementsp318 APIs.

⇒ buttonp351, fieldsetp317, inputp320, keygenp363, objectp220, outputp366, selectp353, textareap360

4.10.2 Categories

313

Labelable elements
Denotes elements that can be associated with labelp319 elements.

⇒ buttonp351, inputp320, keygenp363, meterp369, outputp366, progressp367, selectp353, textareap360

Submittable elements
Denotes elements that can be used for constructing the form data setp381 when a formp314 element is
submittedp381.

⇒ buttonp351, inputp320, keygenp363, objectp220, selectp353, textareap360

Resettable elements
Denotes elements that can be affected when a formp314 element is resetp387.

⇒ inputp320, keygenp363, outputp366, selectp353, textareap360

In addition, some submittable elementsp314 can be, depending on their attributes, buttons. The prose below defines
when an element is a button. Some buttons are specifically submit buttons.

Note: The objectp220 element is also a form-associated elementp313 and can, with the use of a
suitable pluginp29, partake in form submissionp380.

Categories
Flow contentp96.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Flow contentp96, but with no formp314 element descendants.

Content attributes:
Global attributesp87

accept-charsetp315

actionp375

autocompletep315

enctypep376

methodp375

namep315

novalidatep376

targetp376

DOM interface:

[OverrideBuiltins]
interface HTMLFormElement : HTMLElement {

attribute DOMString acceptCharset;
attribute DOMString action;
attribute boolean autocomplete;
attribute DOMString enctype;
attribute DOMString method;
attribute DOMString name;
attribute boolean noValidate;
attribute DOMString target;

readonly attribute HTMLFormControlsCollection elements;
readonly attribute long length;
caller getter any item(in unsigned long index);
caller getter any namedItem(in DOMString name);

void submit();
void reset();
boolean checkValidity();

4.10.3 The form element

314

The formp314 element representsp672 a collection of form-associated elementsp313, some of which can represent editable
values that can be submitted to a server for processing.

The accept-charset attribute gives the character encodings that are to be used for the submission. If specified, the
value must be an ordered set of unique space-separated tokensp52, and each token must be an ASCII case-
insensitivep35 match for the preferred MIME namep30 of an ASCII-compatible character encodingp30. [IANACHARSET]p739

The name attribute represents the formp314 's name within the formsp81 collection. The value must not be the empty
string, and the value must be unique amongst the formp314 elements in the formsp81 collection that it is in, if any.

The autocomplete attribute is an enumerated attributep37. The attribute has two states. The on keyword maps to the
on state, and the off keyword maps to the off state. The attribute may also be omitted. The missing value default is
the onp315 state. The offp315 state indicates that by default, inputp320 elements in the form will have their resulting
autocompletion statep342 set to off; the onp315 state indicates that by default, inputp320 elements in the form will have
their resulting autocompletion statep342 set to on.

The actionp375, enctypep376, methodp375, novalidatep376, and targetp376 attributes are attributes for form
submissionp375.

This box is non-normative. Implementation requirements are given below this box.

form . elementsp316

Returns an HTMLCollectionp63 of the form controls in the form (excluding image buttons for historical
reasons).

form . lengthp316

Returns the number of form controls in the form (excluding image buttons for historical reasons).

element = form . itemp316(index)
form[index]
form(index)

Returns the indexth element in the form (excluding image buttons for historical reasons).

element = form . namedItemp316(name)
form[name]
form(name)

Returns the form control in the form with the given ID or namep374 (excluding image buttons for historical
reasons).
Once an element has been referenced using a particular name, that name will continue being available as
a way to reference that element in this method, even if the element's actual ID or namep374 changes, for as
long as the element remains in the Documentp33.

If there are multiple matching items, then a NodeListp33 object containing all those elements is returned.

Returns null if no element with that IDp89 or namep374 could be found.

form . submitp316()
Submits the form.

form . resetp316()
Resets the form.

form . checkValidityp316()
Returns true if the form's controls are all valid; otherwise, returns false.

void dispatchFormInput();
void dispatchFormChange();

};

315

form . dispatchFormInputp317()
Dispatches a forminput event at all the form controls.

form . dispatchFormChangep317()
Dispatches a formchange event at all the form controls.

The autocomplete and name IDL attributes must reflectp61 the respective content attributes of the same name.

The acceptCharset IDL attribute must reflectp61 the accept-charsetp315 content attribute.

The elements IDL attribute must return an HTMLFormControlsCollectionp65 rooted at the Documentp33 node, whose
filter matches listed elementsp313 whose form ownerp373 is the formp314 element, with the exception of inputp320

elements whose typep321 attribute is in the Image Buttonp339 state, which must, for historical reasons, be excluded
from this particular collection.

The length IDL attribute must return the number of nodes representedp63 by the elementsp316 collection.

The indices of the supported indexed properties at any instant are the indices supported by the object returned by the
elementsp316 attribute at that instant.

The item(index) method must return the value returned by the method of the same name on the elementsp316

collection, when invoked with the same argument.

Each formp314 element has a mapping of names to elements called the past names map. It is used to persist names
of controls even when they change names.

The names of the supported named properties are the union of the names currently supported by the object returned
by the elementsp316 attribute, and the names currently in the past names mapp316.

The namedItem(name) method, when called, must run the following steps:

1. If name is one of the names of the supported named properties of the object returned by the elementsp316

attribute, then run these substeps:

1. Let candidate be the object returned by the namedItem()p65 method on the object returned by the
elementsp316 attribute when passed the name argument.

2. If candidate is an element, then add a mapping from name to candidate in the formp314 element's
past names mapp316, replacing the previous entry with the same name, if any.

3. Return candidate and abort these steps.

2. Otherwise, name is the name of one of the entries in the formp314 element's past names mapp316: return the
object associated with name in that map.

If an element listed in the formp314 element's past names mapp316 is removed from the Documentp33, then its entries
must be removed from the map.

The submit() method, when invoked, must submitp381 the formp314 element from the formp314 element itself, with the
scripted-submit flag set.

The reset() method, when invoked, must run the following steps:

1. If the formp314 element is marked as locked for resetp316, then abort these steps.

2. Mark the formp314 element as locked for reset.

3. Resetp387 the formp314 element.

4. Unmark the formp314 element as locked for resetp316.

If the checkValidity() method is invoked, the user agent must statically validate the constraintsp377 of the formp314

element, and return true if the constraint validation return a positive result, and false if it returned a negative result.

316

If the dispatchFormInput() method is invoked, the user agent must broadcast forminput eventsp387 from the
formp314 element.

If the dispatchFormChange() method is invoked, the user agent must broadcast formchange eventsp387 from the
formp314 element.

This example shows two search forms:

<form action="http://www.google.com/search" method="get">
<label>Google: <input type="search" name="q"></label> <input type="submit"

value="Search...">
</form>
<form action="http://www.bing.com/search" method="get">
<label>Bing: <input type="search" name="q"></label> <input type="submit"

value="Search...">
</form>

The fieldsetp317 element representsp672 a set of form controls optionally grouped under a common name.

The name of the group is given by the first legendp318 element that is a child of the fieldsetp317 element, if any. The
remainder of the descendants form the group.

The disabled attribute, when specified, causes all the form control descendants of the fieldsetp317 element,
excluding those that are descendants of the fieldsetp317 element's first legendp318 element child, if any, to be
disabledp374.

The formp373 attribute is used to explicitly associate the fieldsetp317 element with its form ownerp373. The namep374

attribute represents the element's name.

Categories
Flow contentp96.
Sectioning rootp152.
Listedp313 form-associated elementp313.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Optionally a legendp318 element, followed by flow contentp96.

Content attributes:
Global attributesp87

disabledp317

formp373

namep374

DOM interface:

interface HTMLFieldSetElement : HTMLElement {
attribute boolean disabled;

readonly attribute HTMLFormElement form;
attribute DOMString name;

readonly attribute DOMString type;

readonly attribute HTMLFormControlsCollection elements;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

};

4.10.4 The fieldset element

317

This box is non-normative. Implementation requirements are given below this box.

fieldset . typep318

Returns the string "fieldset".

fieldset . elementsp316

Returns an HTMLCollectionp63 of the form controls in the element.

The disabled IDL attribute must reflectp61 the content attribute of the same name.

The type IDL attribute must return the string "fieldset".

The elements IDL attribute must return an HTMLFormControlsCollectionp65 rooted at the fieldsetp317 element,
whose filter matches listed elementsp313.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378.

Constraint validation: fieldsetp317 elements are always barred from constraint validationp376.

The following snippet shows a fieldset with a checkbox in the legend that controls whether or not the fieldset is
enabled. The contents of the fieldset consist of two required text fields and an optional year/month control.

<fieldset name="clubfields" disabled>
<legend> <label>
<input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
Use Club Card

</label> </legend>
<p><label>Name on card: <input name=clubname required></label></p>
<p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>
<p><label>Expiry date: <input name=clubexp type=month></label></p>

</fieldset>

The legendp318 element representsp672 a caption for the rest of the contents of the legendp318 element's parent
fieldsetp317 element, if any.

This box is non-normative. Implementation requirements are given below this box.

legend . formp318

Returns the element's formp314 element, if any, or null otherwise.

The form IDL attribute's behavior depends on whether the legendp318 element is in a fieldsetp317 element or not. If
the legendp318 has a fieldsetp317 element as its parent, then the formp318 IDL attribute must return the same value as
the formp374 IDL attribute on that fieldsetp317 element. Otherwise, it must return null.

Categories
None.

Contexts in which this element may be used:
As the first child of a fieldsetp317 element.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLLegendElement : HTMLElement {
readonly attribute HTMLFormElement form;

};

4.10.5 The legend element

318

The labelp319 representsp672 a caption in a user interface. The caption can be associated with a specific form control,
known as the labelp319 element's labeled control, either using forp319 attribute, or by putting the form control inside
the labelp319 element itself.

Except where otherwise specified by the following rules, a labelp319 element has no labeled controlp319.

The for attribute may be specified to indicate a form control with which the caption is to be associated. If the attribute
is specified, the attribute's value must be the ID of a labelable form-associated elementp314 in the same Documentp33 as
the labelp319 element. If the attribute is specified and there is an element in the Documentp33 whose ID is equal to the
value of the forp319 attribute, and the first such element is a labelable form-associated elementp314, then that element
is the labelp319 element's labeled controlp319.

If the forp319 attribute is not specified, but the labelp319 element has a labelable form-associated elementp314

descendant, then the first such descendant in tree orderp29 is the labelp319 element's labeled controlp319.

The labelp319 element's exact default presentation and behavior, in particular what its activation behaviorp98 might be,
if anything, should match the platform's label behavior.

For example, on platforms where clicking a checkbox label checks the checkbox, clicking the labelp319 in the
following snippet could trigger the user agent to run synthetic click activation stepsp97 on the inputp320 element,
as if the element itself had been triggered by the user:

<label><input type=checkbox name=lost> Lost</label>

On other platforms, the behavior might be just to focus the control, or do nothing.

This box is non-normative. Implementation requirements are given below this box.

label . controlp319

Returns the form control that is associated with this element.

The formp373 attribute is used to explicitly associate the labelp319 element with its form ownerp373.

The htmlFor IDL attribute must reflectp61 the forp319 content attribute.

The control IDL attribute must return the labelp319 element's labeled controlp319, if any, or null if there isn't one.

Categories
Flow contentp96.
Phrasing contentp96.
Interactive contentp97.
Form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96, but with no descendant labelable form-associated elementsp314 unless it is the
element's labeled controlp319, and no descendant labelp319 elements.

Content attributes:
Global attributesp87

formp373

forp319

DOM interface:

interface HTMLLabelElement : HTMLElement {
readonly attribute HTMLFormElement form;

attribute DOMString htmlFor;
readonly attribute HTMLElement control;

};

4.10.6 The label element

319

This box is non-normative. Implementation requirements are given below this box.

control . labelsp320

Returns a NodeListp33 of all the labelp319 elements that the form control is associated with.

Labelable form-associated elementsp314 have a NodeListp33 object associated with them that represents the list of
labelp319 elements, in tree orderp29, whose labeled controlp319 is the element in question. The labels IDL attribute of
labelable form-associated elementsp314, on getting, must return that NodeListp33 object.

The following example shows three form controls each with a label, two of which have small text showing the
right format for users to use.

<p><label>Full name: <input name=fn> <small>Format: First Last</small></label></p>
<p><label>Age: <input name=age type=number min=0></label></p>
<p><label>Post code: <input name=pc> <small>Format: AB12 3CD</small></label></p>

Categories
Flow contentp96.
Phrasing contentp96.
If the typep321 attribute is not in the Hiddenp324 state: Interactive contentp97.
Listedp313, labelablep314, submittablep314, and resettablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

acceptp338

altp340

autocompletep342

autofocusp374

checkedp323

disabledp374

formp373

formactionp375

formenctypep376

formmethodp375

formnovalidatep376

formtargetp376

heightp286

listp342

maxp346

maxlengthp346

minp346

multiplep345

namep374

patternp346

placeholderp348

readonlyp344

requiredp344

sizep344

srcp339

stepp347

typep321

valuep323

widthp286

4.10.7 The input element

320

The inputp320 element representsp672 a typed data field, usually with a form control to allow the user to edit the data.

The type attribute controls the data type (and associated control) of the element. It is an enumerated attributep37. The
following table lists the keywords and states for the attribute — the keywords in the left column map to the states in
the cell in the second column on the same row as the keyword.

DOM interface:

interface HTMLInputElement : HTMLElement {
attribute DOMString accept;
attribute DOMString alt;
attribute boolean autocomplete;
attribute boolean autofocus;
attribute boolean defaultChecked;
attribute boolean checked;
attribute boolean disabled;

readonly attribute HTMLFormElement form;
readonly attribute FileList files;

attribute DOMString formAction;
attribute DOMString formEnctype;
attribute DOMString formMethod;
attribute boolean formNoValidate;
attribute DOMString formTarget;
attribute DOMString height;
attribute boolean indeterminate;

readonly attribute HTMLElement list;
attribute DOMString max;
attribute long maxLength;
attribute DOMString min;
attribute boolean multiple;
attribute DOMString name;
attribute DOMString pattern;
attribute DOMString placeholder;
attribute boolean readOnly;
attribute boolean required;
attribute unsigned long size;
attribute DOMString src;
attribute DOMString step;
attribute DOMString type;
attribute DOMString defaultValue;
attribute DOMString value;
attribute Date valueAsDate;
attribute double valueAsNumber;

readonly attribute HTMLOptionElement selectedOption;
attribute DOMString width;

void stepUp(in optional long n);
void stepDown(in optional long n);

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

readonly attribute NodeList labels;

void select();
attribute unsigned long selectionStart;
attribute unsigned long selectionEnd;

void setSelectionRange(in unsigned long start, in unsigned long end);
};

321

Keyword State Data type Control type

hidden Hiddenp324 An arbitrary string n/a
text Textp325 Text with no line breaks Text field
search Searchp325 Text with no line breaks Search field
tel Telephonep325 Text with no line breaks A text field
url URLp326 An absolute IRI A text field
email E-mailp327 An e-mail address or list of e-mail addresses A text field
password Passwordp327 Text with no line breaks (sensitive information) Text field that

obscures data entry
datetime Date and

Timep328
A date and time (year, month, day, hour, minute, second, fraction of a second) with the
time zone set to UTC

A date and time
control

date Datep329 A date (year, month, day) with no time zone A date control
month Monthp330 A date consisting of a year and a month with no time zone A month control
week Weekp330 A date consisting of a week-year number and a week number with no time zone A week control
time Timep331 A time (hour, minute, seconds, fractional seconds) with no time zone A time control
datetime-
local

Local Date
and Timep332

A date and time (year, month, day, hour, minute, second, fraction of a second) with no
time zone

A date and time
control

number Numberp333 A numerical value A text field or spinner
control

range Rangep334 A numerical value, with the extra semantic that the exact value is not important A slider control or
similar

color Colorp336 An sRGB color with 8-bit red, green, and blue components A color well
checkbox Checkboxp336 A set of zero or more values from a predefined list A checkbox
radio Radio

Buttonp337
An enumerated value A radio button

file File Uploadp338 Zero or more files each with a MIME typep28 and optionally a file name A label and a button
submit Submit

Buttonp339
An enumerated value, with the extra semantic that it must be the last value selected and
initiates form submission

A button

image Image
Buttonp339

A coordinate, relative to a particular image's size, with the extra semantic that it must be
the last value selected and initiates form submission

Either a clickable
image, or a button

reset Reset
Buttonp341

n/a A button

button Buttonp341 n/a A button

The missing value default is the Textp325 state.

Which of the acceptp338, altp340, autocompletep342, checkedp323, formactionp375, formenctypep376, formmethodp375,
formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346, multiplep345, patternp346,
placeholderp348, readonlyp344, requiredp344, sizep344, srcp339, stepp347, and widthp286 content attributes, the
checkedp349, filesp349, valueAsDatep349, valueAsNumberp350, listp350, and selectedOptionp350 IDL attributes, the
select()p546 method, the selectionStartp546 and selectionEndp546 IDL attributes, the setSelectionRange()p546

method, the stepUp()p350 and stepDown()p350 methods, and the inputp350 and changep351 events apply to an inputp320

element depends on the state of its typep321 attribute. The following table is non-normative and summarizes which of
those content attributes, IDL attributes, methods, and events apply to each state:

Hiddenp324 Textp325,
Searchp325,

URLp326,
Telephonep325

E-
mailp327

Passwordp327 Date and
Timep328,
Datep329,

Monthp330,
Weekp330,
Timep331

Local Date
and

Timep332,
Numberp333

Rangep334 Colorp336 Checkboxp336,
Radio

Buttonp337

File
Uploadp338

Submit
Buttonp339

Image
Buttonp339

Reset
Buttonp341,
Buttonp341

Content attributes
acceptp338 · · · · · · · · · Yes · · ·

altp340 · · · · · · · · · · · Yes ·

autocompletep342 · Yes Yes Yes Yes Yes Yes Yes · · · · ·

checkedp323 · · · · · · · · Yes · · · ·

formactionp375 · · · · · · · · · · Yes Yes ·

formenctypep376 · · · · · · · · · · Yes Yes ·

formmethodp375 · · · · · · · · · · Yes Yes ·

formnovalidatep376 · · · · · · · · · · Yes Yes ·

formtargetp376 · · · · · · · · · · Yes Yes ·

heightp286 · · · · · · · · · · · Yes ·

listp342 · Yes Yes · Yes Yes Yes Yes · · · · ·

322

Hiddenp324 Textp325,
Searchp325,

URLp326,
Telephonep325

E-
mailp327

Passwordp327 Date and
Timep328,
Datep329,

Monthp330,
Weekp330,
Timep331

Local Date
and

Timep332,
Numberp333

Rangep334 Colorp336 Checkboxp336,
Radio

Buttonp337

File
Uploadp338

Submit
Buttonp339

Image
Buttonp339

Reset
Buttonp341,
Buttonp341

maxp346 · · · · Yes Yes Yes · · · · · ·

maxlengthp346 · Yes Yes Yes · · · · · · · · ·

minp346 · · · · Yes Yes Yes · · · · · ·

multiplep345 · · Yes · · · · · · Yes · · ·

patternp346 · Yes Yes Yes · · · · · · · · ·

placeholderp348 · Yes Yes Yes · · · · · · · · ·

readonlyp344 · Yes Yes Yes Yes Yes · · · · · · ·

requiredp344 · Yes Yes Yes Yes Yes · · Yes Yes · · ·

sizep344 · Yes Yes Yes · · · · · · · · ·

srcp339 · · · · · · · · · · · Yes ·

stepp347 · · · · Yes Yes Yes · · · · · ·

widthp286 · · · · · · · · · · · Yes ·
IDL attributes and methods
checkedp349 · · · · · · · · Yes · · · ·

filesp349 · · · · · · · · · Yes · · ·

valuep349 defaultp349 valuep349 valuep349 valuep349 valuep349 valuep349 valuep349 valuep349 default/onp349 filenamep349 defaultp349 defaultp349 defaultp349

valueAsDatep349 · · · · Yes · · · · · · · ·

valueAsNumberp350 · · · · Yes Yes Yes · · · · · ·

listp350 · Yes Yes · Yes Yes Yes Yes · · · · ·

selectedOptionp350 · Yes Yes · Yes Yes Yes Yes · · · · ·

select()p546 · Yes Yes Yes · · · · · · · · ·

selectionStartp546 · Yes Yes Yes · · · · · · · · ·

selectionEndp546 · Yes Yes Yes · · · · · · · · ·

setSelectionRange()p546 · Yes Yes Yes · · · · · · · · ·

stepDown()p350 · · · · Yes Yes Yes · · · · · ·

stepUp()p350 · · · · Yes Yes Yes · · · · · ·
Events
inputp350 event · Yes Yes Yes Yes Yes Yes Yes · · · · ·

changep351 event · Yes Yes Yes Yes Yes Yes Yes Yes Yes · · ·

When an inputp320 element's typep321 attribute changes state, and when the element is first created, the element's
rendering and behavior must change to the new state's accordingly and the value sanitization algorithm, if one is
defined for the typep321 attribute's new state, must be invoked.

Each inputp320 element has a valuep374, which is exposed by the valuep349 IDL attribute. Some states define an
algorithm to convert a string to a number, an algorithm to convert a number to a string, an algorithm to
convert a string to a Date object, and an algorithm to convert a Date object to a string, which are used by
maxp346, minp346, stepp347, valueAsDatep349, valueAsNumberp350, stepDown()p350, and stepUp()p350.

Each inputp320 element has a boolean dirty value flag. When it is true, the element is said to have a dirty value.
The dirty value flagp323 must be initially set to false when the element is created, and must be set to true whenever
the user interacts with the control in a way that changes the valuep374.

The value content attribute gives the default valuep374 of the inputp320 element. When the valuep323 content attribute
is added, set, or removed, if the control does not have a dirty valuep323, the user agent must set the valuep374 of the
element to the value of the valuep323 content attribute, if there is one, or the empty string otherwise, and then run the
current value sanitization algorithmp323, if one is defined.

Each inputp320 element has a checkednessp374, which is exposed by the checkedp349 IDL attribute.

Each inputp320 element has a boolean dirty checkedness flag. When it is true, the element is said to have a dirty
checkedness. The dirty checkedness flagp323 must be initially set to false when the element is created, and must be
set to true whenever the user interacts with the control in a way that changes the checkednessp374.

The checked content attribute is a boolean attributep37 that gives the default checkednessp374 of the inputp320

element. When the checkedp323 content attribute is added, if the control does not have dirty checkednessp323, the user

323

agent must set the checkednessp374 of the element to true; when the checkedp323 content attribute is removed, if the
control does not have dirty checkednessp323, the user agent must set the checkednessp374 of the element to false.

The reset algorithmp387 for inputp320 elements is to set the dirty value flagp323 and dirty checkedness flagp323 back to
false, set the valuep374 of the element to the value of the valuep323 content attribute, if there is one, or the empty
string otherwise, set the checkednessp374 of the element to true if the element has a checkedp323 content attribute and
false if it does not, and then invoke the value sanitization algorithmp323, if the typep321 attribute's current state defines
one.

Each inputp320 element is either mutable or immutable. Except where otherwise specified, an inputp320 element is
always mutablep324. Similarly, except where otherwise specified, the user agent should not allow the user to modify
the element's valuep374 or checkednessp374.

When an inputp320 element is disabledp374, it is immutablep324.

When an inputp320 element does not have a Documentp33 node as one of its ancestors (i.e. when it is not in the
document), it is immutablep324.

Note: The readonlyp344 attribute can also in some cases (e.g. for the Datep329 state, but not the
Checkboxp336 state) make an inputp320 element immutablep324.

When an inputp320 element is cloned, the element's valuep374, dirty value flagp323, checkednessp374, and dirty
checkedness flagp323 must be propagated to the clone when it is created.

The formp373 attribute is used to explicitly associate the inputp320 element with its form ownerp373. The namep374

attribute represents the element's name. The disabledp374 attribute is used to make the control non-interactive and to
prevent its value from being submitted. The autofocusp374 attribute controls focus.

The indeterminate IDL attribute must initially be set to false. On getting, it must return the last value it was set to.
On setting, it must be set to the new value. It has no effect except for changing the appearance of checkboxp336

controls.

The accept, alt, autocomplete, max, min, multiple, pattern, placeholder, required, size, src, step, and type IDL
attributes must reflectp61 the respective content attributes of the same name. The maxLength IDL attribute must
reflectp61 the maxlengthp346 content attribute, limited to only non-negative numbersp62. The readOnly IDL attribute
must reflectp61 the readonlyp344 content attribute. The defaultChecked IDL attribute must reflectp61 the checkedp323

content attribute. The defaultValue IDL attribute must reflectp61 the valuep323 content attribute.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378. The labelsp320 attribute provides a list
of the element's labelp319s. The select()p546, selectionStartp546, selectionEndp546, and setSelectionRange()p546

methods and attributes expose the element's text selection.

4.10.7.1 States of the typep321 attribute

4.10.7.1.1 Hidden state

When an inputp320 element's typep321 attribute is in the Hiddenp324 state, the rules in this section apply.

The inputp320 element representsp672 a value that is not intended to be examined or manipulated by the user.

Constraint validation: If an inputp320 element's typep321 attribute is in the Hiddenp324 state, it is barred from
constraint validationp376.

If the namep323 attribute is present and has a value that is a case-sensitivep35 match for the string "_charset_", then
the element's valuep323 attribute must be omitted.

Bookkeeping details

▪The valuep349 IDL attribute applies to this element and is in mode defaultp349.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, autocompletep342, checkedp323,
formactionp375, formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346,
multiplep345, patternp346, placeholderp348, readonlyp344, requiredp344, sizep344, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546,
stepDown()p350, and stepUp()p350 methods.

▪The inputp350 and changep351 events do not apply.

324

4.10.7.1.2 Text state and Search state

When an inputp320 element's typep321 attribute is in the Textp325 state or the Searchp325 state, the rules in this section
apply.

The inputp320 element representsp672 a one line plain text edit control for the element's valuep374.

Note: The difference between the Textp325 state and the Searchp325 state is primarily stylistic: on
platforms where search fields are distinguished from regular text fields, the Searchp325 state
might result in an appearance consistent with the platform's search fields rather than appearing
like a regular text field.

If the element is mutablep324, its valuep374 should be editable by the user. User agents must not allow users to insert
U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the element's valuep374.

The valuep323 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE
RETURN (CR) characters.

The value sanitization algorithmp323 is as follows: Strip line breaksp36 from the valuep374.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxlengthp346, patternp346, placeholderp348, readonlyp344, requiredp344, and sizep344 content attributes; listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, and valuep349 IDL attributes; select()p546 and setSelectionRange()p546 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxp346, minp346, multiplep345, srcp339, stepp347, and
widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, valueAsDatep349, and valueAsNumberp350 IDL
attributes; stepDown()p350 and stepUp()p350 methods.

4.10.7.1.3 Telephone state

When an inputp320 element's typep321 attribute is in the Telephonep325 state, the rules in this section apply.

The inputp320 element representsp672 a control for editing a telephone number given in the element's valuep374.

If the element is mutablep324, its valuep374 should be editable by the user. User agents may change the punctuation of
valuesp374 that the user enters. User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters into the element's valuep374.

The valuep323 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE
RETURN (CR) characters.

The value sanitization algorithmp323 is as follows: Strip line breaksp36 from the valuep374.

Note: Unlike the URLp326 and E-mailp327 types, the Telephonep325 type does not enforce a particular
syntax. This is intentional; in practice, telephone number fields tend to be free-form fields,
because there are a wide variety of valid phone numbers. Systems that need to enforce a
particular format are encouraged to use the setCustomValidity()p379 method to hook into the
client-side validation mechanism.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxlengthp346, patternp346, placeholderp348, readonlyp344, requiredp344, and sizep344 content attributes; listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, and valuep349 IDL attributes; select()p546 and setSelectionRange()p546 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxp346, minp346, multiplep345, srcp339, stepp347, and
widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, valueAsDatep349, and valueAsNumberp350 IDL
attributes; stepDown()p350 and stepUp()p350 methods.

325

4.10.7.1.4 URL state

When an inputp320 element's typep321 attribute is in the URLp326 state, the rules in this section apply.

The inputp320 element representsp672 a control for editing a single absolute URLp55 given in the element's valuep374.

If the element is mutablep324, the user agent should allow the user to change the URL represented by its valuep374.
User agents may allow the user to set the valuep374 to a string that is not a validp54 absolute URLp55, but may also or
instead automatically escape characters entered by the user so that the valuep374 is always a validp54 absolute URLp55

(even if that isn't the actual value seen and edited by the user in the interface). User agents should allow the user to
set the valuep374 to the empty string. User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters into the valuep374.

The valuep323 attribute, if specified, must have a value that is a validp54 absolute URLp55.

The value sanitization algorithmp323 is as follows: Strip line breaksp36 from the valuep374.

Constraint validation: While the valuep374 of the element is not a validp54 absolute URLp55, the element is suffering
from a type mismatchp377.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxlengthp346, patternp346, placeholderp348, readonlyp344, requiredp344, and sizep344 content attributes; listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, and valuep349 IDL attributes; select()p546 and setSelectionRange()p546 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxp346, minp346, multiplep345, srcp339, stepp347, and
widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, valueAsDatep349, and valueAsNumberp350 IDL
attributes; stepDown()p350 and stepUp()p350 methods.

If a document contained the following markup:

<input type="url" name="location" list="urls">
<datalist id="urls">
<option label="MIME: Format of Internet Message Bodies" value="http://www.ietf.org/rfc/

rfc2045">
<option label="HTML 4.01 Specification" value="http://www.w3.org/TR/html4/">
<option label="Form Controls" value="http://www.w3.org/TR/xforms/

slice8.html#ui-commonelems-hint">
<option label="Scalable Vector Graphics (SVG) 1.1 Specification"

value="http://www.w3.org/TR/SVG/">
<option label="Feature Sets - SVG 1.1 - 20030114" value="http://www.w3.org/TR/SVG/

feature.html">
<option label="The Single UNIX Specification, Version 3"

value="http://www.unix-systems.org/version3/">
</datalist>

...and the user had typed "www.w3", and the user agent had also found that the user had visited
http://www.w3.org/Consortium/#membership and http://www.w3.org/TR/XForms/ in the recent past, then
the rendering might look like this:

The first four URIs in this sample consist of the four URIs in the author-specified list that match the text the user
has entered, sorted lexically. Note how the UA is using the knowledge that the values are URIs to allow the user
to omit the scheme part and perform intelligent matching on the domain name.

326

The last two URIs (and probably many more, given the scrollbar's indications of more values being available) are
the matches from the user agent's session history data. This data is not made available to the page DOM. In this
particular case, the UA has no titles to provide for those values.

4.10.7.1.5 E-mail state

When an inputp320 element's typep321 attribute is in the E-mailp327 state, the rules in this section apply.

The inputp320 element representsp672 a control for editing a list of e-mail addresses given in the element's valuep374.

If the element is mutablep324, the user agent should allow the user to change the e-mail addresses represented by its
valuep374. If the multiplep345 attribute is specified, then the user agent should allow the user to select or provide
multiple addresses; otherwise, the user agent should act in a manner consistent with expecting the user to provide a
single e-mail address. User agents may allow the user to set the valuep374 to a string that is not a valid e-mail address
listp327. User agents should allow the user to set the valuep374 to the empty string. User agents must not allow users to
insert U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the valuep374. User agents may
transform the valuep374 for display and editing (e.g. converting punycode in the valuep374 to IDN in the display and vice
versa).

If the multiplep345 attribute is specified on the element, then the valuep323 attribute, if specified, must have a value
that is a valid e-mail address listp327; otherwise, the valuep323 attribute, if specified, must have a value that is a single
valid e-mail addressp327.

The value sanitization algorithmp323 is as follows: Strip line breaksp36 from the valuep374.

Constraint validation: If the multiplep345 attribute is specified on the element, then, while the valuep374 of the
element is not a valid e-mail address listp327, the element is suffering from a type mismatchp377; otherwise, while the
valuep374 of the element is not a single valid e-mail addressp327, the element is suffering from a type mismatchp377.

A valid e-mail address list is a set of comma-separated tokensp53, where each token is itself a valid e-mail
addressp327. To obtain the list of tokens from a valid e-mail address listp327, the user agent must split the string on
commasp53.

A valid e-mail address is a string that matches the ABNF production 1*(atext / ".") "@" ldh-
str 1*("." ldh-str) where atext is defined in RFC 5322 section 3.2.3, and ldh-str is defined in RFC 1034
section 3.5. [ABNF]p738 [RFC5322]p742 [RFC1034]p740

Note: This requirement is a willful violationp18 of RFC 5322, which defines a syntax for e-mail
addresses that is simultaneously too strict (before the "@" character), too vague (after the "@"
character), and too lax (allowing comments, white space characters, and quoted strings in
manners unfamiliar to most users) to be of practical use here.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxlengthp346, multiplep345, patternp346, placeholderp348, readonlyp344, requiredp344, and sizep344 content attributes; listp350,
selectedOptionp350, selectionStartp546, selectionEndp546, and valuep349 IDL attributes; select()p546 and setSelectionRange()p546

methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxp346, minp346, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, valueAsDatep349, and valueAsNumberp350 IDL
attributes; stepDown()p350 and stepUp()p350 methods.

4.10.7.1.6 Password state

When an inputp320 element's typep321 attribute is in the Passwordp327 state, the rules in this section apply.

The inputp320 element representsp672 a one line plain text edit control for the element's valuep374. The user agent
should obscure the value so that people other than the user cannot see it.

If the element is mutablep324, its valuep374 should be editable by the user. User agents must not allow users to insert
U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the valuep374.

The valuep323 attribute, if specified, must have a value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE
RETURN (CR) characters.

327

The value sanitization algorithmp323 is as follows: Strip line breaksp36 from the valuep374.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342,
maxlengthp346, patternp346, placeholderp348, readonlyp344, requiredp344, and sizep344 content attributes; selectionStartp546,
selectionEndp546, and valuep349 IDL attributes; select()p546, and setSelectionRange()p546 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, minp346, multiplep345, srcp339, stepp347,
and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, listp350, selectedOptionp350,
valueAsDatep349, and valueAsNumberp350 IDL attributes; stepDown()p350 and stepUp()p350 methods.

4.10.7.1.7 Date and Time state

When an inputp320 element's typep321 attribute is in the Date and Timep328 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a specific
global date and timep46. User agents may display the date and time in whatever time zone is appropriate for the user.

If the element is mutablep324, the user agent should allow the user to change the global date and timep46 represented
by its valuep374, as obtained by parsing a global date and timep47 from it. User agents must not allow the user to set
the valuep374 to a string that is not a valid global date and time stringp47 expressed in UTC, though user agents may
allow the user to set and view the time in another time zone and silently translate the time to and from the UTC time
zone in the valuep374. If the user agent provides a user interface for selecting a global date and timep46, then the
valuep374 must be set to a valid global date and time stringp47 expressed in UTC representing the user's selection. User
agents should allow the user to set the valuep374 to the empty string.

The valuep323 attribute, if specified, must have a value that is a valid global date and time stringp47.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is a valid global date and time
stringp47, then adjust the time so that the valuep374 represents the same point in time but expressed in the UTC time
zone, otherwise, set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid global date and time stringp47. The maxp346 attribute,
if specified, must have a value that is a valid global date and time stringp47.

The stepp347 attribute is expressed in seconds. The step scale factorp347 is 1000 (which converts the seconds to
milliseconds, as used in the other algorithms). The default stepp347 is 60 seconds.

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest global date and timep46 for which the element would not suffer from a step mismatchp377.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If parsing a global date
and timep47 from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed
from midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to
the parsed global date and timep46, ignoring leap seconds.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid global
date and time stringp47 expressed in UTC that represents the global date and timep46 that is input milliseconds after
midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date objectp323, given a string input, is as follows: If parsing a global
date and timep47 from input results in an error, then return an error; otherwise, return a Date object representing the
parsed global date and timep46, expressed in UTC.

The algorithm to convert a Date object to a stringp323, given a Date object input, is as follows: Return a valid
global date and time stringp47 expressed in UTC that represents the global date and timep46 that is represented by
input.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsDatep349, valueAsNumberp350, and
selectedOptionp350 IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

328

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, and selectionEndp546

IDL attributes; select()p546 and setSelectionRange()p546 methods.

The following fragment shows part of a calendar application. A user can specify a date and time for a meeting
(in his local time zone, probably, though the user agent can allow the user to change that), and since the
submitted data includes the time-zone offset, the application can ensure that the meeting is shown at the
correct time regardless of the time zones used by all the participants.

<fieldset>
<legend>Add Meeting</legend>
<p><label>Meeting name: <input type=text name="meeting.label"></label>
<p><label>Meeting time: <input type=datetime name="meeting.start"></label>

</fieldset>

Had the application used the datetime-localp332 type instead, the calendar application would have also had to
explicitly determine which time zone the user intended.

4.10.7.1.8 Date state

When an inputp320 element's typep321 attribute is in the Datep329 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a specific
datep44.

If the element is mutablep324, the user agent should allow the user to change the datep44 represented by its valuep374,
as obtained by parsing a datep44 from it. User agents must not allow the user to set the valuep374 to a string that is not
a valid date stringp44. If the user agent provides a user interface for selecting a datep44, then the valuep374 must be set
to a valid date stringp44 representing the user's selection. User agents should allow the user to set the valuep374 to the
empty string.

The valuep323 attribute, if specified, must have a value that is a valid date stringp44.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid date stringp44, then
set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid date stringp44. The maxp346 attribute, if specified,
must have a value that is a valid date stringp44.

The stepp347 attribute is expressed in days. The step scale factorp347 is 86,400,000 (which converts the days to
milliseconds, as used in the other algorithms). The default stepp347 is 1 day.

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest datep44 for which the element would not suffer from a step mismatchp377.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If parsing a datep44

from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight
UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC
on the morning of the parsed datep44, ignoring leap seconds.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid date
stringp44 that represents the datep44 that, in UTC, is current input milliseconds after midnight UTC on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date objectp323, given a string input, is as follows: If parsing a datep44

from input results in an error, then return an error; otherwise, return a Date object representing midnight UTC on the
morning of the parsed datep44.

The algorithm to convert a Date object to a stringp323, given a Date object input, is as follows: Return a valid
date stringp44 that represents the datep44 current at the time represented by input in the UTC time zone.

Bookkeeping details

329

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsDatep349, valueAsNumberp350, and
selectedOptionp350 IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, selectionStartp546, and selectionEndp546 IDL
attributes; select()p546 and setSelectionRange()p546 methods.

4.10.7.1.9 Month state

When an inputp320 element's typep321 attribute is in the Monthp330 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a specific
monthp43.

If the element is mutablep324, the user agent should allow the user to change the monthp43 represented by its
valuep374, as obtained by parsing a monthp44 from it. User agents must not allow the user to set the valuep374 to a
string that is not a valid month stringp43. If the user agent provides a user interface for selecting a monthp43, then the
valuep374 must be set to a valid month stringp43 representing the user's selection. User agents should allow the user to
set the valuep374 to the empty string.

The valuep323 attribute, if specified, must have a value that is a valid month stringp43.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid month stringp43,
then set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid month stringp43. The maxp346 attribute, if specified,
must have a value that is a valid month stringp43.

The stepp347 attribute is expressed in months. The step scale factorp347 is 1 (there is no conversion needed as the
algorithms use months). The default stepp347 is 1 month.

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest monthp43 for which the element would not suffer from a step mismatchp377.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If parsing a monthp44

from input results in an error, then return an error; otherwise, return the number of months between January 1970 and
the parsed monthp43.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid month
stringp43 that represents the monthp43 that has input months between it and January 1970.

The algorithm to convert a string to a Date objectp323, given a string input, is as follows: If parsing a
monthp44 from input results in an error, then return an error; otherwise, return a Date object representing midnight
UTC on the morning of the first day of the parsed monthp43.

The algorithm to convert a Date object to a stringp323, given a Date object input, is as follows: Return a valid
month stringp43 that represents the monthp43 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsDatep349, valueAsNumberp350, and
selectedOptionp350 IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, and selectionEndp546

IDL attributes; select()p546 and setSelectionRange()p546 methods.

4.10.7.1.10 Week state

When an inputp320 element's typep321 attribute is in the Weekp330 state, the rules in this section apply.

330

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a specific
weekp48.

If the element is mutablep324, the user agent should allow the user to change the weekp48 represented by its valuep374,
as obtained by parsing a weekp49 from it. User agents must not allow the user to set the valuep374 to a string that is not
a valid week stringp49. If the user agent provides a user interface for selecting a weekp48, then the valuep374 must be
set to a valid week stringp49 representing the user's selection. User agents should allow the user to set the valuep374 to
the empty string.

The valuep323 attribute, if specified, must have a value that is a valid week stringp49.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid week stringp49,
then set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid week stringp49. The maxp346 attribute, if specified,
must have a value that is a valid week stringp49.

The stepp347 attribute is expressed in weeks. The step scale factorp347 is 604,800,000 (which converts the weeks to
milliseconds, as used in the other algorithms). The default stepp347 is 1 week. The default step basep347 is
−259,200,000 (the start of week 1970-W01).

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest weekp48 for which the element would not suffer from a step mismatchp377.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If parsing a week
stringp49 from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from
midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to
midnight UTC on the morning of the Monday of the parsed weekp48, ignoring leap seconds.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid week
stringp49 that represents the weekp48 that, in UTC, is current input milliseconds after midnight UTC on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date objectp323, given a string input, is as follows: If parsing a weekp49

from input results in an error, then return an error; otherwise, return a Date object representing midnight UTC on the
morning of the Monday of the parsed weekp48.

The algorithm to convert a Date object to a stringp323, given a Date object input, is as follows: Return a valid
week stringp49 that represents the weekp48 current at the time represented by input in the UTC time zone.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsDatep349, valueAsNumberp350, and
selectedOptionp350 IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, and selectionEndp546

IDL attributes; select()p546 and setSelectionRange()p546 methods.

4.10.7.1.11 Time state

When an inputp320 element's typep321 attribute is in the Timep331 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a specific
timep45.

If the element is mutablep324, the user agent should allow the user to change the timep45 represented by its valuep374,
as obtained by parsing a timep45 from it. User agents must not allow the user to set the valuep374 to a string that is not
a valid time stringp45. If the user agent provides a user interface for selecting a timep45, then the valuep374 must be set
to a valid time stringp45 representing the user's selection. User agents should allow the user to set the valuep374 to the
empty string.

The valuep323 attribute, if specified, must have a value that is a valid time stringp45.

331

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid time stringp45, then
set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid time stringp45. The maxp346 attribute, if specified,
must have a value that is a valid time stringp45.

The stepp347 attribute is expressed in seconds. The step scale factorp347 is 1000 (which converts the seconds to
milliseconds, as used in the other algorithms). The default stepp347 is 60 seconds.

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest timep45 for which the element would not suffer from a step mismatchp377.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If parsing a timep45

from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight
to the parsed timep45 on a day with no time changes.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid time
stringp45 that represents the timep45 that is input milliseconds after midnight on a day with no time changes.

The algorithm to convert a string to a Date objectp323, given a string input, is as follows: If parsing a timep45

from input results in an error, then return an error; otherwise, return a Date object representing the parsed timep45 in
UTC on 1970-01-01.

The algorithm to convert a Date object to a stringp323, given a Date object input, is as follows: Return a valid
time stringp45 that represents the UTC timep45 component that is represented by input.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsDatep349, valueAsNumberp350, and
selectedOptionp350 IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, and selectionEndp546

IDL attributes; select()p546 and setSelectionRange()p546 methods.

4.10.7.1.12 Local Date and Time state

When an inputp320 element's typep321 attribute is in the Local Date and Timep332 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a local date
and timep46, with no time-zone offset information.

If the element is mutablep324, the user agent should allow the user to change the date and timep46 represented by its
valuep374, as obtained by parsing a date and timep46 from it. User agents must not allow the user to set the valuep374 to
a string that is not a valid local date and time stringp46. If the user agent provides a user interface for selecting a local
date and timep46, then the valuep374 must be set to a valid local date and time stringp46 representing the user's
selection. User agents should allow the user to set the valuep374 to the empty string.

The valuep323 attribute, if specified, must have a value that is a valid local date and time stringp46.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid local date and time
stringp46, then set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid local date and time stringp46. The maxp346 attribute,
if specified, must have a value that is a valid local date and time stringp46.

The stepp347 attribute is expressed in seconds. The step scale factorp347 is 1000 (which converts the seconds to
milliseconds, as used in the other algorithms). The default stepp347 is 60 seconds.

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest local date and timep46 for which the element would not suffer from a step mismatchp377.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If parsing a date and
timep46 from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from

332

midnight on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0") to the parsed
local date and timep46, ignoring leap seconds.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid local
date and time stringp46 that represents the date and time that is input milliseconds after midnight on the morning of
1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0").

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsNumberp350, and selectedOptionp350

IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, selectionEndp546, and
valueAsDatep349 IDL attributes; select()p546 and setSelectionRange()p546 methods.

The following example shows part of a flight booking application. The application uses an inputp320 element with
its typep321 attribute set to datetime-localp332, and it then interprets the given date and time in the time zone
of the selected airport.

<fieldset>
<legend>Destination</legend>
<p><label>Airport: <input type=text name=to list=airports></label></p>
<p><label>Departure time: <input type=datetime-local name=totime step=3600></label></p>

</fieldset>
<datalist id=airports>
<option value=ATL label="Atlanta">
<option value=MEM label="Memphis">
<option value=LHR label="London Heathrow">
<option value=LAX label="Los Angeles">
<option value=FRA label="Frankfurt">

</datalist>

If the application instead used the datetimep328 type, then the user would have to work out the time-zone
conversions himself, which is clearly not a good user experience!

4.10.7.1.13 Number state

When an inputp320 element's typep321 attribute is in the Numberp333 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a number.

If the element is mutablep324, the user agent should allow the user to change the number represented by its valuep374,
as obtained from applying the rules for parsing floating point number valuesp39 to it. User agents must not allow the
user to set the valuep374 to a string that is not a valid floating point numberp38. If the user agent provides a user
interface for selecting a number, then the valuep374 must be set to the best representation of the number representing
the user's selection as a floating point numberp39. User agents should allow the user to set the valuep374 to the empty
string.

The valuep323 attribute, if specified, must have a value that is a valid floating point numberp38.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid floating point
numberp38, then set it to the empty string instead.

The minp346 attribute, if specified, must have a value that is a valid floating point numberp38. The maxp346 attribute, if
specified, must have a value that is a valid floating point numberp38.

The step scale factorp347 is 1. The default stepp347 is 1 (allowing only integers, unless the minp346 attribute has a non-
integer value).

When the element is suffering from a step mismatchp377, the user agent may round the element's valuep374 to the
nearest number for which the element would not suffer from a step mismatchp377.

333

The algorithm to convert a string to a numberp323, given a string input, is as follows: If applying the rules for
parsing floating point number valuesp39 to input results in an error, then return an error; otherwise, return the resulting
number.

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid
floating point numberp38 that represents input.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, readonlyp344, requiredp344, and stepp347 content attributes; listp350, valuep349, valueAsNumberp350, and selectedOptionp350

IDL attributes; stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, selectionEndp546, and
valueAsDatep349 IDL attributes; select()p546 and setSelectionRange()p546 methods.

4.10.7.1.14 Range state

When an inputp320 element's typep321 attribute is in the Rangep334 state, the rules in this section apply.

The inputp320 element representsp672 a control for setting the element's valuep374 to a string representing a number,
but with the caveat that the exact value is not important, letting UAs provide a simpler interface than they do for the
Numberp333 state.

Note: In this state, the range and step constraints are enforced even during user input, and there
is no way to set the value to the empty string.

If the element is mutablep324, the user agent should allow the user to change the number represented by its valuep374,
as obtained from applying the rules for parsing floating point number valuesp39 to it. User agents must not allow the
user to set the valuep374 to a string that is not a valid floating point numberp38. If the user agent provides a user
interface for selecting a number, then the valuep374 must be set to a best representation of the number representing
the user's selection as a floating point numberp39. User agents must not allow the user to set the valuep374 to the
empty string.

The valuep323 attribute, if specified, must have a value that is a valid floating point numberp38.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is not a valid floating point
numberp38, then set it to a valid floating point numberp38 that represents the default valuep334.

The minp346 attribute, if specified, must have a value that is a valid floating point numberp38. The default minimump347

is 0. The maxp346 attribute, if specified, must have a value that is a valid floating point numberp38. The default
maximump347 is 100.

The default value is the minimump347 plus half the difference between the minimump347 and the maximump347, unless
the maximump347 is less than the minimump347, in which case the default valuep334 is the minimump347.

When the element is suffering from an underflowp377, the user agent must set the element's valuep374 to a valid
floating point numberp38 that represents the minimump347.

When the element is suffering from an overflowp377, if the maximump347 is not less than the minimump347, the user
agent must set the element's valuep374 to a valid floating point numberp38 that represents the maximump347.

The step scale factorp347 is 1. The default stepp347 is 1 (allowing only integers, unless the minp346 attribute has a non-
integer value).

When the element is suffering from a step mismatchp377, the user agent must round the element's valuep374 to the
nearest number for which the element would not suffer from a step mismatchp377, and which is greater than or equal
to the minimump347, and, if the maximump347 is not less than the minimump347, which is less than or equal to the
maximump347.

The algorithm to convert a string to a numberp323, given a string input, is as follows: If applying the rules for
parsing floating point number valuesp39 to input results in an error, then return an error; otherwise, return the resulting
number.

334

The algorithm to convert a number to a stringp323, given a number input, is as follows: Return a valid
floating point numberp38 that represents input.

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342, listp342,
maxp346, minp346, and stepp347 content attributes; listp350, valuep349, valueAsNumberp350, and selectedOptionp350 IDL attributes;
stepDown()p350 and stepUp()p350 methods.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, multiplep345, patternp346,
placeholderp348, readonlyp344, requiredp344, sizep344, srcp339, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, selectionEndp546, and
valueAsDatep349 IDL attributes; select()p546 and setSelectionRange()p546 methods.

Here is an example of a range control using an autocomplete list with the listp342 attribute. This could be useful
if there are values along the full range of the control that are especially important, such as preconfigured light
levels or typical speed limits in a range control used as a speed control. The following markup fragment:

<input type="range" min="-100" max="100" value="0" step="10" name="power" list="powers">
<datalist id="powers">
<option value="0">
<option value="-30">
<option value="30">
<option value="+50">

</datalist>

...with the following style sheet applied:

input { height: 75px; width: 49px; background: #D5CCBB; color: black; }

...might render as:

Note how the UA determined the orientation of the control from the ratio of the style-sheet-specified height and
width properties. The colors were similiarly derived from the style sheet. The tick marks, however, were derived
from the markup. In particular, the stepp347 attribute has not affected the placement of tick marks, the UA
deciding to only use the author-specified completion values and then adding longer tick marks at the extremes.

Note also how the invalid value +50 was completely ignored.

For another example, consider the following markup fragment:

<input name=x type=range min=100 max=700 step=9.09090909 value=509.090909>

A user agent could display in a variety of ways, for instance:

Or, alternatively, for instance:

335

The user agent could pick which one to display based on the dimensions given in the style sheet. This would
allow it to maintain the same resolution for the tick marks, despite the differences in width.

4.10.7.1.15 Color state

When an inputp320 element's typep321 attribute is in the Colorp336 state, the rules in this section apply.

The inputp320 element representsp672 a color well control, for setting the element's valuep374 to a string representing a
simple colorp50.

Note: In this state, there is always a color picked, and there is no way to set the value to the
empty string.

If the element is mutablep324, the user agent should allow the user to change the color represented by its valuep374, as
obtained from applying the rules for parsing simple color valuesp51 to it. User agents must not allow the user to set the
valuep374 to a string that is not a valid lowercase simple colorp51. If the user agent provides a user interface for
selecting a color, then the valuep374 must be set to the result of using the rules for serializing simple color valuesp51 to
the user's selection. User agents must not allow the user to set the valuep374 to the empty string.

The valuep323 attribute, if specified, must have a value that is a valid simple colorp50.

The value sanitization algorithmp323 is as follows: If the valuep374 of the element is a valid simple colorp50, then
set it to the valuep374 of the element converted to ASCII lowercasep36; otherwise, set it to the string "#000000".

Bookkeeping details

▪The following common inputp320 element content attributes, IDL attributes, and methods apply to the element: autocompletep342 and
listp342 content attributes; listp350, valuep349, and selectedOptionp350 IDL attributes.

▪The valuep349 IDL attribute is in mode valuep349.

▪The inputp350 and changep351 events apply.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, checkedp323, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, maxlengthp346, maxp346, minp346, multiplep345,
patternp346, placeholderp348, readonlyp344, requiredp344, sizep344, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, selectionStartp546, selectionEndp546,
valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546, stepDown()p350, and stepUp()p350

methods.

4.10.7.1.16 Checkbox state

When an inputp320 element's typep321 attribute is in the Checkboxp336 state, the rules in this section apply.

The inputp320 element representsp672 a two-state control that represents the element's checkednessp374 state. If the
element's checkednessp374 state is true, the control represents a positive selection, and if it is false, a negative
selection. If the element's indeterminatep324 IDL attribute is set to true, then the control's selection should be
obscured as if the control was in a third, indeterminate, state.

Note: The control is never a true tri-state control, even if the element's indeterminatep324 IDL
attribute is set to true. The indeterminatep324 IDL attribute only gives the appearance of a third
state.

If the element is mutablep324, then: The pre-click activation stepsp98 consist of setting the element's checkednessp374 to
its opposite value (i.e. true if it is false, false if it is true), and of setting the element's indeterminatep324 IDL attribute
to false. The canceled activation stepsp98 consist of setting the checkednessp374 and the element's indeterminatep324

IDL attribute back to the values they had before the pre-click activation stepsp98 were run. The activation behaviorp98 is
to fire a simple eventp523 that bubbles named change at the element, then broadcast formchange eventsp387 at the
element's form ownerp373.

Constraint validation: If the element is requiredp344 and its checkednessp374 is false, then the element is suffering
from being missingp377.

This box is non-normative. Implementation requirements are given below this box.

input . indeterminatep324 [= value]
When set, overrides the rendering of checkboxp336 controls so that the current value is not visible.

336

Bookkeeping details

▪The following common inputp320 element content attributes and IDL attributes apply to the element: checkedp323, and requiredp344 content
attributes; checkedp349 and valuep349 IDL attributes.

▪The valuep349 IDL attribute is in mode default/onp349.

▪The changep351 event applies.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, autocompletep342,
formactionp375, formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346,
multiplep345, patternp346, placeholderp348, readonlyp344, sizep344, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: filesp349, listp350, selectedOptionp350, selectionStartp546,
selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546, stepDown()p350, and
stepUp()p350 methods.

▪The inputp350 event does not apply.

4.10.7.1.17 Radio Button state

When an inputp320 element's typep321 attribute is in the Radio Buttonp337 state, the rules in this section apply.

The inputp320 element representsp672 a control that, when used in conjunction with other inputp320 elements, forms a
radio button groupp337 in which only one control can have its checkednessp374 state set to true. If the element's
checkednessp374 state is true, the control represents the selected control in the group, and if it is false, it indicates a
control in the group that is not selected.

The radio button group that contains an inputp320 element a also contains all the other inputp320 elements b that
fulfill all of the following conditions:

• The inputp320 element b's typep321 attribute is in the Radio Buttonp337 state.

• Either a and b have the same form ownerp373, or they both have no form ownerp373.

• They both have a namep374 attribute, and the value of a's namep374 attribute is a compatibility caselessp36

match for the value of b's namep374 attribute.

A document must not contain an inputp320 element whose radio button groupp337 contains only that element.

When any of the following events occur, if the element's checkednessp374 state is true after the event, the
checkednessp374 state of all the other elements in the same radio button groupp337 must be set to false:

• The element's checkednessp374 state is set to true (for whatever reason).

• The element's namep374 attribute is added, removed, or changes value.

• The element's form ownerp373 changes.

If the element is mutablep324, then: The pre-click activation stepsp98 consist of setting the element's checkednessp374 to
true. The canceled activation stepsp98 consist of setting the element's checkednessp374 to false. The activation
behaviorp98 is to fire a simple eventp523 that bubbles named change at the element, then broadcast formchange
eventsp387 at the element's form ownerp373.

Constraint validation: If the element is requiredp344 and all of the inputp320 elements in the radio button groupp337

have a checkednessp374 that is false, then the element is suffering from being missingp377.

Note: If none of the radio buttons in a radio button groupp337 are checked when they are inserted
into the document, then they will all be initially unchecked in the interface, until such time as one
of them is checked (either by the user or by script).

Bookkeeping details

▪The following common inputp320 element content attributes and IDL attributes apply to the element: checkedp323 and requiredp344 content
attributes; checkedp349 and valuep349 IDL attributes.

▪The valuep349 IDL attribute is in mode default/onp349.

▪The changep351 event applies.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, autocompletep342,
formactionp375, formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346,
multiplep345, patternp346, placeholderp348, readonlyp344, sizep344, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: filesp349, listp350, selectedOptionp350, selectionStartp546,
selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546, stepDown()p350, and
stepUp()p350 methods.

337

▪The inputp350 event does not apply.

4.10.7.1.18 File Upload state

When an inputp320 element's typep321 attribute is in the File Uploadp338 state, the rules in this section apply.

The inputp320 element representsp672 a list of selected files, each file consisting of a file name, a file type, and a file
body (the contents of the file).

If the element is mutablep324, the user agent should allow the user to change the files on the list, e.g. adding or
removing files. Files can be from the filesystem or created on the fly, e.g. a picture taken from a camera connected to
the user's device.

Constraint validation: If the element is requiredp344 and the list of selected filesp338 is empty, then the element is
suffering from being missingp377.

Unless the multiplep345 attribute is set, there must be no more than one file in the list of selected filesp338.

The accept attribute may be specified to provide user agents with a hint of what file types the server will be able to
accept.

If specified, the attribute must consist of a set of comma-separated tokensp53, each of which must be an ASCII case-
insensitivep35 match for one of the following:

The string audio/*
Indicates that sound files are accepted.

The string video/*
Indicates that video files are accepted.

The string image/*
Indicates that image files are accepted.

A valid MIME type with no parametersp28

Indicates that files of the specified type are accepted.

The tokens must not be ASCII case-insensitivep35 matches for any of the other tokens (i.e. duplicates are not allowed).
To obtain the list of tokens from the attribute, the user agent must split the attribute value on commasp53.

User agents should prevent the user from selecting files that are not accepted by one (or more) of these tokens.

For historical reasons, the valuep349 IDL attribute prefixes the filename with the string "C:\fakepath\". Some
legacy user agents actually included the full path (which was a security vulnerability). As a result of this,
obtaining the filename from the valuep349 IDL attribute in a backwards-compatible way is non-trivial. The
following function extracts the filename in a suitably compatible manner:

function extractFilename(path) {
var x;
x = path.lastIndexOf('\\');
if (x >= 0) // Windows-based path

return path.substr(x+1);
x = path.lastIndexOf('/');
if (x >= 0) // Unix-based path

return path.substr(x+1);
return path; // just the filename

}

This can be used as follows:

<p><input type=file name=image onchange="updateFilename(this.value)"></p>
<p>The name of the file you picked is: (none)</p>
<script>
function updateFilename(path) {

var name = extractFilename(path);
document.getElementById('filename').textContent = name;

}
</script>

338

Bookkeeping details

▪The following common inputp320 element content attributes apply to the element:

▪The following common inputp320 element content attributes and IDL attributes apply to the element: acceptp338, multiplep345, and
requiredp344; filesp349 and valuep349 IDL attributes.

▪The valuep349 IDL attribute is in mode filenamep349.

▪The changep351 event applies.

▪The following content attributes must not be specified and do not apply to the element: altp340, autocompletep342, checkedp323,
formactionp375, formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346,
patternp346, placeholderp348, readonlyp344, sizep344, srcp339, stepp347, and widthp286.

▪The element's valuep323 attribute must be omitted.

▪The following IDL attributes and methods do not apply to the element: checkedp349, listp350, selectedOptionp350, selectionStartp546,
selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546, stepDown()p350, and
stepUp()p350 methods.

▪The inputp350 event does not apply.

4.10.7.1.19 Submit Button state

When an inputp320 element's typep321 attribute is in the Submit Buttonp339 state, the rules in this section apply.

The inputp320 element representsp672 a button that, when activated, submits the form. If the element has a valuep323

attribute, the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string
that means "Submit" or some such. The element is a buttonp314, specifically a submit buttonp314.

If the element is mutablep324, the user agent should allow the user to activate the element.

The element's activation behaviorp98, if the element has a form ownerp373, is to submitp381 the form ownerp373 from the
inputp320 element; otherwise, it is to do nothing.

The formactionp375, formenctypep376, formmethodp375, formnovalidatep376, and formtargetp376 attributes are
attributes for form submissionp375.

Note: The formnovalidatep376 attribute can be used to make submit buttons that do not trigger the
constraint validation.

Bookkeeping details

▪The following common inputp320 element content attributes and IDL attributes apply to the element: formactionp375, formenctypep376,
formmethodp375, formnovalidatep376, and formtargetp376 content attributes; valuep349 IDL attribute.

▪The valuep349 IDL attribute is in mode defaultp349.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, autocompletep342, checkedp323,
heightp286, listp342, maxp346, maxlengthp346, minp346, multiplep345, patternp346, placeholderp348, readonlyp344, requiredp344, sizep344,
srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546,
stepDown()p350, and stepUp()p350 methods.

▪The inputp350 and changep351 events do not apply.

4.10.7.1.20 Image Button state

When an inputp320 element's typep321 attribute is in the Image Buttonp339 state, the rules in this section apply.

The inputp320 element representsp672 either an image from which a user can select a coordinate and submit the form,
or alternatively a button from which the user can submit the form. The element is a buttonp314, specifically a submit
buttonp314.

The image is given by the src attribute. The srcp339 attribute must be present, and must contain a valid non-empty
URLp54 referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted.

When any of the following events occur, unless the user agent cannot support images, or its support for images has
been disabled, or the user agent only fetches elements on demand, or the srcp339 attribute's value is the empty string,
the user agent must resolvep55 the value of the srcp339 attribute, relative to the element, and if that is successful, must
fetchp58 the resulting absolute URLp55:

• The inputp320 element's typep321 attribute is first set to the Image Buttonp339 state (possibly when the
element is first created), and the srcp339 attribute is present.

339

• The inputp320 element's typep321 attribute is changed back to the Image Buttonp339 state, and the srcp339

attribute is present, and its value has changed since the last time the typep321 attribute was in the Image
Buttonp339 state.

• The inputp320 element's typep321 attribute is in the Image Buttonp339 state, and the srcp339 attribute is set or
changed.

Fetching the image must delay the load eventp653 of the element's document until the taskp517 that is queuedp517 by
the networking task sourcep518 once the resource has been fetchedp58 (defined below) has been run.

If the image was successfully obtained, with no network errors, and the image's type is a supported image type, and
the image is a valid image of that type, then the image is said to be available. If this is true before the image is
completely downloaded, each taskp517 that is queuedp517 by the networking task sourcep518 while the image is being
fetchedp58 must update the presentation of the image appropriately.

The user agents should apply the image sniffing rulesp61 to determine the type of the image, with the image's
associated Content-Type headersp61 giving the official type. If these rules are not applied, then the type of the image
must be the type given by the image's associated Content-Type headersp61.

User agents must not support non-image resources with the inputp320 element. User agents must not run executable
code embedded in the image resource. User agents must only display the first page of a multipage resource. User
agents must not allow the resource to act in an interactive fashion, but should honor any animation in the resource.

The taskp517 that is queuedp517 by the networking task sourcep518 once the resource has been fetchedp58, must, if the
download was successful and the image is availablep340, queue a taskp517 to fire a simple eventp523 named load at the
inputp320 element; and otherwise, if the fetching process fails without a response from the remote server, or
completes but the image is not a valid or supported image, queue a taskp517 to fire a simple eventp523 named error on
the inputp320 element.

The alt attribute provides the textual label for the alternative button for users and user agents who cannot use the
image. The altp340 attribute must also be present, and must contain a non-empty string.

The inputp320 element supports dimension attributesp286.

If the srcp339 attribute is set, and the image is availablep340 and the user agent is configured to display that image,
then: The element representsp672 a control for selecting a coordinatep340 from the image specified by the srcp339

attribute; if the element is mutablep324, the user agent should allow the user to select this coordinatep340. The
activation behaviorp98 in this case consists of taking the user's selected coordinatep340, and then, if the element has a
form ownerp373, submittingp381 the inputp320 element's form ownerp373 from the inputp320 element. If the user activates
the control without explicitly selecting a coordinate, then the coordinate (0,0) must be assumed.

Otherwise, the element representsp672 a submit button whose label is given by the value of the altp340 attribute; if the
element is mutablep324, the user agent should allow the user to activate the button. The activation behaviorp98 in this
case consists of setting the selected coordinatep340 to (0,0), and then, if the element has a form ownerp373,
submittingp381 the inputp320 element's form ownerp373 from the inputp320 element.

The selected coordinate must consist of an x-component and a y-component. The coordinates represent the position
relative to the edge of the image, with the coordinate space having the positive x direction to the right, and the
positive y direction downwards.

The x-component must be a valid integerp38 representing a number x in the range −(borderleft+paddingleft) ≤ x ≤
width+borderright+paddingright, where width is the rendered width of the image, borderleft is the width of the border
on the left of the image, paddingleft is the width of the padding on the left of the image, borderright is the width of the
border on the right of the image, and paddingright is the width of the padding on the right of the image, with all
dimensions given in CSS pixels.

The y-component must be a valid integerp38 representing a number y in the range −(bordertop+paddingtop) ≤ y ≤
height+borderbottom+paddingbottom, where height is the rendered height of the image, bordertop is the width of the
border above the image, paddingtop is the width of the padding above the image, borderbottom is the width of the
border below the image, and paddingbottom is the width of the padding below the image, with all dimensions given in
CSS pixels.

Where a border or padding is missing, its width is zero CSS pixels.

The formactionp375, formenctypep376, formmethodp375, formnovalidatep376, and formtargetp376 attributes are
attributes for form submissionp375.

340

Bookkeeping details

▪The following common inputp320 element content attributes and IDL attributes apply to the element: altp340, formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, srcp339, and widthp286 content attributes; valuep349 IDL
attribute.

▪The valuep349 IDL attribute is in mode defaultp349.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, autocompletep342, checkedp323, listp342,
maxp346, maxlengthp346, minp346, multiplep345, patternp346, placeholderp348, readonlyp344, requiredp344, sizep344, and stepp347.

▪The element's valuep323 attribute must be omitted.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546,
stepDown()p350, and stepUp()p350 methods.

▪The inputp350 and changep351 events do not apply.

Note: Many aspects of this state's behavior are similar to the behavior of the imgp196 element.
Readers are encouraged to read that section, where many of the same requirements are
described in more detail.

4.10.7.1.21 Reset Button state

When an inputp320 element's typep321 attribute is in the Reset Buttonp341 state, the rules in this section apply.

The inputp320 element representsp672 a button that, when activated, resets the form. If the element has a valuep323

attribute, the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string
that means "Reset" or some such. The element is a buttonp314.

If the element is mutablep324, the user agent should allow the user to activate the element.

The element's activation behaviorp98, if the element has a form ownerp373, is to resetp387 the form ownerp373; otherwise,
it is to do nothing.

Constraint validation: The element is barred from constraint validationp376.

Bookkeeping details

▪The valuep349 IDL attribute applies to this element and is in mode defaultp349.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, autocompletep342, checkedp323,
formactionp375, formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346,
multiplep345, patternp346, placeholderp348, readonlyp344, requiredp344, sizep344, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546,
stepDown()p350, and stepUp()p350 methods.

▪The inputp350 and changep351 events do not apply.

4.10.7.1.22 Button state

When an inputp320 element's typep321 attribute is in the Buttonp341 state, the rules in this section apply.

The inputp320 element representsp672 a button with no default behavior. If the element has a valuep323 attribute, the
button's label must be the value of that attribute; otherwise, it must be the empty string. The element is a buttonp314.

If the element is mutablep324, the user agent should allow the user to activate the element. The element's activation
behaviorp98 is to do nothing.

Constraint validation: The element is barred from constraint validationp376.

Bookkeeping details

▪The valuep349 IDL attribute applies to this element and is in mode defaultp349.

▪The following content attributes must not be specified and do not apply to the element: acceptp338, altp340, autocompletep342, checkedp323,
formactionp375, formenctypep376, formmethodp375, formnovalidatep376, formtargetp376, heightp286, listp342, maxp346, maxlengthp346, minp346,
multiplep345, patternp346, placeholderp348, readonlyp344, requiredp344, sizep344, srcp339, stepp347, and widthp286.

▪The following IDL attributes and methods do not apply to the element: checkedp349, filesp349, listp350, selectedOptionp350,
selectionStartp546, selectionEndp546, valueAsDatep349, and valueAsNumberp350 IDL attributes; select()p546, setSelectionRange()p546,
stepDown()p350, and stepUp()p350 methods.

▪The inputp350 and changep351 events do not apply.

341

4.10.7.2 Common inputp320 element attributes

These attributes only apply to an inputp320 element if its typep321 attribute is in a state whose definition declares that
the attribute applies. When an attribute doesn't apply to an inputp320 element, user agents must ignorep29 the
attribute, regardless of the requirements and definitions below.

4.10.7.2.1 The autocompletep342 attribute

User agents sometimes have features for helping users fill forms in, for example prefilling the user's address based on
earlier user input.

The autocomplete attribute is an enumerated attributep37. The attribute has three states. The on keyword maps to the
on state, and the off keyword maps to the off state. The attribute may also be omitted. The missing value default is
the default state.

The offp342 state indicates either that the control's input data is particularly sensitive (for example the activation code
for a nuclear weapon); or that it is a value that will never be reused (for example a one-time-key for a bank login) and
the user will therefore have to explicitly enter the data each time, instead of being able to rely on the UA to prefill the
value for him; or that the document provides its own autocomplete mechanism and does not want the user agent to
provide autocompletion values.

Conversely, the onp342 state indicates that the value is not particularly sensitive and the user can expect to be able to
rely on his user agent to remember values he has entered for that control.

The defaultp342 state indicates that the user agent is to use the autocompletep315 attribute on the element's form
ownerp373 instead. (By default, the autocompletep315 attribute of formp314 elements is in the onp315 state.)

Each inputp320 element has a resulting autocompletion state, which is either on or off.

When an inputp320 element is in one of the following conditions, the inputp320 element's resulting autocompletion
statep342 is on; otherwise, the inputp320 element's resulting autocompletion statep342 is off:

• Its autocompletep342 attribute is in the onp342 state.
• Its autocompletep342 attribute is in the defaultp342 state, and the element has no form ownerp373.
• Its autocompletep342 attribute is in the defaultp342 state, and the element's form ownerp373 's

autocompletep315 attribute is in the onp315 state.

When an inputp320 element's resulting autocompletion statep342 is on, the user agent may store the value entered by
the user so that if the user returns to the page, the UA can prefill the form. Otherwise, the user agent should not
remember the control's valuep374, and should not offer past values to the user.

In addition, if the resulting autocompletion statep342 is off, values are resetp491 when traversing the historyp491.

The autocompletion mechanism must be implemented by the user agent acting as if the user had modified the
element's valuep374, and must be done at a time where the element is mutablep324 (e.g. just after the element has
been inserted into the document, or when the user agent stops parsingp653).

Banks frequently do not want UAs to prefill login information:

<p><label>Account: <input type="text" name="ac" autocomplete="off"></label></p>
<p><label>PIN: <input type="password" name="pin" autocomplete="off"></label></p>

A user agent may allow the user to override the resulting autocompletion statep342 and set it to always on, always
allowing values to be remembered and prefilled), or always off, never remembering values. However, the ability to
override the resulting autocompletion statep342 to on should not be trivially accessible, as there are significant security
implications for the user if all values are always remembered, regardless of the site's preferences.

4.10.7.2.2 The listp342 attribute

The list attribute is used to identify an element that lists predefined options suggested to the user.

If present, its value must be the ID of a datalistp356 element in the same document.

The suggestions source element is the first element in the document in tree orderp29 to have an ID equal to the
value of the listp342 attribute, if that element is a datalistp356 element. If there is no listp342 attribute, or if there is
no element with that ID, or if the first element with that ID is not a datalistp356 element, then there is no suggestions
source elementp342.

342

If there is a suggestions source elementp342, then, when the user agent is allowing the user to edit the inputp320

element's valuep374, the user agent should offer the suggestions represented by the suggestions source elementp342 to
the user in a manner suitable for the type of control used. The user agent may use the suggestion's labelp359 to
identify the suggestion if appropriate. If the user selects a suggestion, then the inputp320 element's valuep374 must be
set to the selected suggestion's valuep359, as if the user had written that value himself.

User agents must filter the suggestions to hide suggestions that the user would not be allowed to enter as the
inputp320 element's valuep374, and should filter the suggestions to hide suggestions that would cause the element to
not satisfy its constraintsp377.

If the listp342 attribute does not apply, there is no suggestions source elementp342.

This URL field offers some suggestions.

<label>Homepage: <input name=hp type=url list=hpurls></label>
<datalist id=hpurls>
<option value="http://www.google.com/" label="Google">
<option value="http://www.reddit.com/" label="Reddit">

</datalist>

Other URLs from the user's history might show also; this is up to the user agent.

This example demonstrates how to design a form that uses the autocompletion list feature while still degrading
usefully in legacy user agents.

If the autocompletion list is merely an aid, and is not important to the content, then simply using a datalistp356

element with children optionp358 elements is enough. To prevent the values from being rendered in legacy user
agents, they should be placed inside the valuep359 attribute instead of inline.

<p>
<label>
Enter a breed:
<input type="text" name="breed" list="breeds">
<datalist id="breeds">
<option value="Abyssinian">
<option value="Alpaca">
<!-- ... -->

</datalist>
</label>

</p>

However, if the values need to be shown in legacy UAs, then fallback content can be placed inside the
datalistp356 element, as follows:

<p>
<label>
Enter a breed:
<input type="text" name="breed" list="breeds">

</label>
<datalist id="breeds">
<label>
or select one from the list:
<select name="breed">
<option value=""> (none selected)
<option>Abyssinian
<option>Alpaca
<!-- ... -->

</select>
</label>

</datalist>
</p>

The fallback content will only be shown in UAs that don't support datalistp356. The options, on the other hand,
will be detected by all UAs, even though they are not direct children of the datalistp356 element.

343

Note that if an optionp358 element used in a datalistp356 is selectedp359, it will be selected by default by legacy
UAs (because it affects the selectp353), but it will not have any effect on the inputp320 element in UAs that
support datalistp356.

4.10.7.2.3 The readonlyp344 attribute

The readonly attribute is a boolean attributep37 that controls whether or not the use can edit the form control. When
specified, the element is immutablep324.

Constraint validation: If the readonlyp344 attribute is specified on an inputp320 element, the element is barred from
constraint validationp376.

In the following example, the existing product identifiers cannot be modified, but they are still displayed as part
of the form, for consistency with the row representing a new product (where the identifier is not yet filled in).

<form action="products.cgi" method=post enctype="multipart/form-data">
<table>
<tr> <th> Product ID <th> Product name <th> Price <th> Action
<tr>
<td> <input readonly name="1.pid" value="H412">
<td> <input required name="1.pname" value="Floor lamp Ulke">
<td> $<input required type=number min=0 step=0.01 name="1.pprice" value="49.99">
<td> <button formnovalidate name="action" value="delete:1">Delete</button>

<tr>
<td> <input readonly name="2.pid" value="FG28">
<td> <input required name="2.pname" value="Table lamp Ulke">
<td> $<input required type=number min=0 step=0.01 name="2.pprice" value="24.99">
<td> <button formnovalidate name="action" value="delete:2">Delete</button>

<tr>
<td> <input required name="3.pid" value="" pattern="[A-Z0-9]+">
<td> <input required name="3.pname" value="">
<td> $<input required type=number min=0 step=0.01 name="3.pprice" value="">
<td> <button formnovalidate name="action" value="delete:3">Delete</button>

</table>
<p> <button formnovalidate name="action" value="add">Add</button> </p>
<p> <button name="action" value="update">Save</button> </p>

</form>

4.10.7.2.4 The sizep344 attribute

The size attribute gives the number of characters that, in a visual rendering, the user agent is to allow the user to see
while editing the element's valuep374.

The sizep344 attribute, if specified, must have a value that is a valid non-negative integerp37 greater than zero.

If the attribute is present, then its value must be parsed using the rules for parsing non-negative integersp37, and if the
result is a number greater than zero, then the user agent should ensure that at least that many characters are visible.

The sizep324 IDL attribute is limited to only non-negative numbers greater than zerop62.

4.10.7.2.5 The requiredp344 attribute

The required attribute is a boolean attributep37. When specified, the element is required.

Constraint validation: If the element is requiredp344, and its valuep349 IDL attribute applies and is in the mode
valuep349, and the element is mutablep324, and the element's valuep374 is the empty string, then the element is
suffering from being missingp377.

The following form has two required fields, one for an e-mail address and one for a password. It also has a third
field that is only considerd valid if the user types the same password in the password field and this third field.

<h1>Create new account</h1>
<form action="/newaccount" method=post>
<p>
<label for="username">E-mail address:</label>
<input id="username" type=email required name=un>

344

<p>
<label for="password1">Password:</label>
<input id="password1" type=password required name=up>

<p>
<label for="password2">Confirm password:</label>
<input id="password2" type=password onforminput="setCustomValidity(value !=

password1.value ? 'Passwords do not match.' : '')">
<p>
<input type=submit value="Create account">

</form>

4.10.7.2.6 The multiplep345 attribute

The multiple attribute is a boolean attributep37 that indicates whether the user is to be allowed to specify more than
one value.

The following extract shows how an e-mail client's "Cc" field could accept multiple e-mail addresses.

<label>Cc: <input type=email multiple name=cc></label>

If the user had, amongst many friends in his user contacts database, two friends "Arthur Dent" (with address
"art@example.net") and "Adam Josh" (with address "adamjosh@example.net"), then, after the user has typed
"a", the user agent might suggest these two e-mail addresses to the user.

The page could also link in the user's contacts database from the site:

<label>Cc: <input type=email multiple name=cc list=contacts></label>
...
<datalist id="contacts">
<option value="hedral@damowmow.com">
<option value="pillar@example.com">
<option value="astrophy@cute.example">
<option value="astronomy@science.example.org">

</datalist>

Suppose the user had entered "bob@example.net" into this text field, and then started typing a second e-mail
address starting with "a". The user agent might show both the two friends mentioned earlier, as well as the
"astrophy" and "astronomy" values given in the datalistp356 element.

345

The following extract shows how an e-mail client's "Attachments" field could accept multiple files for upload.

<label>Attachments: <input type=file multiple name=att></label>

4.10.7.2.7 The maxlengthp346 attribute

The maxlength attribute, when it applies, is a form control maxlength attributep375 controlled by the inputp320

element's dirty value flagp323.

If the inputp320 element has a maximum allowed value lengthp375, then the code-point lengthp37 of the value of the
element's valuep323 attribute must be equal to or less than the element's maximum allowed value lengthp375.

The following extract shows how a messaging client's text entry could be arbitrarily restricted to a fixed number
of characters, thus forcing any conversion through this medium to be terse and discouraging intelligent
discourse.

What are you doing? <input name=status maxlength=140>

4.10.7.2.8 The patternp346 attribute

The pattern attribute specifies a regular expression against which the control's valuep374 is to be checked.

If specified, the attribute's value must match the JavaScript Pattern production. [ECMA262]p739

Constraint validation: If the element's valuep374 is not the empty string, and the element's patternp346 attribute is
specified and the attribute's value, when compiled as a JavaScript regular expression with the global, ignoreCase,
and multiline flags disabled (see ECMA262 Edition 5, sections 15.10.7.2 through 15.10.7.4), compiles successfully
but the resulting regular expression does not match the entirety of the element's valuep374, then the element is
suffering from a pattern mismatchp377. [ECMA262]p739

Note: This implies that the regular expression language used for this attribute is the same as that
used in JavaScript, except that the patternp346 attribute must match the entire value, not just any
subset (somewhat as if it implied a ^(?: at the start of the pattern and a)$ at the end).

When an inputp320 element has a patternp346 attribute specified, authors should include a titlep89 attribute to give a
description of the pattern. User agents may use the contents of this attribute, if it is present, when informing the user
that the pattern is not matched, or at any other suitable time, such as in a tooltip or read out by assistive technology
when the control gains focus.

For example, the following snippet:

<label> Part number:
<input pattern="[0-9][A-Z]{3}" name="part"

title="A part number is a digit followed by three uppercase letters."/>
</label>

...could cause the UA to display an alert such as:

A part number is a digit followed by three uppercase letters.
You cannot complete this form until the field is correct.

When a control has a patternp346 attribute, the titlep89 attribute, if used, must describe the pattern. Additional
information could also be included, so long as it assists the user in filling in the control. Otherwise, assistive technology
would be impaired.

For instance, if the title attribute contained the caption of the control, assistive technology could end up saying
something like The text you have entered does not match the required pattern. Birthday, which is
not useful.

UAs may still show the titlep113 in non-error situations (for example, as a tooltip when hovering over the control), so
authors should be careful not to word titlep113s as if an error has necessarily occurred.

4.10.7.2.9 The minp346 and maxp346 attributes

The min and max attributes indicate the allowed range of values for the element.

Their syntax is defined by the section that defines the typep321 attribute's current state.

346

If the element has a minp346 attribute, and the result of applying the algorithm to convert a string to a numberp323 to
the value of the minp346 attribute is a number, then that number is the element's minimum; otherwise, if the typep321

attribute's current state defines a default minimum, then that is the minimump347; otherwise, the element has no
minimump347.

Constraint validation: When the element has a minimump346, and the result of applying the algorithm to convert a
string to a numberp323 to the string given by the element's valuep374 is a number, and the number obtained from that
algorithm is less than the minimump346, the element is suffering from an underflowp377.

The minp346 attribute also defines the step basep347.

If the element has a maxp346 attribute, and the result of applying the algorithm to convert a string to a numberp323 to
the value of the maxp346 attribute is a number, then that number is the element's maximum; otherwise, if the typep321

attribute's current state defines a default maximum, then that is the maximump347; otherwise, the element has no
maximump347.

Constraint validation: When the element has a maximump346, and the result of applying the algorithm to convert a
string to a numberp323 to the string given by the element's valuep374 is a number, and the number obtained from that
algorithm is more than the maximump346, the element is suffering from an overflowp377.

The maxp346 attribute's value (the maximump347) must not be less than the minp346 attribute's value (its minimump347).

Note: If an element has a maximump346 that is less than its minimump346, then so long as the
element has a valuep374, it will either be suffering from an underflowp377 or suffering from an
overflowp377.

The following date control limits input to dates that are before the 1980s:

<input name=bday type=date max="1979-12-31">

The following number control limits input to whole numbers greater than zero:

<input name=quantity required type=number min=1 value=1>

4.10.7.2.10 The stepp347 attribute

The step attribute indicates the granularity that is expected (and required) of the valuep374, by limiting the allowed
values. The section that defines the typep321 attribute's current state also defines the default step, the step scale
factor, and in some cases the default step base, which are used in processing the attribute as described below.

The stepp347 attribute, if specified, must either have a value that is a valid floating point numberp38 that parsesp39 to a
number that is greater than zero, or must have a value that is an ASCII case-insensitivep35 match for the string "any".

The attribute provides the allowed value step for the element, as follows:

1. If the attribute is absent, then the allowed value stepp347 is the default stepp347 multiplied by the step scale
factorp347.

2. Otherwise, if the attribute's value is an ASCII case-insensitivep35 match for the string "any", then there is no
allowed value stepp347.

3. Otherwise, if the rules for parsing floating point number valuesp39, when they are applied to the attribute's
value, return an error, zero, or a number less than zero, then the allowed value stepp347 is the default
stepp347 multiplied by the step scale factorp347.

4. Otherwise, the allowed value stepp347 is the number returned by the rules for parsing floating point number
valuesp39 when they are applied to the attribute's value, multiplied by the step scale factorp347.

The step base is the result of applying the algorithm to convert a string to a numberp323 to the value of the minp346

attribute, unless the element does not have a minp346 attribute specified or the result of applying that algorithm is an
error, in which case the step basep347 is the default step basep347, if one is defined, or zero, if not.

Constraint validation: When the element has an allowed value stepp347, and the result of applying the algorithm to
convert a string to a numberp323 to the string given by the element's valuep374 is a number, and that number
subtracted from the step basep347 is not an integral multiple of the allowed value stepp347, the element is suffering
from a step mismatchp377.

347

The following range control only accepts values in the range 0..1, and allows 256 steps in that range:

<input name=opacity type=range min=0 max=1 step=0.00392156863>

The following control allows any time in the day to be selected, with any accuracy (e.g. thousandth-of-a-second
accuracy or more):

<input name=favtime type=time step=any>

Normally, time controls are limited to an accuracy of one minute.

4.10.7.2.11 The placeholderp348 attribute

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry. A
hint could be a sample value or a brief description of the expected format. The attribute, if specified, must have a
value that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters.

Note: For a longer hint or other advisory text, the titlep89 attribute is more appropriate.

The placeholderp348 attribute should not be used as an alternative to a labelp319.

User agents should present this hint to the user, after having stripped line breaksp36 from it, when the element's
valuep374 is the empty string and the control is not focused (e.g. by displaying it inside a blank unfocused control).

Here is an example of a mail configuration user interface that uses the placeholderp348 attribute:

<fieldset>
<legend>Mail Account</legend>
<p><label>Name: <input type="text" name="fullname" placeholder="John

Ratzenberger"></label></p>
<p><label>Address: <input type="email" name="address"

placeholder="john@example.net"></label></p>
<p><label>Password: <input type="password" name="password"></label></p>
<p><label>Description: <input type="text" name="desc" placeholder="My Email

Account"></label></p>
</fieldset>

4.10.7.3 Common inputp320 element APIs

This box is non-normative. Implementation requirements are given below this box.

input . valuep349 [= value]
Returns the current valuep374 of the form control.
Can be set, to change the value.

Throws an INVALID_STATE_ERRp74 exception if it is set to any value other than the empty string when the
control is a file upload control.

input . checkedp349 [= value]
Returns the current checkednessp374 of the form control.

Can be set, to change the checkednessp374.

input . filesp349

Returns a FileList object listing the selected filesp338 of the form control.

Throws an INVALID_STATE_ERRp74 exception if the control isn't a file control.

input . valueAsDatep349 [= value]
Returns a Date object representing the form control's valuep374, if applicable; otherwise, returns null.
Can be set, to change the value.

Throws an INVALID_STATE_ERRp74 exception if the control isn't date- or time-based.

348

input . valueAsNumberp350 [= value]
Returns a number representing the form control's valuep374, if applicable; otherwise, returns null.
Can be set, to change the value.

Throws an INVALID_STATE_ERRp74 exception if the control is neither date- or time-based nor numeric.

input . stepUpp350([n])
input . stepDownp350([n])

Changes the form control's valuep374 by the value given in the stepp347 attribute, multiplied by n. The
default is 1.

Throws INVALID_STATE_ERRp74 exception if the control is neither date- or time-based nor numeric, if the
stepp347 attribute's value is "any", if the current valuep374 could not be parsed, or if stepping in the given
direction by the given amount would take the value out of range.

input . listp350

Returns the datalistp356 element indicated by the listp342 attribute.

input . selectedOptionp350

Returns the optionp358 element from the datalistp356 element indicated by the listp342 attribute that
matches the form control's valuep374.

The value IDL attribute allows scripts to manipulate the valuep374 of an inputp320 element. The attribute is in one of
the following modes, which define its behavior:

value
On getting, it must return the current valuep374 of the element. On setting, it must set the element's valuep374 to
the new value, set the element's dirty value flagp323 to true, and then invoke the value sanitization algorithmp323,
if the element's typep321 attribute's current state defines one.

default
On getting, if the element has a valuep323 attribute, it must return that attribute's value; otherwise, it must return
the empty string. On setting, it must set the element's valuep323 attribute to the new value.

default/on
On getting, if the element has a valuep323 attribute, it must return that attribute's value; otherwise, it must return
the string "on". On setting, it must set the element's valuep323 attribute to the new value.

filename
On getting, it must return the string "C:\fakepath\" followed by the filename of the first file in the list of
selected filesp338, if any, or the empty string if the list is empty. On setting, if the new value is the empty string, it
must empty the list of selected filesp338; otherwise, it must throw an INVALID_STATE_ERRp74 exception.

The checked IDL attribute allows scripts to manipulate the checkednessp374 of an inputp320 element. On getting, it
must return the current checkednessp374 of the element; and on setting, it must set the element's checkednessp374 to
the new value and set the element's dirty checkedness flagp323 to true.

The files IDL attribute allows scripts to access the element's selected filesp338. On getting, if the IDL attribute applies,
it must return a FileList object that represents the current selected filesp338. The same object must be returned until
the list of selected filesp338 changes. If the IDL attribute does not apply, then it must instead throw an
INVALID_STATE_ERRp74 exception. [FILEAPI]p739

The valueAsDate IDL attribute represents the valuep374 of the element, interpreted as a date.

On getting, if the valueAsDatep349 attribute does not apply, as defined for the inputp320 element's typep321 attribute's
current state, then return null. Otherwise, run the algorithm to convert a string to a Date objectp323 defined for that
state; if the algorithm returned a Date object, then return it, otherwise, return null.

On setting, if the valueAsDatep349 attribute does not apply, as defined for the inputp320 element's typep321 attribute's
current state, then throw an INVALID_STATE_ERRp74 exception; otherwise, if the new value is null, then set the

349

valuep374 of the element to the empty string; otherwise, run the algorithm to convert a Date object to a stringp323, as
defined for that state, on the new value, and set the valuep374 of the element to resulting string.

The valueAsNumber IDL attribute represents the valuep374 of the element, interpreted as a number.

On getting, if the valueAsNumberp350 attribute does not apply, as defined for the inputp320 element's typep321

attribute's current state, then return a Not-a-Number (NaN) value. Otherwise, if the valueAsDatep349 attribute applies,
run the algorithm to convert a string to a Date objectp323 defined for that state; if the algorithm returned a Date object,
then return the time value of the object (the number of milliseconds from midnight UTC the morning of 1970-01-01 to
the time represented by the Date object), otherwise, return a Not-a-Number (NaN) value. Otherwise, run the algorithm
to convert a string to a numberp323 defined for that state; if the algorithm returned a number, then return it, otherwise,
return a Not-a-Number (NaN) value.

On setting, if the valueAsNumberp350 attribute does not apply, as defined for the inputp320 element's typep321

attribute's current state, then throw an INVALID_STATE_ERRp74 exception. Otherwise, if the valueAsDatep349 attribute
applies, run the algorithm to convert a Date object to a stringp323 defined for that state, passing it a Date object whose
time value is the new value, and set the valuep374 of the element to resulting string. Otherwise, run the algorithm to
convert a number to a stringp323, as defined for that state, on the new value, and set the valuep374 of the element to
resulting string.

The stepDown(n) and stepUp(n) methods, when invoked, must run the following algorithm:

1. If the stepDown()p350 and stepUp()p350 methods do not apply, as defined for the inputp320 element's typep321

attribute's current state, then throw an INVALID_STATE_ERRp74 exception, and abort these steps.

2. If the element has no allowed value stepp347, then throw an INVALID_STATE_ERRp74 exception, and abort
these steps.

3. If applying the algorithm to convert a string to a numberp323 to the string given by the element's valuep374

results in an error, then throw an INVALID_STATE_ERRp74 exception, and abort these steps; otherwise, let
value be the result of that algorithm.

4. Let n be the argument, or 1 if the argument was omitted.

5. Let delta be the allowed value stepp347 multiplied by n.

6. If the method invoked was the stepDown()p350 method, negate delta.

7. Let value be the result of adding delta to value.

8. If the element has a minimump347, and the value is less than that minimump347, then throw a
INVALID_STATE_ERRp74 exception.

9. If the element has a maximump347, and the value is greater than that maximump347, then throw a
INVALID_STATE_ERRp74 exception.

10. Let value as string be the result of running the algorithm to convert a number to a stringp323, as defined for
the inputp320 element's typep321 attribute's current state, on value.

11. Set the valuep374 of the element to value as string.

The list IDL attribute must return the current suggestions source elementp342, if any, or null otherwise.

The selectedOption IDL attribute must return the first optionp358 element, in tree orderp29, to be a child of the
suggestions source elementp342 and whose valuep359 matches the inputp320 element's valuep374, if any. If there is no
suggestions source elementp342, or if it contains no matching optionp358 element, then the selectedOptionp350

attribute must return null.

4.10.7.4 Common event behaviors

When the input event applies, any time the user causes the element's valuep374 to change, the user agent must
queue a taskp517 to fire a simple eventp523 that bubbles named input at the inputp320 element, then broadcast
forminput eventsp387 at the inputp320 element's form ownerp373. User agents may wait for a suitable break in the
user's interaction before queuing the task; for example, a user agent could wait for the user to have not hit a key for
100ms, so as to only fire the event when the user pauses, instead of continuously for each keystroke.

350

Examples of a user changing the element's valuep374 would include the user typing into a text field, pasting a
new value into the field, or undoing an edit in that field. Some user interactions do not cause changes to the
value, e.g. hitting the "delete" key in an empty text field, or replacing some text in the field with text from the
clipboard that happens to be exactly the same text.

When the change event applies, if the element does not have an activation behaviorp98 defined but uses a user
interface that involves an explicit commit action, then any time the user commits a change to the element's valuep374

or list of selected filesp338, the user agent must queue a taskp517 to fire a simple eventp523 that bubbles named change
at the inputp320 element, then broadcast formchange eventsp387 at the inputp320 element's form ownerp373.

An example of a user interface with a commit action would be a File Uploadp338 control that consists of a single
button that brings up a file selection dialog: when the dialog is closed, if that the file selectionp338 changed as a
result, then the user has committed a new file selectionp338.

Another example of a user interface with a commit action would be a Datep329 control that allows both text-
based user input and user selection from a drop-down calendar: while text input might not have an explicit
commit step, selecting a date from the drop down calendar and then dismissing the drop down would be a
commit action.

When the user agent changes the element's valuep374 on behalf of the user (e.g. as part of a form prefilling feature),
the user agent must follow these steps:

1. If the inputp350 event applies, queue a taskp517 to fire a simple eventp523 that bubbles named input at the
inputp320 element.

2. If the inputp350 event applies, broadcast forminput eventsp387 at the inputp320 element's form ownerp373.

3. If the changep351 event applies, queue a taskp517 to fire a simple eventp523 that bubbles named change at the
inputp320 element.

4. If the changep351 event applies, broadcast formchange eventsp387 at the inputp320 element's form ownerp373.

Note: In addition, when the changep351 event applies, change events can also be fired as part of the
element's activation behaviorp98 and as part of the unfocusing stepsp539.

The task sourcep517 for these tasksp517 is the user interaction task sourcep518.

Categories
Flow contentp96.
Phrasing contentp96.
Interactive contentp97.
Listedp313, labelablep314, and submittablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96, but there must be no interactive contentp97 descendant.

Content attributes:
Global attributesp87

autofocusp374

disabledp374

formp373

formactionp375

formenctypep376

formmethodp375

formnovalidatep376

formtargetp376

namep374

typep352

valuep353

4.10.8 The button element

351

The buttonp351 element representsp672 a button. If the element is not disabledp374, then the user agent should allow the
user to activate the button.

The element is a buttonp314.

The type attribute controls the behavior of the button when it is activated. It is an enumerated attributep37. The
following table lists the keywords and states for the attribute — the keywords in the left column map to the states in
the cell in the second column on the same row as the keyword.

Keyword State Brief description

submit Submit Buttonp352 Submits the form.
reset Reset Buttonp352 Resets the form.
button Buttonp352 Does nothing.

The missing value default is the Submit Buttonp352 state.

If the typep352 attribute is in the Submit Buttonp352 state, the element is specifically a submit buttonp314.

Constraint validation: If the typep352 attribute is in the Reset Buttonp352 state or the Buttonp352 state, the element is
barred from constraint validationp376.

If the element is not disabledp374, the activation behaviorp98 of the buttonp351 element is to run the steps defined in the
following list for the current state of the element's typep352 attribute.

Submit Button
If the element has a form ownerp373, the element must submitp381 the form ownerp373 from the buttonp351

element.

Reset Button
If the element has a form ownerp373, the element must resetp387 the form ownerp373.

Button
Do nothing.

The formp373 attribute is used to explicitly associate the buttonp351 element with its form ownerp373. The namep374

attribute represents the element's name. The disabledp374 attribute is used to make the control non-interactive and to
prevent its value from being submitted. The autofocusp374 attribute controls focus. The formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, and formtargetp376 attributes are attributes for form
submissionp375.

DOM interface:

interface HTMLButtonElement : HTMLElement {
attribute boolean autofocus;
attribute boolean disabled;

readonly attribute HTMLFormElement form;
attribute DOMString formAction;
attribute DOMString formEnctype;
attribute DOMString formMethod;
attribute DOMString formNoValidate;
attribute DOMString formTarget;
attribute DOMString name;
attribute DOMString type;
attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

readonly attribute NodeList labels;
};

352

Note: The formnovalidatep376 attribute can be used to make submit buttons that do not trigger the
constraint validation.

The formactionp375, formenctypep376, formmethodp375, formnovalidatep376, and formtargetp376 must not be specified
if the element's typep352 attribute is not in the Submit Buttonp352 state.

The value attribute gives the element's value for the purposes of form submission. The element's valuep374 is the
value of the element's valuep353 attribute, if there is one, or the empty string otherwise.

Note: A button (and its value) is only included in the form submission if the button itself was used
to initiate the form submission.

The value and type IDL attributes must reflectp61 the respective content attributes of the same name.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378. The labelsp320 attribute provides a list
of the element's labelp319s.

The following button is labeled "Show hint" and pops up a dialog box when activated:

<button type=button
onclick="alert('This 15-20 minute piece was composed by George Gershwin.')">

Show hint
</button>

Categories
Flow contentp96.
Phrasing contentp96.
Interactive contentp97.
Listedp313, labelablep314, submittablep314, and resettablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Zero or more optionp358 or optgroupp357 elements.

Content attributes:
Global attributesp87

autofocusp374

disabledp374

formp373

multiplep354

namep374

sizep354

DOM interface:

interface HTMLSelectElement : HTMLElement {
attribute boolean autofocus;
attribute boolean disabled;

readonly attribute HTMLFormElement form;
attribute boolean multiple;
attribute DOMString name;
attribute unsigned long size;

readonly attribute DOMString type;

readonly attribute HTMLOptionsCollection options;
attribute unsigned long length;

caller getter any item(in unsigned long index);
caller getter any namedItem(in DOMString name);

4.10.9 The select element

353

The selectp353 element represents a control for selecting amongst a set of options.

The multiple attribute is a boolean attributep37. If the attribute is present, then the selectp353 element representsp672

a control for selecting zero or more options from the list of optionsp354. If the attribute is absent, then the selectp353

element representsp672 a control for selecting a single option from the list of optionsp354.

The list of options for a selectp353 element consists of all the optionp358 element children of the selectp353 element,
and all the optionp358 element children of all the optgroupp357 element children of the selectp353 element, in tree
orderp29.

The size attribute gives the number of options to show to the user. The sizep344 attribute, if specified, must have a
value that is a valid non-negative integerp37 greater than zero. If the multiplep354 attribute is present, then the
sizep344 attribute's default value is 4. If the multiplep354 attribute is absent, then the sizep344 attribute's default value
is 1.

If the multiplep354 attribute is absent, and the element is not disabledp374, then the user agent should allow the user
to pick an optionp358 element in its list of optionsp354 that is itself not disabledp359. Upon this optionp358 element being
picked (either through a click, or through unfocusing the element after changing its value, or through a menu
commandp399, or through any other mechanism), and before the relevant user interaction event is queued (e.g. before
the clickp33 event), the user agent must set the selectednessp359 of the picked optionp358 element to true and then
queue a taskp517 to fire a simple eventp523 that bubbles named change at the selectp353 element, using the user
interaction task sourcep518 as the task source, then broadcast formchange eventsp387 at the element's form ownerp373.

If the multiplep354 attribute is absent, whenever an optionp358 element in the selectp353 element's list of optionsp354

has its selectednessp359 set to true, and whenever an optionp358 element with its selectednessp359 set to true is added
to the selectp353 element's list of optionsp354, the user agent must set the selectednessp359 of all the other optionp358

element in its list of optionsp354 to false.

If the multiplep354 attribute is absent, whenever there are no optionp358 elements in the selectp353 element's list of
optionsp354 that have their selectednessp359 set to true, the user agent must set the selectednessp359 of the first
optionp358 element in the list of optionsp354 in tree orderp29 that is not disabledp359, if any, to true.

If the multiplep354 attribute is present, and the element is not disabledp374, then the user agent should allow the user
to toggle the selectednessp359 of the optionp358 elements in its list of optionsp354 that are themselves not disabledp359

(either through a click, or through a menu commandp399, or any other mechanism). Upon the selectednessp359 of one
or more optionp358 elements being changed by the user, and before the relevant user interaction event is queued (e.g.
before a related clickp33 event), the user agent must queue a taskp517 to fire a simple eventp523 that bubbles named
change at the selectp353 element, using the user interaction task sourcep518 as the task source, then broadcast
formchange eventsp387 at the element's form ownerp373.

The reset algorithmp387 for selectp353 elements is to go through all the optionp358 elements in the element's list of
optionsp354, and set their selectednessp359 to true if the optionp358 element has a selectedp359 attribute, and false
otherwise.

The formp373 attribute is used to explicitly associate the selectp353 element with its form ownerp373. The namep374

attribute represents the element's name. The disabledp374 attribute is used to make the control non-interactive and to
prevent its value from being submitted. The autofocusp374 attribute controls focus.

void add(in HTMLElement element, in optional HTMLElement before);
void add(in HTMLElement element, in long before);
void remove(in long index);

readonly attribute HTMLCollection selectedOptions;
attribute long selectedIndex;
attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

readonly attribute NodeList labels;
};

354

This box is non-normative. Implementation requirements are given below this box.

select . typep355

Returns "select-multiple" if the element has a multiplep354 attribute, and "select-one" otherwise.

select . optionsp355

Returns an HTMLOptionsCollectionp66 of the list of optionsp354.

select . lengthp356 [= value]
Returns the number of elements in the list of optionsp354.

When set to a smaller number, truncates the number of optionp358 elements in the selectp353.

When set to a greater number, adds new blank optionp358 elements to the selectp353.

element = select . itemp356(index)
select[index]
select(index)

Returns the item with index index from the list of optionsp354. The items are sorted in tree orderp29.
Returns null if index is out of range.

element = select . namedItemp356(name)
select[name]
select(name)

Returns the item with ID or namep698 name from the list of optionsp354.

If there are multiple matching items, then a NodeListp33 object containing all those elements is returned.
Returns null if no element with that ID could be found.

select . addp356(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before the item with that
number, or an element from the list of optionsp354, in which case element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at the end of the list.

This method will throw a HIERARCHY_REQUEST_ERRp74 exception if element is an ancestor of the element
into which it is to be inserted. If element is not an optionp358 or optgroupp357 element, then the method
does nothing.

select . selectedOptionsp356

Returns an HTMLCollectionp63 of the list of optionsp354 that are selected.

select . selectedIndexp356 [= value]
Returns the index of the first selected item, if any, or −1 if there is no selected item.
Can be set, to change the selection.

select . valuep356 [= value]
Returns the valuep374 of the first selected item, if any, or the empty string if there is no selected item.
Can be set, to change the selection.

The type IDL attribute, on getting, must return the string "select-one" if the multiplep354 attribute is absent, and the
string "select-multiple" if the multiplep354 attribute is present.

The options IDL attribute must return an HTMLOptionsCollectionp66 rooted at the selectp353 node, whose filter
matches the elements in the list of optionsp354.

The optionsp355 collection is also mirrored on the HTMLSelectElementp353 object. The indices of the supported indexed
properties at any instant are the indices supported by the object returned by the optionsp355 attribute at that instant.
The names of the supported named properties at any instant are the names supported by the object returned by the
optionsp355 attribute at that instant.

355

The length IDL attribute must return the number of nodes representedp63 by the optionsp355 collection. On setting, it
must act like the attribute of the same name on the optionsp355 collection.

The item(index) method must return the value returned by the method of the same name on the optionsp355

collection, when invoked with the same argument.

The namedItem(name) method must return the value returned by the method of the same name on the optionsp355

collection, when invoked with the same argument.

Similarly, the add() and remove() methods must act like their namesake methods on that same optionsp355

collection.

The selectedOptions IDL attribute must return an HTMLCollectionp63 rooted at the selectp353 node, whose filter
matches the elements in the list of optionsp354 that have their selectednessp359 set to true.

The selectedIndex IDL attribute, on getting, must return the indexp359 of the first optionp358 element in the list of
optionsp354 in tree orderp29 that has its selectednessp359 set to true, if any. If there isn't one, then it must return −1.

On setting, the selectedIndexp356 attribute must set the selectednessp359 of all the optionp358 elements in the list of
optionsp354 to false, and then the optionp358 element in the list of optionsp354 whose indexp359 is the given new value, if
any, must have its selectednessp359 set to true.

The value IDL attribute, on getting, must return the valuep359 of the first optionp358 element in the list of optionsp354 in
tree orderp29 that has its selectednessp359 set to true, if any. If there isn't one, then it must return the empty string.

On setting, the valuep356 attribute must set the selectednessp359 of all the optionp358 elements in the list of optionsp354

to false, and then first the optionp358 element in the list of optionsp354, in tree orderp29, whose valuep359 is equal to the
given new value, if any, must have its selectednessp359 set to true.

The multiple and size IDL attributes must reflectp61 the respective content attributes of the same name. The sizep356

IDL attribute limited to only non-negative numbers greater than zerop62.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378. The labelsp320 attribute provides a list
of the element's labelp319s.

The following example shows how a selectp353 element can be used to offer the user with a set of options from
which the user can select a single option. The default option is preselected.

<p>
<label for="unittype">Select unit type:</label>
<select id="unittype" name="unittype">
<option value="1"> Miner </option>
<option value="2"> Puffer </option>
<option value="3" selected> Snipey </option>
<option value="4"> Max </option>
<option value="5"> Firebot </option>

</select>
</p>

Here, the user is offered a set of options from which he can select any number. By default, all five options are
selected.

<p>
<label for="allowedunits">Select unit types to enable on this map:</label>
<select id="allowedunits" name="allowedunits" multiple>
<option value="1" selected> Miner </option>
<option value="2" selected> Puffer </option>
<option value="3" selected> Snipey </option>
<option value="4" selected> Max </option>
<option value="5" selected> Firebot </option>

</select>
</p>

4.10.10 The datalist element

356

The datalistp356 element represents a set of optionp358 elements that represent predefined options for other controls.
The contents of the element represents fallback content for legacy user agents, intermixed with optionp358 elements
that represent the predefined options. In the rendering, the datalistp356 element representsp672 nothing and it, along
with its children, should be hidden.

The datalistp356 element is hooked up to an inputp320 element using the listp342 attribute on the inputp320 element.

Each optionp358 element that is a descendant of the datalistp356 element, that is not disabledp359, and whose
valuep359 is a string that isn't the empty string, represents a suggestion. Each suggestion has a valuep359 and a
labelp359.

This box is non-normative. Implementation requirements are given below this box.

datalist . optionsp357

Returns an HTMLCollectionp63 of the options elements of the table.

The options IDL attribute must return an HTMLCollectionp63 rooted at the datalistp356 node, whose filter matches
optionp358 elements.

Constraint validation: If an element has a datalistp356 element ancestor, it is barred from constraint validationp376.

Categories
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Either: phrasing contentp96.
Or: Zero or more optionp358 elements.

Content attributes:
Global attributesp87

DOM interface:

interface HTMLDataListElement : HTMLElement {
readonly attribute HTMLCollection options;

};

Categories
None.

Contexts in which this element may be used:
As a child of a selectp353 element.

Content model:
Zero or more optionp358 elements.

Content attributes:
Global attributesp87

disabledp358

labelp358

DOM interface:

interface HTMLOptGroupElement : HTMLElement {
attribute boolean disabled;
attribute DOMString label;

};

4.10.11 The optgroup element

357

The optgroupp357 element representsp672 a group of optionp358 elements with a common label.

The element's group of optionp358 elements consists of the optionp358 elements that are children of the optgroupp357

element.

When showing optionp358 elements in selectp353 elements, user agents should show the optionp358 elements of such
groups as being related to each other and separate from other optionp358 elements.

The disabled attribute is a boolean attributep37 and can be used to disablep359 a group of optionp358 elements
together.

The label attribute must be specified. Its value gives the name of the group, for the purposes of the user interface.
User agents should use this attribute's value when labelling the group of optionp358 elements in a selectp353 element.

The disabled and label attributes must reflectp61 the respective content attributes of the same name.

The following snippet shows how a set of lessons from three courses could be offered in a selectp353 drop-down
widget:

<form action="courseselector.dll" method="get">
<p>Which course would you like to watch today?
<p><label>Course:
<select name="c">
<optgroup label="8.01 Physics I: Classical Mechanics">
<option value="8.01.1">Lecture 01: Powers of Ten
<option value="8.01.2">Lecture 02: 1D Kinematics
<option value="8.01.3">Lecture 03: Vectors

<optgroup label="8.02 Electricity and Magnestism">
<option value="8.02.1">Lecture 01: What holds our world together?
<option value="8.02.2">Lecture 02: Electric Field
<option value="8.02.3">Lecture 03: Electric Flux

<optgroup label="8.03 Physics III: Vibrations and Waves">
<option value="8.03.1">Lecture 01: Periodic Phenomenon
<option value="8.03.2">Lecture 02: Beats
<option value="8.03.3">Lecture 03: Forced Oscillations with Damping

</select>
</label>
<p><input type=submit value="▶ Play">

</form>

Categories
None.

Contexts in which this element may be used:
As a child of a selectp353 element.
As a child of a datalistp356 element.
As a child of an optgroupp357 element.

Content model:
Textp97.

Content attributes:
Global attributesp87

disabledp359

labelp359

selectedp359

valuep359

DOM interface:

[NamedConstructor=Option(),
NamedConstructor=Option(in DOMString text),
NamedConstructor=Option(in DOMString text, in DOMString value),
NamedConstructor=Option(in DOMString text, in DOMString value, in boolean

4.10.12 The option element

358

The optionp358 element representsp672 an option in a selectp353 element or as part of a list of suggestions in a
datalistp356 element.

The disabled attribute is a boolean attributep37. An optionp358 element is disabled if its disabledp359 attribute is
present or if it is a child of an optgroupp357 element whose disabledp358 attribute is present.

An optionp358 element that is disabledp359 must prevent any clickp33 events that are queuedp517 on the user
interaction task sourcep518 from being dispatched on the element.

The label attribute provides a label for element. The label of an optionp358 element is the value of the labelp359

attribute, if there is one, or the textContentp33 of the element, if there isn't.

The value attribute provides a value for element. The value of an optionp358 element is the value of the valuep359

attribute, if there is one, or the textContentp33 of the element, if there isn't.

The selected attribute represents the default selectednessp359 of the element.

The selectedness of an optionp358 element is a boolean state, initially false. If the element is disabledp359, then the
element's selectednessp359 is always false and cannot be set to true. Except where otherwise specified, when the
element is created, its selectednessp359 must be set to true if the element has a selectedp359 attribute. Whenever an
optionp358 element's selectedp359 attribute is added, its selectednessp359 must be set to true.

Note: The Option()p360 constructor with three or fewer arguments overrides the initial state of the
selectednessp359 state to always be false even if the third argument is true (implying that a
selectedp359 attribute is to be set). The fourth argument can be used to explicitly set the initial
selectednessp359 state when using the constructor.

An optionp358 element's index is the number of optionp358 element that are in the same list of optionsp354 but that
come before it in tree orderp29. If the optionp358 element is not in a list of optionsp354, then the optionp358 element's
indexp359 is zero.

This box is non-normative. Implementation requirements are given below this box.

option . selectedp360

Returns true if the element is selected, and false otherwise.

option . indexp360

Returns the index of the element in its selectp353 element's optionsp355 list.

option . formp360

Returns the element's formp314 element, if any, or null otherwise.

option . textp360

Same as textContentp33.

defaultSelected),
NamedConstructor=Option(in DOMString text, in DOMString value, in boolean

defaultSelected, in boolean selected)]
interface HTMLOptionElement : HTMLElement {

attribute boolean disabled;
readonly attribute HTMLFormElement form;

attribute DOMString label;
attribute boolean defaultSelected;
attribute boolean selected;
attribute DOMString value;

attribute DOMString text;
readonly attribute long index;

};

359

option = new Optionp360([text [, value [, defaultSelected [, selected]]]])
Returns a new optionp358 element.
The text argument sets the contents of the element.

The value argument sets the valuep359 attribute.

The defaultSelected argument sets the selectedp359 attribute.
The selected argument sets whether or not the element is selected. If it is omitted, even if the
defaultSelected argument is true, the element is not selected.

The disabled and label IDL attributes must reflectp61 the respective content attributes of the same name. The
defaultSelected IDL attribute must reflectp61 the selectedp359 content attribute.

The value IDL attribute, on getting, must return the value of the element's valuep359 content attribute, if it has one, or
else the value of the element's textContentp33 IDL attribute. On setting, the element's valuep359 content attribute
must be set to the new value.

The selected IDL attribute must return true if the element's selectednessp359 is true, and false otherwise.

The index IDL attribute must return the element's indexp359.

The text IDL attribute, on getting, must return the same value as the textContentp33 IDL attribute on the element,
and on setting, must act as if the textContentp33 IDL attribute on the element had been set to the new value.

The form IDL attribute's behavior depends on whether the optionp358 element is in a selectp353 element or not. If the
optionp358 has a selectp353 element as its parent, or has a colgroupp293 element as its parent and that colgroupp293

element has a selectp353 element as its parent, then the formp360 IDL attribute must return the same value as the
formp374 IDL attribute on that selectp353 element. Otherwise, it must return null.

Several constructors are provided for creating HTMLOptionElementp359 objects (in addition to the factory methods from
DOM Core such as createElement()): Option(), Option(text), Option(text, value), Option(text, value,
defaultSelected), and Option(text, value, defaultSelected, selected). When invoked as constructors, these
must return a new HTMLOptionElementp359 object (a new optionp358 element). If the text argument is present, the new
object must have as its only child a Nodep33 with node type TEXT_NODE (3) whose data is the value of that argument. If
the value argument is present, the new object must have a valuep359 attribute set with the value of the argument as
its value. If the defaultSelected argument is present and true, the new object must have a selectedp359 attribute set
with no value. If the selected argument is present and true, the new object must have its selectednessp359 set to true;
otherwise the fourth argument is absent or false, and the selectednessp359 must be set to false, even if the
defaultSelected argument is present and true. The element's document must be the active documentp463 of the
browsing contextp463 of the Windowp467 object on which the interface object of the invoked constructor is found.

Categories
Flow contentp96.
Phrasing contentp96.
Interactive contentp97.
Listedp313, labelablep314, submittablep314, and resettablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Textp97.

Content attributes:
Global attributesp87

autofocusp374

colsp362

disabledp374

formp373

maxlengthp362

namep374

4.10.13 The textarea element

360

The textareap360 element representsp672 a multiline plain text edit control for the element's raw value. The contents
of the control represent the control's default value.

The raw valuep361 of a textareap360 control must be initially the empty string.

The readonly attribute is a boolean attributep37 used to control whether the text can be edited by the user or not.

Constraint validation: If the readonlyp361 attribute is specified on a textareap360 element, the element is barred
from constraint validationp376.

A textareap360 element is mutable if it is neither disabledp374 nor has a readonlyp361 attribute specified.

When a textareap360 is mutablep361, its raw valuep361 should be editable by the user. Any time the user causes the
element's raw valuep361 to change, the user agent must queue a taskp517 to fire a simple eventp523 that bubbles named
input at the textareap360 element, then broadcast forminput eventsp387 at the textareap360 element's form
ownerp373. User agents may wait for a suitable break in the user's interaction before queuing the task; for example, a
user agent could wait for the user to have not hit a key for 100ms, so as to only fire the event when the user pauses,
instead of continuously for each keystroke.

A textareap360 element has a dirty value flag, which must be initially set to false, and must be set to true whenever
the user interacts with the control in a way that changes the raw valuep361.

When the textareap360 element's textContentp33 IDL attribute changes value, if the element's dirty value flagp361 is
false, then the element's raw valuep361 must be set to the value of the element's textContentp33 IDL attribute.

placeholderp362

readonlyp361

requiredp362

rowsp362

wrapp362

DOM interface:

interface HTMLTextAreaElement : HTMLElement {
attribute boolean autofocus;
attribute unsigned long cols;
attribute boolean disabled;

readonly attribute HTMLFormElement form;
attribute long maxLength;
attribute DOMString name;
attribute DOMString placeholder;
attribute boolean readOnly;
attribute boolean required;
attribute unsigned long rows;
attribute DOMString wrap;

readonly attribute DOMString type;
attribute DOMString defaultValue;
attribute DOMString value;

readonly attribute unsigned long textLength;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

readonly attribute NodeList labels;

void select();
attribute unsigned long selectionStart;
attribute unsigned long selectionEnd;

void setSelectionRange(in unsigned long start, in unsigned long end);
};

361

The reset algorithmp387 for textareap360 elements is to set the element's valuep361 to the value of the element's
textContentp33 IDL attribute.

The cols attribute specifies the expected maximum number of characters per line. If the colsp362 attribute is
specified, its value must be a valid non-negative integerp37 greater than zero. If applying the rules for parsing non-
negative integersp37 to the attribute's value results in a number greater than zero, then the element's character
width is that value; otherwise, it is 20.

The user agent may use the textareap360 element's character widthp362 as a hint to the user as to how many
characters the server prefers per line (e.g. for visual user agents by making the width of the control be that many
characters). In visual renderings, the user agent should wrap the user's input in the rendering so that each line is no
wider than this number of characters.

The rows attribute specifies the number of lines to show. If the rowsp362 attribute is specified, its value must be a valid
non-negative integerp37 greater than zero. If applying the rules for parsing non-negative integersp37 to the attribute's
value results in a number greater than zero, then the element's character height is that value; otherwise, it is 2.

Visual user agents should set the height of the control to the number of lines given by character heightp362.

The wrap attribute is an enumerated attributep37 with two keywords and states: the soft keyword which maps to the
Soft state, and the hard keyword which maps to the Hard state. The missing value default is the Softp362 state.

If the element's wrapp362 attribute is in the Hardp362 state, the colsp362 attribute must be specified.

The element's valuep374 is defined to be the element's raw valuep361 with the following transformation applied:

1. Replace every occurrence of a U+000D CARRIAGE RETURN (CR) character not followed by a U+000A LINE
FEED (LF) character, and every occurrence of a U+000A LINE FEED (LF) character not preceded by a
U+000D CARRIAGE RETURN (CR) character, by a two-character string consisting of a U+000D CARRIAGE
RETURN U+000A LINE FEED (CRLF) character pair.

2. If the element's wrapp362 attribute is in the Hardp362 state, insert U+000D CARRIAGE RETURN U+000A LINE
FEED (CRLF) character pairs into the string using a UA-defined algorithm so that each line has no more than
character widthp362 characters. For the purposes of this requirement, lines are delimited by the start of the
string, the end of the string, and U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF) character pairs.

The maxlength attribute is a form control maxlength attributep375 controlled by the textareap360 element's dirty value
flagp361.

If the textareap360 element has a maximum allowed value lengthp375, then the element's children must be such that
the code-point lengthp37 of the value of the element's textContentp33 IDL attribute is equal to or less than the
element's maximum allowed value lengthp375.

The required attribute is a boolean attributep37. When specified, the user will be required to enter a value before
submitting the form.

Constraint validation: If the element has its requiredp362 attribute specified, and the element is mutablep361, and
the element's valuep374 is the empty string, then the element is suffering from being missingp377.

The placeholder attribute represents a hint (a word or short phrase) intended to aid the user with data entry. A hint
could be a sample value or a brief description of the expected format. The attribute, if specified, must have a value
that contains no U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters.

Note: For a longer hint or other advisory text, the titlep89 attribute is more appropriate.

The placeholderp362 attribute should not be used as an alternative to a labelp319.

User agents should present this hint to the user, after having stripped line breaksp36 from it, when the element's
valuep374 is the empty string and the control is not focused (e.g. by displaying it inside a blank unfocused control).

The formp373 attribute is used to explicitly associate the textareap360 element with its form ownerp373. The namep374

attribute represents the element's name. The disabledp374 attribute is used to make the control non-interactive and to
prevent its value from being submitted. The autofocusp374 attribute controls focus.

This box is non-normative. Implementation requirements are given below this box.

362

textarea . type
Returns the string "textarea".

textarea . value
Returns the current value of the element.
Can be set, to change the value.

The cols, placeholder, required, rows, and wrap attributes must reflectp61 the respective content attributes of the
same name. The colsp363 and rowsp363 attributes are limited to only non-negative numbers greater than zerop62. The
maxLength IDL attribute must reflectp61 the maxlengthp362 content attribute, limited to only non-negative numbersp62.
The readOnly IDL attribute must reflectp61 the readonlyp361 content attribute.

The type IDL attribute must return the value "textarea".

The defaultValue IDL attribute must act like the element's textContentp33 IDL attribute.

The value attribute must, on getting, return the element's raw valuep361; on setting, it must set the element's raw
valuep361 to the new value.

The textLength IDL attribute must return the code-point lengthp37 of the element's valuep374.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378. The labelsp320 attribute provides a list
of the element's labelp319s. The select()p546, selectionStartp546, selectionEndp546, and setSelectionRange()p546

methods and attributes expose the element's text selection.

Here is an example of a textareap360 being used for unrestricted free-form text input in a form:

<p>If you have any comments, please let us know: <textarea cols=80
name=comments></textarea></p>

Categories
Flow contentp96.
Phrasing contentp96.
Interactive contentp97.
Listedp313, labelablep314, submittablep314, and resettablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

autofocusp374

challengep364

disabledp374

formp373

keytypep364

namep374

DOM interface:

interface HTMLKeygenElement : HTMLElement {
attribute boolean autofocus;
attribute DOMString challenge;
attribute boolean disabled;

readonly attribute HTMLFormElement form;
attribute DOMString keytype;
attribute DOMString name;

4.10.14 The keygen element

363

The keygenp363 element representsp672 a key pair generator control. When the control's form is submitted, the private
key is stored in the local keystore, and the public key is packaged and sent to the server.

The challenge attribute may be specified. Its value will be packaged with the submitted key.

The keytype attribute is an enumerated attributep37. The following table lists the keywords and states for the attribute
— the keywords in the left column map to the states listed in the cell in the second column on the same row as the
keyword. User agents are not required to support these values, and must only recognize values whose corresponding
algorithms they support.

Keyword State

rsa RSA

The invalid value default state is the unknown state. The missing value default state is the RSA state, if it is supported,
or the unknown state otherwise.

Note: This specification does not specify what key types user agents are to support — it is
possible for a user agent to not support any key types at all.

The user agent may expose a user interface for each keygenp363 element to allow the user to configure settings of the
element's key pair generator, e.g. the key length.

The reset algorithmp387 for keygenp363 elements is to set these various configuration settings back to their defaults.

The element's valuep374 is the string returned from the following algorithm:

1. Use the appropriate step from the following list:

↪ If the keytypep364 attribute is in the RSA state
Generate an RSA key pair using the settings given by the user, if appropriate, using the
md5WithRSAEncryption RSA signature algorithm (the signature algorithm with MD5 and the RSA
encryption algorithm) referenced in section 2.2.1 ("RSA Signature Algorithm") of RFC 3279, and
defined in RFC 2313. [RFC3279]p741 [RFC2313]p741

↪ Otherwise, the keytypep364 attribute is in the unknown state
The given key type is not supported. Return the empty string and abort this algorithm.

Let private key be the generated private key.

Let public key be the generated public key.

Let signature algorithm be the selected signature algorithm.

2. If the element has a challengep364 attribute, then let challenge be that attribute's value. Otherwise, let
challenge be the empty string.

3. Let algorithm be an ASN.1 AlgorithmIdentifier structure as defined by RFC 5280, with the algorithm
field giving the ASN.1 OID used to identify signature algorithm, using the OIDs defined in section 2.2
("Signature Algorithms") of RFC 3279, and the parameters field set up as required by RFC 3279 for
AlgorithmIdentifier structures for that algorithm. [X690]p743 [RFC5280]p742 [RFC3279]p741

readonly attribute DOMString type;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

readonly attribute NodeList labels;
};

364

4. Let spki be an ASN.1 SubjectPublicKeyInfo structure as defined by RFC 5280, with the algorithm field set
to the algorithm structure from the previous step, and the subjectPublicKey field set to the BIT STRING
value resulting from ASN.1 DER encoding the public key. [X690]p743 [RFC5280]p742

5. Let publicKeyAndChallenge be an ASN.1 PublicKeyAndChallengep365 structure as defined below, with the
spki field set to the spki structure from the previous step, and the challenge field set to the string
challenge obtained earlier. [X690]p743

6. Let signature be the BIT STRING value resulting from ASN.1 DER encoding the signature generated by
applying the signature algorithm to the byte string obtained by ASN.1 DER encoding the
publicKeyAndChallenge structure, using private key as the signing key. [X690]p743

7. Let signedPublicKeyAndChallenge be an ASN.1 SignedPublicKeyAndChallengep365 structure as defined
below, with the publicKeyAndChallenge field set to the publicKeyAndChallenge structure, the
signatureAlgorithm field set to the algorithm structure, and the signature field set to the BIT STRING
signature from the previous step. [X690]p743

8. Return the result of base64 encoding the result of ASN.1 DER encoding the signedPublicKeyAndChallenge
structure. [RFC3548]p741 [X690]p743

The data objects used by the above algorithm are defined as follows. These definitions use the same "ASN.1-like"
syntax defined by RFC 5280. [RFC5280]p742

PublicKeyAndChallenge ::= SEQUENCE {
spki SubjectPublicKeyInfo,
challenge IA5STRING

}

SignedPublicKeyAndChallenge ::= SEQUENCE {
publicKeyAndChallenge PublicKeyAndChallenge,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING

}

Constraint validation: The keygenp363 element is barred from constraint validationp376.

The formp373 attribute is used to explicitly associate the keygenp363 element with its form ownerp373. The namep374

attribute represents the element's name. The disabledp374 attribute is used to make the control non-interactive and to
prevent its value from being submitted. The autofocusp374 attribute controls focus.

This box is non-normative. Implementation requirements are given below this box.

keygen . type
Returns the string "keygen".

The challenge IDL attribute must reflectp61 the content attributes of the same name.

The keytype IDL attribute must reflectp61 the content attributes of the same name, limited to only known valuesp61.

The type IDL attribute must return the value "keygen".

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378. The labelsp320 attribute provides a list
of the element's labelp319s.

Note: This specification does not specify how the private key generated is to be used. It is
expected that after receiving the SignedPublicKeyAndChallengep365 (SPKAC) structure, the server
will generate a client certificate and offer it back to the user for download; this certificate, once
downloaded and stored in the key store along with the private key, can then be used to
authenticate to services that use SSL and certificate authentication.

To generate a key pair, add the private key to the user's key store, and submit the public key to the server,
markup such as the following can be used:

365

<form action="processkey.cgi" method="post" enctype="multipart/form-data">
<p><keygen name="key"></p>
<p><input type=submit value="Submit key..."></p>

</form>

The server will then receive a form submission with a packaged RSA public key as the value of "key". This can
then be used for various purposes, such as generating a client certificate, as mentioned above.

The outputp366 element representsp672 the result of a calculation.

The for content attribute allows an explicit relationship to be made between the result of a calculation and the
elements that represent the values that went into the calculation or that otherwise influenced the calculation. The
forp366 attribute, if specified, must contain a string consisting of an unordered set of unique space-separated
tokensp52, each of which must have the value of an ID of an element in the same Documentp33.

The formp373 attribute is used to explicitly associate the outputp366 element with its form ownerp373. The namep374

attribute represents the element's name.

The element has a value mode flag which is either value or default. Initially, the value mode flagp366 must be set to
default.

When the value mode flagp366 is in mode default, the contents of the element represent both the value of the element
and its default value. When the value mode flagp366 is in mode value, the contents of the element represent the value
of the element only, and the default value is only accessible using the defaultValuep367 IDL attribute.

The element also has a default value. Initially, the default valuep366 must be the empty string.

Categories
Flow contentp96.
Phrasing contentp96.
Listedp313, labelablep314, and resettablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

forp366

formp373

namep374

DOM interface:

interface HTMLOutputElement : HTMLElement {
[PutForwards=value] readonly attribute DOMSettableTokenList htmlFor;
readonly attribute HTMLFormElement form;

attribute DOMString name;

readonly attribute DOMString type;
attribute DOMString defaultValue;
attribute DOMString value;

readonly attribute boolean willValidate;
readonly attribute ValidityState validity;
readonly attribute DOMString validationMessage;
boolean checkValidity();
void setCustomValidity(in DOMString error);

readonly attribute NodeList labels;
};

4.10.15 The output element

366

Whenever the element's descendants are changed in any way, if the value mode flagp366 is in mode default, the
element's default valuep366 must be set to the value of the element's textContentp33 IDL attribute.

The reset algorithmp387 for outputp366 elements is to set the element's textContentp33 IDL attribute to the value of the
element's defaultValuep367 IDL attribute (thus replacing the element's child nodes), and then to set the element's
value mode flagp366 to default.

This box is non-normative. Implementation requirements are given below this box.

output . valuep367 [= value]
Returns the element's current value.
Can be set, to change the value.

output . defaultValuep367 [= value]
Returns the element's current default value.
Can be set, to change the default value.

output . typep367

Returns the string "output".

The value IDL attribute must act like the element's textContentp33 IDL attribute, except that on setting, in addition,
before the child nodes are changed, the element's value mode flagp366 must be set to value.

The defaultValue IDL attribute, on getting, must return the element's default valuep366. On setting, the attribute must
set the element's default valuep366, and, if the element's value mode flagp366 is in the mode default, set the element's
textContentp33 IDL attribute as well.

The type attribute must return the string "output".

The htmlFor IDL attribute must reflectp61 the forp366 content attribute.

The willValidatep379, validityp379, and validationMessagep380 attributes, and the checkValidity()p380 and
setCustomValidity()p379 methods, are part of the constraint validation APIp378. The labelsp320 attribute provides a list
of the element's labelp319s.

Constraint validation: outputp366 elements are always barred from constraint validationp376.

A simple calculator could use outputp366 for its display of calculated results:

<form onsubmit="return false">
<input name=a type=number step=any> +
<input name=b type=number step=any> =
<output onforminput="value = a.value + b.value"></output>

</form>

Categories
Flow contentp96.
Phrasing contentp96.
Labelablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96, but there must be no progressp367 element descendants.

Content attributes:
Global attributesp87

valuep368

maxp368

formp373

4.10.16 The progress element

367

The progressp367 element representsp672 the completion progress of a task. The progress is either indeterminate,
indicating that progress is being made but that it is not clear how much more work remains to be done before the task
is complete (e.g. because the task is waiting for a remote host to respond), or the progress is a number in the range
zero to a maximum, giving the fraction of work that has so far been completed.

There are two attributes that determine the current task completion represented by the element.

The value attribute specifies how much of the task has been completed, and the max attribute specifies how much
work the task requires in total. The units are arbitrary and not specified.

Authors are encouraged to also include the current value and the maximum value inline as text inside the element, so
that the progress is made available to users of legacy user agents.

Here is a snippet of a Web application that shows the progress of some automated task:

<section>
<h2>Task Progress</h2>
<p>Progress: <progress id="p" max=100>0%</progress></p>
<script>
var progressBar = document.getElementById('p');
function updateProgress(newValue) {

progressBar.value = newValue;
progressBar.getElementsByTagName('span')[0].textContent = newValue;

}
</script>

</section>

(The updateProgress() method in this example would be called by some other code on the page to update the
actual progress bar as the task progressed.)

The valuep368 and maxp368 attributes, when present, must have values that are valid floating point numbersp38. The
valuep368 attribute, if present, must have a value equal to or greater than zero, and less than or equal to the value of
the maxp368 attribute, if present, or 1.0, otherwise. The maxp368 attribute, if present, must have a value greater than
zero.

Note: The progressp367 element is the wrong element to use for something that is just a gauge, as
opposed to task progress. For instance, indicating disk space usage using progressp367 would be
inappropriate. Instead, the meterp369 element is available for such use cases.

User agent requirements: If the valuep368 attribute is omitted, then the progress bar is an indeterminate progress
bar. Otherwise, it is a determinate progress bar.

If the progress bar is a determinate progress bar and the element has a maxp368 attribute, the user agent must parse
the maxp368 attribute's value according to the rules for parsing floating point number valuesp39. If this does not result in
an error, and if the parsed value is greater than zero, then the maximum value of the progress bar is that value.
Otherwise, if the element has no maxp368 attribute, or if it has one but parsing it resulted in an error, or if the parsed
value was less than or equal to zero, then the maximum value of the progress bar is 1.0.

If the progress bar is a determinate progress bar, user agents must parse the valuep368 attribute's value according to
the rules for parsing floating point number valuesp39. If this does not result in an error, and if the parsed value is less
than the maximum value and greater than zero, then the current value of the progress bar is that parsed value.
Otherwise, if the parsed value was greater than or equal to the maximum value, then the current value of the progress
bar is the maximum value of the progress bar. Otherwise, if parsing the valuep368 attribute's value resulted in an error,
or a number less than or equal to zero, then the current value of the progress bar is zero.

DOM interface:

interface HTMLProgressElement : HTMLElement {
attribute float value;
attribute float max;

readonly attribute float position;
readonly attribute HTMLFormElement form;
readonly attribute NodeList labels;

};

368

UA requirements for showing the progress bar: When representing a progressp367 element to the user, the UA
should indicate whether it is a determinate or indeterminate progress bar, and in the former case, should indicate the
relative position of the current value relative to the maximum value.

The max and value IDL attributes must reflectp61 the respective content attributes of the same name. When the
relevant content attributes are absent, the IDL attributes must return zero.

The formp373 attribute is used to explicitly associate the progressp367 element with its form ownerp373.

This box is non-normative. Implementation requirements are given below this box.

progress . positionp369

For a determinate progress bar (one with known current and maximum values), returns the result of
dividing the current value by the maximum value.
For an indeterminate progress bar, returns −1.

If the progress bar is an indeterminate progress bar, then the position IDL attribute must return −1. Otherwise, it
must return the result of dividing the current value by the maximum value.

The labelsp320 attribute provides a list of the element's labelp319s.

The meterp369 element representsp672 a scalar measurement within a known range, or a fractional value; for example
disk usage, the relevance of a query result, or the fraction of a voting population to have selected a particular
candidate.

This is also known as a gauge.

Categories
Flow contentp96.
Phrasing contentp96.
Labelablep314 form-associated elementp313.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Phrasing contentp96, but there must be no meterp369 element descendants.

Content attributes:
Global attributesp87

valuep370

minp370

maxp370

lowp370

highp370

optimump370

formp373

DOM interface:

interface HTMLMeterElement : HTMLElement {
attribute float value;
attribute float min;
attribute float max;
attribute float low;
attribute float high;
attribute float optimum;

readonly attribute HTMLFormElement form;
readonly attribute NodeList labels;

};

4.10.17 The meter element

369

Note: The meterp369 element should not be used to indicate progress (as in a progress bar). For
that role, HTML provides a separate progressp367 element.

Note: The meterp369 element also does not represent a scalar value of arbitrary range — for
example, it would be wrong to use this to report a weight, or height, unless there is a known
maximum value.

There are six attributes that determine the semantics of the gauge represented by the element.

The min attribute specifies the lower bound of the range, and the max attribute specifies the upper bound. The value
attribute specifies the value to have the gauge indicate as the "measured" value.

The other three attributes can be used to segment the gauge's range into "low", "medium", and "high" parts, and to
indicate which part of the gauge is the "optimum" part. The low attribute specifies the range that is considered to be
the "low" part, and the high attribute specifies the range that is considered to be the "high" part. The optimum
attribute gives the position that is "optimum"; if that is higher than the "high" value then this indicates that the higher
the value, the better; if it's lower than the "low" mark then it indicates that lower values are better, and naturally if it is
in between then it indicates that neither high nor low values are good.

Authoring requirements: The valuep370 attribute must be specified. The valuep370, minp370, lowp370, highp370, maxp370,
and optimump370 attributes, when present, must have values that are valid floating point numbersp38.

In addition, the attributes' values are further constrained:

Let value be the valuep370 attribute's number.

If the minp370 attribute attribute is specified, then let minimum be that attribute's value; otherwise, let it be zero.

If the maxp370 attribute attribute is specified, then let maximum be that attribute's value; otherwise, let it be 1.0.

The following inequalities must hold, as applicable:

• minimum ≤ value ≤ maximum
• minimum ≤ lowp370 ≤ maximum (if lowp370 is specified)
• minimum ≤ highp370 ≤ maximum (if highp370 is specified)
• minimum ≤ optimump370 ≤ maximum (if optimump370 is specified)
• lowp370 ≤ highp370 (if both lowp370 and highp370 are specified)

Note: If no minimum or maximum is specified, then the range is assumed to be 0..1, and the value
thus has to be within that range.

Authors are encouraged to include a textual representation of the gauge's state in the element's contents, for users of
user agents that do not support the meterp369 element.

The following examples show three gauges that would all be three-quarters full:

Storage space usage: <meter value=6 max=8>6 blocks used (out of 8 total)</meter>
Voter turnout: <meter value=0.75></meter>
Tickets sold: <meter min="0" max="100" value="75"></meter>

The following example is incorrect use of the element, because it doesn't give a range (and since the default
maximum is 1, both of the gauges would end up looking maxed out):

<p>The grapefruit pie had a radius of <meter value=12>12cm</meter>
and a height of <meter value=2>2cm</meter>.</p> <!-- BAD! -->

Instead, one would either not include the meter element, or use the meter element with a defined range to give
the dimensions in context compared to other pies:

<p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
<dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
<dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>

</dl>

There is no explicit way to specify units in the meterp369 element, but the units may be specified in the titlep89

attribute in free-form text.

370

The example above could be extended to mention the units:

<dl>
<dt>Radius: <dd> <meter min=0 max=20 value=12 title="centimeters">12cm</meter>
<dt>Height: <dd> <meter min=0 max=10 value=2 title="centimeters">2cm</meter>

</dl>

User agent requirements: User agents must parse the minp370, maxp370, valuep370, lowp370, highp370, and optimump370

attributes using the rules for parsing floating point number valuesp39.

User agents must then use all these numbers to obtain values for six points on the gauge, as follows. (The order in
which these are evaluated is important, as some of the values refer to earlier ones.)

The minimum value
If the minp370 attribute is specified and a value could be parsed out of it, then the minimum value is that value.
Otherwise, the minimum value is zero.

The maximum value
If the maxp370 attribute is specified and a value could be parsed out of it, the maximum value is that value.
Otherwise, the maximum value is 1.0.

If the maximum value would be less than the minimum value, then the maximum value is actually the same as
the minimum value.

The actual value
If the valuep370 attribute is specified and a value could be parsed out of it, then that value is the actual value.
Otherwise, the actual value is zero.

If the actual value would be less than the minimum value, then the actual value is actually the same as the
minimum value.

If, on the other hand, the actual value would be greater than the maximum value, then the actual value is the
maximum value.

The low boundary
If the lowp370 attribute is specified and a value could be parsed out of it, then the low boundary is that value.
Otherwise, the low boundary is the same as the minimum value.

If the low boundary is then less than the minimum value, then the low boundary is actually the same as the
minimum value. Similarly, if the low boundary is greater than the maximum value, then it is actually the
maximum value instead.

The high boundary
If the highp370 attribute is specified and a value could be parsed out of it, then the high boundary is that value.
Otherwise, the high boundary is the same as the maximum value.

If the high boundary is then less than the low boundary, then the high boundary is actually the same as the low
boundary. Similarly, if the high boundary is greater than the maximum value, then it is actually the maximum
value instead.

The optimum point
If the optimump370 attribute is specified and a value could be parsed out of it, then the optimum point is that
value. Otherwise, the optimum point is the midpoint between the minimum value and the maximum value.

If the optimum point is then less than the minimum value, then the optimum point is actually the same as the
minimum value. Similarly, if the optimum point is greater than the maximum value, then it is actually the
maximum value instead.

All of which will result in the following inequalities all being true:

• minimum value ≤ actual value ≤ maximum value
• minimum value ≤ low boundary ≤ high boundary ≤ maximum value
• minimum value ≤ optimum point ≤ maximum value

UA requirements for regions of the gauge: If the optimum point is equal to the low boundary or the high
boundary, or anywhere in between them, then the region between the low and high boundaries of the gauge must be
treated as the optimum region, and the low and high parts, if any, must be treated as suboptimal. Otherwise, if the
optimum point is less than the low boundary, then the region between the minimum value and the low boundary must
be treated as the optimum region, the region between the low boundary and the high boundary must be treated as a

371

suboptimal region, and the region between the high boundary and the maximum value must be treated as an even
less good region. Finally, if the optimum point is higher than the high boundary, then the situation is reversed; the
region between the high boundary and the maximum value must be treated as the optimum region, the region
between the high boundary and the low boundary must be treated as a suboptimal region, and the remaining region
between the low boundary and the minimum value must be treated as an even less good region.

UA requirements for showing the gauge: When representing a meterp369 element to the user, the UA should
indicate the relative position of the actual value to the minimum and maximum values, and the relationship between
the actual value and the three regions of the gauge.

The following markup:

<h3>Suggested groups</h3>
<menu type="toolbar">
Hide suggested groups

</menu>

<p><a href="/group/comp.infosystems.www.authoring.stylesheets/

view">comp.infosystems.www.authoring.stylesheets -
join</p>

<p>Group description: Layout/presentation on the WWW.</p>
<p><meter value="0.5">Moderate activity,</meter> Usenet, 618 subscribers</p>

<p><a href="/group/netscape.public.mozilla.xpinstall/

view">netscape.public.mozilla.xpinstall -
join</p>

<p>Group description: Mozilla XPInstall discussion.</p>
<p><meter value="0.25">Low activity,</meter> Usenet, 22 subscribers</p>

<p>mozilla.dev.general -

join</p>
<p><meter value="0.25">Low activity,</meter> Usenet, 66 subscribers</p>

Might be rendered as follows:

User agents may combine the value of the titlep89 attribute and the other attributes to provide context-sensitive help
or inline text detailing the actual values.

For example, the following snippet:

<meter min=0 max=60 value=23.2 title=seconds></meter>

...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of 60." on one line and
"seconds" on a second line.

The formp373 attribute is used to explicitly associate the meterp369 element with its form ownerp373.

The min, max, value, low, high, and optimum IDL attributes must reflectp61 the respective content attributes of the
same name. When the relevant content attributes are absent, the IDL attributes must return zero.

372

The labelsp320 attribute provides a list of the element's labelp319s.

The following example shows how a gauge could fall back to localized or pretty-printed text.

<p>Disk usage: <meter min=0 value=170261928 max=233257824>170 261 928 bytes used
out of 233 257 824 bytes available</meter></p>

A form-associated elementp313 can have a relationship with a formp314 element, which is called the element's form
owner. If a form-associated elementp313 is not associated with a formp314 element, its form ownerp373 is said to be null.

A form-associated elementp313 is, by default, associated with its nearest ancestor formp314 element (as described
below), but may have a form attribute specified to override this.

If a form-associated elementp313 has a formp373 attribute specified, then its value must be the ID of a formp314 element
in the element's owner Documentp33.

When a form-associated elementp313 is created, its form ownerp373 must be initialized to null (no owner).

When a form-associated elementp313 is to be associated with a form, its form ownerp373 must be set to that form.

When a form-associated elementp313 's ancestor chain changes, e.g. because it or one of its ancestors was insertedp29

or removedp29 from a Documentp33, then the user agent must reset the form ownerp373 of that element.

When a form-associated elementp313 's formp373 attribute is added, removed, or has its value changed, then the user
agent must reset the form ownerp373 of that element.

When a form-associated elementp313 has a formp373 attribute and the ID of any of the elements in the Documentp33

changes, then the user agent must reset the form ownerp373 of that form-associated elementp313.

When a form-associated elementp313 has a formp373 attribute and an element with an ID is inserted intop29 or removed
fromp29 the Documentp33, then the user agent must reset the form ownerp373 of that form-associated elementp313.

When the user agent is to reset the form owner of a form-associated elementp313, it must run the following steps:

1. If the element's form ownerp373 is not null, and the element's formp373 content attribute is not present, and
the element's form ownerp373 is its nearest formp314 element ancestor after the change to the ancestor chain,
then do nothing, and abort these steps.

2. Let the element's form ownerp373 be null.

3. If the element has a formp373 content attribute, then run these substeps:

1. If the first element in the Documentp29 to have an ID that is case-sensitivelyp35 equal to the
element's formp373 content attribute's value is a formp314 element, then associatep373 the form-
associated elementp313 with that formp314 element.

2. Abort the "reset the form owner" steps.

4. Otherwise, if the form-associated elementp313 in question has an ancestor formp314 element, then
associatep373 the form-associated elementp313 with the nearest such ancestor formp314 element.

5. Otherwise, the element is left unassociated.

In the following non-conforming snippet:

...
<form id="a">
<div id="b"></div>

</form>
<script>
document.getElementById('b').innerHTML =

'<table><tr><td><form id="c"><input id="d"></table>' +
'<input id="e">';

</script>
...

4.10.18 Association of controls and forms

373

The form ownerp373 of "d" would be the inner nested form "c", while the form ownerp373 of "e" would be the outer
form "a".

This is because despite the association of "e" with "c" in the HTML parserp584, when the innerHTMLp108 algorithm
moves the nodes from the temporary document to the "b" element, the nodes see their ancestor chain change,
and thus all the "magic" associations done by the parser are reset to normal ancestor associations.

This example is a non-conforming document, though, as it is a violation of the content models to nest formp314

elements.

This box is non-normative. Implementation requirements are given below this box.

element . formp374

Returns the element's form ownerp373.
Returns null if there isn't one.

Form-associated elementsp313 have a form IDL attribute, which, on getting, must return the element's form ownerp373,
or null if there isn't one.

4.10.19.1 Naming form controls

The name content attribute gives the name of the form control, as used in form submissionp380 and in the formp314

element's elementsp316 object. If the attribute is specified, its value must not be the empty string.

The name IDL attribute must reflectp61 the namep374 content attribute.

4.10.19.2 Enabling and disabling form controls

The disabled content attribute is a boolean attributep37.

A form control is disabled if its disabledp374 attribute is set, or if it is a descendant of a fieldsetp317 element whose
disabledp317 attribute is set and is not a descendant of that fieldsetp317 element's first legendp318 element child, if
any.

A form control that is disabledp374 must prevent any clickp33 events that are queuedp517 on the user interaction task
sourcep518 from being dispatched on the element.

Constraint validation: If an element is disabledp374, it is barred from constraint validationp376.

The disabled IDL attribute must reflectp61 the disabledp374 content attribute.

4.10.19.3 A form control's value

Form controls have a value and a checkedness. (The latter is only used by inputp320 elements.) These are used to
describe how the user interacts with the control.

4.10.19.4 Autofocusing a form control

The autofocus content attribute allows the user to indicate that a control is to be focused as soon as the page is
loaded, allowing the user to just start typing without having to manually focus the main control.

The autofocusp374 attribute is a boolean attributep37.

There must not be more than one element in the document with the autofocusp374 attribute specified.

Whenever an element with the autofocusp374 attribute specified is inserted into a documentp29 whose browsing
contextp463 did not have the sandboxed automatic features browsing context flagp215 set when the Documentp33 was
created, the user agent should queue a taskp517 that checks to see if the element is focusablep538, and if so, runs the
focusing stepsp539 for that element. User agents may also change the scrolling position of the document, or perform
some other action that brings the element to the user's attention. The task sourcep517 for this task is the DOM
manipulation task sourcep518.

4.10.19 Attributes common to form controls

374

User agents may ignore this attribute if the user has indicated (for example, by starting to type in a form control) that
he does not wish focus to be changed.

Note: Focusing the control does not imply that the user agent must focus the browser window if it
has lost focus.

The autofocus IDL attribute must reflectp61 the content attribute of the same name.

In the following snippet, the text control would be focused when the document was loaded.

<input maxlength="256" name="q" value="" autofocus>
<input type="submit" value="Search">

4.10.19.5 Limiting user input length

A form control maxlength attribute, controlled by a dirty value flag declares a limit on the number of characters a
user can input.

If an element has its form control maxlength attributep375 specified, the attribute's value must be a valid non-negative
integerp37. If the attribute is specified and applying the rules for parsing non-negative integersp37 to its value results in
a number, then that number is the element's maximum allowed value length. If the attribute is omitted or parsing
its value results in an error, then there is no maximum allowed value lengthp375.

Constraint validation: If an element has a maximum allowed value lengthp375, and its dirty value flag is true, and the
code-point lengthp37 of the element's valuep374 is greater than the element's maximum allowed value lengthp375, then
the element is suffering from being too longp377.

User agents may prevent the user from causing the element's valuep374 to be set to a value whose code-point
lengthp37 is greater than the element's maximum allowed value lengthp375.

4.10.19.6 Form submission

Attributes for form submission can be specified both on formp314 elements and on submit buttonsp314 (elements
that represent buttons that submit forms, e.g. an inputp320 element whose typep321 attribute is in the Submit
Buttonp339 state).

The attributes for form submissionp375 that may be specified on formp314 elements are actionp375, enctypep376,
methodp375, novalidatep376, and targetp376.

The corresponding attributes for form submissionp375 that may be specified on submit buttonsp314 are formactionp375,
formenctypep376, formmethodp375, formnovalidatep376, and formtargetp376. When omitted, they default to the values
given on the corresponding attributes on the formp314 element.

The action and formaction content attributes, if specified, must have a value that is a valid URLp54.

The action of an element is the value of the element's formactionp375 attribute, if the element is a submit buttonp314

and has such an attribute, or the value of its form ownerp373 's actionp375 attribute, if it has one, or else the empty
string.

The method and formmethod content attributes are enumerated attributesp37 with the following keywords and states:

• The keyword GET, mapping to the state GET, indicating the HTTP GET method.

• The keyword POST, mapping to the state POST, indicating the HTTP POST method.

• The keyword PUT, mapping to the state PUT, indicating the HTTP PUT method.

• The keyword DELETE, mapping to the state DELETE, indicating the HTTP DELETE method.

The missing value default for these attributes is the GETp375 state.

The method of an element is one of those four states. If the element is a submit buttonp314 and has a formmethodp375

attribute, then the element's methodp375 is that attribute's state; otherwise, it is the form ownerp373 's methodp375

attribute's state.

375

The enctype and formenctype content attributes are enumerated attributesp37 with the following keywords and
states:

• The "application/x-www-form-urlencoded" keyword and corresponding state.

• The "multipart/form-data" keyword and corresponding state.

• The "text/plain" keyword and corresponding state.

The missing value default for these attributes is the application/x-www-form-urlencodedp376 state.

The enctype of an element is one of those three states. If the element is a submit buttonp314 and has a
formenctypep376 attribute, then the element's enctypep376 is that attribute's state; otherwise, it is the form ownerp373 's
enctypep376 attribute's state.

The target and formtarget content attributes, if specified, must have values that are valid browsing context names
or keywordsp466.

The target of an element is the value of the element's formtargetp376 attribute, if the element is a submit buttonp314

and has such an attribute; or the value of its form ownerp373 's targetp376 attribute, if it has such an attribute; or, if one
of the child nodes of the head elementp80 is a basep114 element with a targetp115 attribute, then the value of the
targetp115 attribute of the first such basep114 element; or, if there is no such element, the empty string.

The novalidate and formnovalidate content attributes are boolean attributesp37. If present, they indicate that the
form is not to be validated during submission.

The no-validate state of an element is true if the element is a submit buttonp314 and the element's
formnovalidatep376 attribute is present, or if the element's form ownerp373 's novalidatep376 attribute is present, and
false otherwise.

This attribute is useful to include "save" buttons on forms that have validation constraints, to allow users to save
their progress even though they haven't fully entered the data in the form. The following example shows a
simple form that has two required fields. There are three buttons: one to submit the form, which requires both
fields to be filled in; one to save the form so that the user can come back and fill it in later; and one to cancel
the form altogether.

<form action="editor.cgi" method="post">
<p><label>Name: <input required name=fn></label></p>
<p><label>Essay: <textarea name=essay></textarea></label></p>
<p><input type=submit name=submit value="Submit essay"></p>
<p><input type=submit formnovalidate name=save value="Save essay"></p>
<p><input type=submit formnovalidate name=cancel value="Cancel"></p>

</form>

The action, method, enctype, and target IDL attributes must reflectp61 the respective content attributes of the same
name. The noValidate IDL attribute must reflect the novalidatep376 content attribute. The formAction IDL attribute
must reflect the formactionp375 content attribute. The formEnctype IDL attribute must reflect the formenctypep376

content attribute. The formMethod IDL attribute must reflect the formmethodp375 content attribute. The
formNoValidate IDL attribute must reflect the formnovalidatep376 content attribute. The formTarget IDL attribute
must reflect the formtargetp376 content attribute.

4.10.20.1 Definitions

A listed form-associated elementp313 is a candidate for constraint validation except when a condition has barred
the element from constraint validation. (For example, an element is barred from constraint validationp376 if it is an
outputp366 or fieldsetp317 element.)

An element can have a custom validity error message defined. Initially, an element must have its custom validity
error messagep376 set to the empty string. When its value is not the empty string, the element is suffering from a
custom errorp377. It can be set using the setCustomValidity()p379 method. The user agent should use the custom
validity error messagep376 when alerting the user to the problem with the control.

4.10.20 Constraints

376

An element can be constrained in various ways. The following is the list of validity states that a form control can be
in, making the control invalid for the purposes of constraint validation. (The definitions below are non-normative; other
parts of this specification define more precisely when each state applies or does not.)

Suffering from being missing
When a control has no valuep374 but has a required attribute (inputp320 requiredp344, textareap360

requiredp362).

Suffering from a type mismatch
When a control that allows arbitrary user input has a valuep374 that is not in the correct syntax (E-mailp327,
URLp326).

Suffering from a pattern mismatch
When a control has a valuep374 that doesn't satisfy the patternp346 attribute.

Suffering from being too long
When a control has a valuep374 that is too long for the form control maxlength attributep375 (inputp320

maxlengthp346, textareap360 maxlengthp362).

Suffering from an underflow
When a control has a valuep374 that is too low for the minp346 attribute.

Suffering from an overflow
When a control has a valuep374 that is too high for the maxp346 attribute.

Suffering from a step mismatch
When a control has a valuep374 that doesn't fit the rules given by the stepp347 attribute.

Suffering from a custom error
When a control's custom validity error messagep376 (as set by the element's setCustomValidity()p379 method)
is not the empty string.

Note: An element can still suffer from these states even when the element is disabledp374; thus
these states can be represented in the DOM even if validating the form during submission
wouldn't indicate a problem to the user.

An element satisfies its constraints if it is not suffering from any of the above validity statesp377.

4.10.20.2 Constraint validation

When the user agent is required to statically validate the constraints of formp314 element form, it must run the
following steps, which return either a positive result (all the controls in the form are valid) or a negative result (there
are invalid controls) along with a (possibly empty) list of elements that are invalid and for which no script has claimed
responsibility:

1. Let controls be a list of all the submittable elementsp314 whose form ownerp373 is form, in tree orderp29.

2. Let invalid controls be an initially empty list of elements.

3. For each element field in controls, in tree orderp29, run the following substeps:

1. If field is not a candidate for constraint validationp376, then move on to the next element.

2. Otherwise, if field satisfies its constraintsp377, then move on to the next element.

3. Otherwise, add field to invalid controls.

4. If invalid controls is empty, then return a positive result and abort these steps.

5. Let unhandled invalid controls be an initially empty list of elements.

6. For each element field in invalid controls, if any, in tree orderp29, run the following substeps:

1. Fire a simple eventp523 named invalid that is cancelable at field.

2. If the event was not canceled, then add field to unhandled invalid controls.

7. Return a negative result with the list of elements in the unhandled invalid controls list.

377

If a user agent is to interactively validate the constraints of formp314 element form, then the user agent must run
the following steps:

1. Statically validate the constraintsp377 of form, and let unhandled invalid controls be the list of elements
returned if the result was negative.

2. If the result was positive, then return that result and abort these steps.

3. Report the problems with the constraints of at least one of the elements given in unhandled invalid controls
to the user. User agents may focus one of those elements in the process, by running the focusing stepsp539

for that element, and may change the scrolling position of the document, or perform some other action that
brings the element to the user's attention. User agents may report more than one constraint violation. User
agents may coalesce related constraint violation reports if appropriate (e.g. if multiple radio buttons in a
groupp337 are marked as required, only one error need be reported). If one of the controls is not being
renderedp672 (e.g. it has the hiddenp536 attribute set) then user agents may report a script error.

4. Return a negative result.

4.10.20.3 The constraint validation API

This box is non-normative. Implementation requirements are given below this box.

element . willValidatep379

Returns true if the element will be validated when the form is submitted; false otherwise.

element . setCustomValidityp379(message)
Sets a custom error, so that the element would fail to validate. The given message is the message to be
shown to the user when reporting the problem to the user.
If the argument is the empty string, clears the custom error.

element . validityp379 . valueMissingp379

Returns true if the element has no value but is a required field; false otherwise.

element . validityp379 . typeMismatchp379

Returns true if the element's value is not in the correct syntax; false otherwise.

element . validityp379 . patternMismatchp379

Returns true if the element's value doesn't match the provided pattern; false otherwise.

element . validityp379 . tooLongp379

Returns true if the element's value is longer than the provided maximum length; false otherwise.

element . validityp379 . rangeUnderflowp379

Returns true if the element's value is lower than the provided minimum; false otherwise.

element . validityp379 . rangeOverflowp379

Returns true if the element's value is higher than the provided maximum; false otherwise.

element . validityp379 . stepMismatchp380

Returns true if the element's value doesn't fit the rules given by the stepp347 attribute; false otherwise.

element . validityp379 . customErrorp380

Returns true if the element has a custom error; false otherwise.

element . validityp379 . validp380

Returns true if the element's value has no validity problems; false otherwise.

valid = element . checkValidityp380()
Returns true if the element's value has no validity problems; false otherwise. Fires an invalid event at the
element in the latter case.

378

element . validationMessagep380

Returns the error message that would be shown to the user if the element was to be checked for validity.

The willValidate attribute must return true if an element is a candidate for constraint validationp376, and false
otherwise (i.e. false if any conditions are barring it from constraint validationp376).

The setCustomValidity(message), when invoked, must set the custom validity error messagep376 to the value of the
given message argument.

In the following example, a script checks the value of a form control each time it is edited, and whenever it is
not a valid value, uses the setCustomValidity()p379 method to set an appropriate message.

<label>Feeling: <input name=f type="text" oninput="check(this)"></label>
<script>
function check(input) {

if (input.value == "good" ||
input.value == "fine" ||
input.value == "tired") {

input.setCustomValidity('"' + input.value + '" is not a feeling.');
} else {

// input is fine -- reset the error message
input.setCustomValidity('');

}
}

</script>

The validity attribute must return a ValidityStatep379 object that represents the validity statesp377 of the element.
This object is livep29, and the same object must be returned each time the element's validityp379 attribute is
retrieved.

interface ValidityState {
readonly attribute boolean valueMissing;
readonly attribute boolean typeMismatch;
readonly attribute boolean patternMismatch;
readonly attribute boolean tooLong;
readonly attribute boolean rangeUnderflow;
readonly attribute boolean rangeOverflow;
readonly attribute boolean stepMismatch;
readonly attribute boolean customError;
readonly attribute boolean valid;

};

A ValidityStatep379 object has the following attributes. On getting, they must return true if the corresponding
condition given in the following list is true, and false otherwise.

valueMissing
The control is suffering from being missingp377.

typeMismatch
The control is suffering from a type mismatchp377.

patternMismatch
The control is suffering from a pattern mismatchp377.

tooLong
The control is suffering from being too longp377.

rangeUnderflow
The control is suffering from an underflowp377.

rangeOverflow
The control is suffering from an overflowp377.

379

stepMismatch
The control is suffering from a step mismatchp377.

customError
The control is suffering from a custom errorp377.

valid
None of the other conditions are true.

When the checkValidity() method is invoked, if the element is a candidate for constraint validationp376 and does not
satisfy its constraintsp377, the user agent must fire a simple eventp523 named invalid that is cancelable (but in this
case has no default action) at the element and return false. Otherwise, it must only return true without doing anything
else.

The validationMessage attribute must return the empty string if the element is not a candidate for constraint
validationp376 or if it is one but it satisfies its constraintsp377; otherwise, it must return a suitably localized message that
the user agent would show the user if this were the only form control with a validity constraint problem. If the user
agent would not actually show a textual message in such a situation (e.g. it would show a graphical cue instead), then
the attribute must return a suitably localized message that expresses (one or more of) the validity constraint(s) that
the control does not satisfy. If the element is a candidate for constraint validationp376 and is suffering from a custom
errorp377, then the custom validity error messagep376 should be present in the return value.

4.10.20.4 Security

Servers should not rely on client-side validation. Client-side validation can be intentionally bypassed by hostile users,
and unintentionally bypassed by users of older user agents or automated tools that do not implement these features.
The constraint validation features are only intended to improve the user experience, not to provide any kind of
security mechanism.

4.10.21.1 Introduction

This section is non-normative.

When forms are submitted, the data in the form is converted into the form specified by the enctypep376, and then sent
to the destination specified by the actionp375 using the given methodp375.

For example, take the following form:

<form action="/find.cgi" method=get>
<input type=text name=t>
<input type=search name=q>
<input type=submit>

</form>

If the user types in "cats" in the first field and "fur" in the second, and then hits the submit button, then the user agent
will load /find.cgi?t=cats&q=fur.

On the other hand, consider this form:

<form action="/find.cgi" method=post enctype="multipart/form-data">
<input type=text name=t>
<input type=search name=q>
<input type=submit>

</form>

Given the same user input, the result on submission is quite different: the user agent instead does an HTTP POST to
the given URL, with as the entity body something like the following text:

------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="t"

cats
------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="q"

4.10.21 Form submission

380

fur
------kYFrd4jNJEgCervE--

4.10.21.2 Implicit submission

User agents may establish a buttonp314 in each form as being the form's default button. This should be the first
submit buttonp314 in tree orderp29 whose form ownerp373 is that formp314 element, but user agents may pick another
button if another would be more appropriate for the platform. If the platform supports letting the user submit a form
implicitly (for example, on some platforms hitting the "enter" key while a text field is focused implicitly submits the
form), then doing so must cause the form's default buttonp381 's activation behaviorp98, if any, to be run.

Note: Consequently, if the default buttonp381 is disabledp374, the form is not submitted when such
an implicit submission mechanism is used. (A button has no activation behaviorp98 when
disabled.)

If the form has no submit buttonp314, then the implicit submission mechanism must just submitp381 the formp314

element from the formp314 element itself.

4.10.21.3 Form submission algorithm

When a form form is submitted from an element submitter (typically a button), optionally with a scripted-submit flag
set, the user agent must run the following steps:

1. If form is in a Documentp33 that has no associated browsing contextp463 or whose browsing contextp463 had its
sandboxed forms browsing context flagp214 set when the Documentp33 was created, then abort these steps
without doing anything.

2. If form is already being submitted (i.e. the form was submittedp381 again while processing the events fired
from the next two steps, probably from a script redundantly calling the submit()p316 method on form), then
abort these steps. This doesn't affect the earlier instance of this algorithm.

3. If the scripted-submit flag is not set, and the submitter element's no-validate statep376 is false, then
interactively validate the constraintsp378 of form and examine the result: if the result is negative (the
constraint validation concluded that there were invalid fields and probably informed the user of this) then
abort these steps.

4. If the scripted-submit flag is not set, then fire a simple eventp523 that is cancelable named submit, at form. If
the event's default action is prevented (i.e. if the event is canceled) then abort these steps. Otherwise,
continue (effectively the default action is to perform the submission).

5. Let controls be a list of all the submittable elementsp314 whose form ownerp373 is form, in tree orderp29.

6. Let the form data set be a list of name-value-type tuples, initially empty.

7. Constructing the form data set. For each element field in controls, in tree orderp29, run the following
substeps:

1. If any of the following conditions are met, then skip these substeps for this element:

• The field element has a datalistp356 element ancestor.

• The field element is disabledp374.

• The field element is a buttonp314 but it is not submitter.

• The field element is an inputp320 element whose typep321 attribute is in the Checkboxp336

state and whose checkednessp374 is false.

• The field element is an inputp320 element whose typep321 attribute is in the Radio
Buttonp337 state and whose checkednessp374 is false.

• The field element is not an inputp320 element whose typep321 attribute is in the Image
Buttonp339 state, and either the field element does not have a namep374 attribute
specified, or its namep374 attribute's value is the empty string.

• The field element is an objectp220 element that is not using a pluginp29.

381

Otherwise, process field as follows:

2. Let type be the value of the type IDL attribute of field.

3. If the field element is an inputp320 element whose typep321 attribute is in the Image Buttonp339

state, then run these further nested substeps:

1. If the field element has an namep374 attribute specified and value is not the empty string,
let name be that value followed by a single U+002E FULL STOP character (.). Otherwise,
let name be the empty string.

2. Let namex be the string consisting of the concatenation of name and a single U+0078
LATIN SMALL LETTER X character (x).

3. Let namey be the string consisting of the concatenation of name and a single U+0079
LATIN SMALL LETTER Y character (y).

4. The field element is submitter, and before this algorithm was invoked the user indicated
a coordinatep340. Let x be the x-component of the coordinate selected by the user, and
let y be the y-component of the coordinate selected by the user.

5. Append an entry in the form data set with the name namex, the value x, and the type
type.

6. Append an entry in the form data set with the name namey and the value y, and the
type type.

7. Skip the remaining substeps for this element: if there are any more elements in controls,
return to the top of the constructing the form data setp381 step, otherwise, jump to the
next step in the overall form submission algorithm.

4. Let name be the value of the field element's namep374 attribute.

5. If the field element is a selectp353 element, then for each optionp358 element in the selectp353

element whose selectednessp359 is true, append an entry in the form data set with the name as the
name, the valuep359 of the optionp358 element as the value, and type as the type.

6. Otherwise, if the field element is an inputp320 element whose typep321 attribute is in the
Checkboxp336 state or the Radio Buttonp337 state, then run these further nested substeps:

1. If the field element has a valuep323 attribute specified, then let value be the value of that
attribute; otherwise, let value be the string "on".

2. Append an entry in the form data set with name as the name, value as the value, and
type as the type.

7. Otherwise, if the field element is an inputp320 element whose typep321 attribute is in the File
Uploadp338 state, then for each file selectedp338 in the inputp320 element, append an entry in the
form data set with the name as the name, the file (consisting of the name, the type, and the body)
as the value, and type as the type. If there are no selected filesp338, then append an entry in the
form data set with the name as the name, the empty string as the value, and application/
octet-stream as the type.

8. Otherwise, if the field element is an objectp220 element: try to obtain a form submission value
from the pluginp29, and if that is successful, append an entry in the form data set with name as the
name, the returned form submission value as the value, and the string "object" as the type.

9. Otherwise, append an entry in the form data set with name as the name, the valuep374 of the field
element as the value, and type as the type.

8. Let action be the submitter element's actionp375.

9. If action is the empty string, let action be the document's addressp75.

Note: This step is a willful violationp18 of RFC 3986, which would require base URL
processing here. This violation is motivated by a desire for compatibility with legacy
content. [RFC3986]p741

382

10. Resolvep55 the URLp54 action, relative to the submitter element. If this fails, abort these steps. Otherwise, let
action be the resulting absolute URLp55.

11. Let scheme be the <scheme>p54 of the resulting absolute URLp55.

12. Let enctype be the submitter element's enctypep376.

13. Let method be the submitter element's methodp375.

14. Let target be the submitter element's targetp376.

15. Select the appropriate row in the table below based on the value of scheme as given by the first cell of each
row. Then, select the appropriate cell on that row based on the value of method as given in the first cell of
each column. Then, jump to the steps named in that cell and defined below the table.

GETp375 POSTp375 PUTp375 DELETEp375

http Mutate actionp383 Submit as entity bodyp383 Submit as entity bodyp383 Delete actionp383

https Mutate actionp383 Submit as entity bodyp383 Submit as entity bodyp383 Delete actionp383

ftp Get actionp384 Get actionp384 Get actionp384 Get actionp384

javascript Get actionp384 Get actionp384 Get actionp384 Get actionp384

data Get actionp384 Post to data:p384 Put to data:p384 Get actionp384

mailto Mail with headersp384 Mail as bodyp385 Mail with headersp384 Mail with headersp384

If scheme is not one of those listed in this table, then the behavior is not defined by this specification. User
agents should, in the absence of another specification defining this, act in a manner analogous to that
defined in this specification for similar schemes.

The behaviors are as follows:

Mutate action
Let query be the result of encoding the form data set using the application/x-www-form-urlencoded
encoding algorithmp385, interpreted as a US-ASCII string.

Let destination be a new URLp54 that is equal to the action except that its <query>p55 component is
replaced by query (adding a U+003F QUESTION MARK character (?) if appropriate).

Let target browsing context be the form submission target browsing contextp385.

Navigatep484 target browsing context to destination. If target browsing context was newly created for
this purpose by the steps above, then it must be navigated with replacement enabledp492.

Submit as entity body
Let entity body be the result of encoding the form data set using the appropriate form encoding
algorithmp385.

Let target browsing context be the form submission target browsing contextp385.

Let MIME type be determined as follows:

If enctype is application/x-www-form-urlencodedp376

Let MIME type be "application/x-www-form-urlencoded".
If enctype is multipart/form-datap376

Let MIME type be "multipart/form-data".
If enctype is text/plainp376

Let MIME type be "text/plain".

If method is anything but GET or POST, and the originp474 of action is not the same originp476 as that of
the formp314 element's Documentp33, then abort these steps.

Otherwise, navigatep484 target browsing context to action using the HTTP method given by method and
with entity body as the entity body, of type MIME type. If target browsing context was newly created
for this purpose by the steps above, then it must be navigated with replacement enabledp492.

Delete action
Let target browsing context be the form submission target browsing contextp385.

383

If the originp474 of action is not the same originp476 as that of the formp314 element's Documentp33, then
abort these steps.

Otherwise, navigatep484 target browsing context to action using the DELETE method. If target browsing
context was newly created for this purpose by the steps above, then it must be navigated with
replacement enabledp492.

Get action
Let target browsing context be the form submission target browsing contextp385.

Navigatep484 target browsing context to action. If target browsing context was newly created for this
purpose by the steps above, then it must be navigated with replacement enabledp492.

Post to data:
Let data be the result of encoding the form data set using the appropriate form encoding algorithmp385.

If action contains the string "%%%%" (four U+0025 PERCENT SIGN characters), then %-escape all bytes in
data that, if interpreted as US-ASCII, do not match the unreserved production in the URI Generic
Syntax, and then, treating the result as a US-ASCII string, further %-escape all the U+0025 PERCENT
SIGN characters in the resulting string and replace the first occurrence of "%%%%" in action with the
resulting double-escaped string. [RFC3986]p741

Otherwise, if action contains the string "%%" (two U+0025 PERCENT SIGN characters in a row, but not
four), then %-escape all characters in data that, if interpreted as US-ASCII, do not match the
unreserved production in the URI Generic Syntax, and then, treating the result as a US-ASCII string,
replace the first occurrence of "%%" in action with the resulting escaped string. [RFC3986]p741

Let target browsing context be the form submission target browsing contextp385.

Navigatep484 target browsing context to the potentially modified action. If target browsing context was
newly created for this purpose by the steps above, then it must be navigated with replacement
enabledp492.

Put to data:
Let data be the result of encoding the form data set using the appropriate form encoding algorithmp385.

Let MIME type be determined as follows:

If enctype is application/x-www-form-urlencodedp376

Let MIME type be "application/x-www-form-urlencoded".
If enctype is multipart/form-datap376

Let MIME type be "multipart/form-data".
If enctype is text/plainp376

Let MIME type be "text/plain".

Let destination be the result of concatenating the following:

1. The string "data:".
2. The value of MIME type.
3. The string ";base64,".
4. A base-64 encoded representation of data. [RFC2045]p741

Let target browsing context be the form submission target browsing contextp385.

Navigatep484 target browsing context to destination. If target browsing context was newly created for
this purpose by the steps above, then it must be navigated with replacement enabledp492.

Mail with headers
Let headers be the resulting encoding the form data set using the application/x-www-form-
urlencoded encoding algorithmp385, interpreted as a US-ASCII string.

Replace occurrences of U+002B PLUS SIGN characters (+) in headers with the string "%20".

Let destination consist of all the characters from the first character in action to the character
immediately before the first U+003F QUESTION MARK character (?), if any, or the end of the string if
there are none.

Append a single U+003F QUESTION MARK character (?) to destination.

384

Append headers to destination.

Let target browsing context be the form submission target browsing contextp385.

Navigatep484 target browsing context to destination. If target browsing context was newly created for
this purpose by the steps above, then it must be navigated with replacement enabledp492.

Mail as body
Let body be the resulting encoding the form data set using the appropriate form encoding algorithmp385

and then %-escaping all the bytes in the resulting byte string that, when interpreted as US-ASCII, do
not match the unreserved production in the URI Generic Syntax. [RFC3986]p741

Let destination have the same value as action.

If destination does not contain a U+003F QUESTION MARK character (?), append a single U+003F
QUESTION MARK character (?) to destination. Otherwise, append a single U+0026 AMPERSAND
character (&).

Append the string "body=" to destination.

Append body, interpreted as a US-ASCII string, to destination.

Let target browsing context be the form submission target browsing contextp385.

Navigatep484 target browsing context to destination. If target browsing context was newly created for
this purpose by the steps above, then it must be navigated with replacement enabledp492.

The form submission target browsing context is obtained, when needed by the behaviors described
above, as follows: If the user indicated a specific browsing contextp463 to use when submitting the form, then
that is the target browsing context. Otherwise, apply the rules for choosing a browsing context given a
browsing context namep466 using target as the name and the browsing contextp463 of form as the context in
which the algorithm is executed; the resulting browsing contextp463 is the target browsing context.

The appropriate form encoding algorithm is determined as follows:

If enctype is application/x-www-form-urlencodedp376

Use the application/x-www-form-urlencoded encoding algorithmp385.

If enctype is multipart/form-datap376

Use the multipart/form-data encoding algorithmp386.

If enctype is text/plainp376

Use the text/plain encoding algorithmp386.

4.10.21.4 URL-encoded form data

The application/x-www-form-urlencoded encoding algorithm is as follows:

1. Let result be the empty string.

2. If the formp314 element has an accept-charsetp315 attribute, then, taking into account the characters found
in the form data set's names and values, and the character encodings supported by the user agent, select a
character encoding from the list given in the formp314 's accept-charsetp315 attribute that is an ASCII-
compatible character encodingp30. If none of the encodings are supported, then let the selected character
encoding be UTF-8.

Otherwise, if the document's character encodingp79 is an ASCII-compatible character encodingp30, then that
is the selected character encoding.

Otherwise, let the selected character encoding be UTF-8.

3. Let charset be the preferred MIME namep30 of the selected character encoding.

4. For each entry in the form data set, perform these substeps:

1. If the entry's name is "_charset_" and its type is "hidden", replace its value with charset.

2. If the entry's type is "file", replace its value with the file's filename only.

385

3. For each character in the entry's name and value that cannot be expressed using the selected
character encoding, replace the character by a string consisting of a U+0026 AMPERSAND
character (&), a U+0023 NUMBER SIGN character (#), one or more characters in the range
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) representing the Unicode code point of the
character in base ten, and finally a U+003B SEMICOLON character (;).

4. For each character in the entry's name and value, apply the appropriate subsubsteps from the
following list:

↪ The character is a U+0020 SPACE character
Replace the character with a single U+002B PLUS SIGN character (+).

↪ If the character isn't in the range U+0020, U+002A, U+002D, U+002E, U+0030 to
U+0039, U+0041 to U+005A, U+005F, U+0061 to U+007A

Replace the character with a string formed as follows:

1. Let s be an empty string.

2. For each byte b of the character when expressed in the selected character
encoding in turn, run the appropriate subsubsubstep from the list below:

↪ If the byte is in the range 0x20, 0x2A, 0x2D, 0x2E, 0x30 to 0x39,
0x41 to 0x5A, 0x5F, 0x61 to 0x7A

Append to s the Unicode character with the codepoint equal to the
byte.

↪ Otherwise
Append to the string a U+0025 PERCENT SIGN character (%) followed
by two characters in the ranges U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9) and U+0041 LATIN CAPITAL LETTER A to U+0046
LATIN CAPITAL LETTER F representing the hexadecimal value of the
byte (zero-padded if necessary).

↪ Otherwise
Leave the character as is.

5. If the entry's name is "isindex", its type is "text", and this is the first entry in the form data set,
then append the value to result and skip the rest of the substeps for this entry, moving on to the
next entry, if any, or the next step in the overall algorithm otherwise.

6. If this is not the first entry, append a single U+0026 AMPERSAND character (&) to result.

7. Append the entry's name to result.

8. Append a single U+003D EQUALS SIGN character (=) to result.

9. Append the entry's value to result.

5. Encode result as US-ASCII and return the resulting byte stream.

4.10.21.5 Multipart form data

The multipart/form-data encoding algorithm is to encode the form data set using the rules described by
RFC2388, Returning Values from Forms: multipart/form-data, and return the resulting byte stream. [RFC2388]p741

Each entry in the form data set is a field, the name of the entry is the field name and the value of the entry is the field
value, unless the entry's name is "_charset_" and its type is "hidden", in which case the field value is the character
encoding used by the aforementioned algorithm to encode the value of the field.

The order of parts must be the same as the order of fields in the form data set. Multiple entries with the same name
must be treated as distinct fields.

4.10.21.6 Plain text form data

The text/plain encoding algorithm is as follows:

1. Let result be the empty string.

386

2. If the formp314 element has an accept-charsetp315 attribute, then, taking into account the characters found
in the form data set's names and values, and the character encodings supported by the user agent, select a
character encoding from the list given in the formp314 's accept-charsetp315 attribute. If none of the
encodings are supported, then let the selected character encoding be UTF-8.

Otherwise, the selected character encoding is the document's character encodingp79.

3. Let charset be the preferred MIME namep30 of the selected character encoding.

4. If the entry's name is "_charset_" and its type is "hidden", replace its value with charset.

5. If the entry's type is "file", replace its value with the file's filename only.

6. For each entry in the form data set, perform these substeps:

1. Append the entry's name to result.

2. Append a single U+003D EQUALS SIGN character (=) to result.

3. Append the entry's value to result.

4. Append a U+000D CARRIAGE RETURN (CR) U+000A LINE FEED (LF) character pair to result.

7. Encode result using the selected character encoding and return the resulting byte stream.

When a form form is reset, the user agent must fire a simple eventp523 named reset, that is cancelable, at form, and
then, if that event is not canceled, must invoke the reset algorithmp387 of each resettable elementsp314 whose form
ownerp373 is form, and broadcast formchange eventsp387 from form.

Each resettable elementp314 defines its own reset algorithm. Changes made to form controls as part of these
algorithms do not count as changes caused by the user (and thus, e.g., do not cause input events to fire).

When the user agent is to broadcast forminput events or broadcast formchange events from a formp314 element
form, it must run the following steps:

1. Let controls be a list of all the resettable elementsp314 whose form ownerp373 is form.

2. If the user agent was to broadcast forminput eventsp387, let event name be forminput. Otherwise the user
agent was to broadcast formchange eventsp387; let event name be formchange.

3. For each element in controls, in tree orderp29, fire a simple eventp523 named event name at the element.

4.11 Interactive elements

Categories
Flow contentp96.
Sectioning rootp152.
Interactive contentp97.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
One summaryp390 element followed by flow contentp96.

Content attributes:
Global attributesp87

openp388

4.10.22 Resetting a form

4.10.23 Event dispatch

4.11.1 The details element

387

The detailsp387 element representsp672 a disclosure widget from which the user can obtain additional information or
controls.

Note: The detailsp387 element is not appropriate for footnotes. Please see the section on
footnotesp417 for details on how to mark up footnotes.

The first summaryp390 element child of the element, if any, representsp672 the summary or legend of the details. If there
is no child summaryp390 element, the user agent should provide its own legend (e.g. "Details").

The open content attribute is a boolean attributep37. If present, it indicates that the details are to be shown to the user.
If the attribute is absent, the details are not to be shown.

If the attribute is removed, then the details should be hidden. If the attribute is added, the details should be shown.

The user agent should allow the user to request that the details be shown or hidden. To honor a request for the details
to be shown, the user agent must set the openp388 attribute on the element to the value open. To honor a request for
the details to be hidden, the user agent must remove the openp388 attribute from the element.

The open attribute must reflectp61 the openp388 content attribute.

The following example shows the detailsp387 element being used to hide technical details in a progress report.

<section class="progress window">
<h1>Copying "Really Achieving Your Childhood Dreams"</h1>
<details>
<summary>Copying... <progress max="375505392" value="97543282"></progress> 25%</summary>
<dl>
<dt>Transfer rate:</dt> <dd>452KB/s</dd>
<dt>Local filename:</dt> <dd>/home/rpausch/raycd.m4v</dd>
<dt>Remote filename:</dt> <dd>/var/www/lectures/raycd.m4v</dd>
<dt>Duration:</dt> <dd>01:16:27</dd>
<dt>Color profile:</dt> <dd>SD (6-1-6)</dd>
<dt>Dimensions:</dt> <dd>320×240</dd>

</dl>
</details>

</section>

The following shows how a detailsp387 element can be used to hide some controls by default:

<details>
<summary>Name & Extension:</summary>
<p><input type=text name=fn value="Pillar Magazine.pdf">
<p><label><input type=checkbox name=ext checked> Hide extension</label>

</details>

One could use this in conjuction with other detailsp387 in a list to allow the user to collapse a set of fields down
to a small set of headings, with the ability to open each one.

DOM interface:

interface HTMLDetailsElement : HTMLElement {
attribute boolean open;

};

388

389

In these examples, the summary really just summarises what the controls can change, and not the actual
values, which is less than ideal.

Categories
None.

Contexts in which this element may be used:
As the first child of a detailsp387 element.

Content model:
Phrasing contentp96.

Content attributes:
Global attributesp87

4.11.2 The summary element

390

The summaryp390 element representsp672 a summary, caption, or legend for the rest of the contents of the summaryp390

element's parent detailsp387 element, if any.

The commandp391 element represents a command that the user can invoke.

The type attribute indicates the kind of command: either a normal command with an associated action, or a state or
option that can be toggled, or a selection of one item from a list of items.

The attribute is an enumerated attributep37 with three keywords and states. The "command" keyword maps to the
Commandp391 state, the "checkbox" keyword maps to the Checkboxp391 state, and the "radio" keyword maps to the
Radiop391 state. The missing value default is the Commandp391 state.

The Command state
The element representsp672 a normal command with an associated action.

The Checkbox state
The element representsp672 a state or option that can be toggled.

The Radio state
The element representsp672 a selection of one item from a list of items.

The label attribute gives the name of the command, as shown to the user. The labelp391 attribute must be specified
and must have a value that is not the empty string.

The title attribute gives a hint describing the command, which might be shown to the user to help him.

DOM interface:
Uses HTMLElementp85.

Categories
Metadata contentp95.
Flow contentp96.
Phrasing contentp96.

Contexts in which this element may be used:
Where metadata contentp95 is expected.
Where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

typep391

labelp391

iconp392

disabledp392

checkedp392

radiogroupp392

Also, the titlep391 attribute has special semantics on this element.

DOM interface:

interface HTMLCommandElement : HTMLElement {
attribute DOMString type;
attribute DOMString label;
attribute DOMString icon;
attribute boolean disabled;
attribute boolean checked;
attribute DOMString radiogroup;

};

4.11.3 The command element

391

The icon attribute gives a picture that represents the command. If the attribute is specified, the attribute's value must
contain a valid non-empty URLp54. To obtain the absolute URLp55 of the icon when the attribute's value is not the empty
string, the attribute's value must be resolvedp55 relative to the element. When the attribute is absent, or its value is
the empty string, or resolvingp55 its value fails, there is no icon.

The disabled attribute is a boolean attributep37 that, if present, indicates that the command is not available in the
current state.

Note: The distinction between disabledp392 and hiddenp536 is subtle. A command would be disabled
if, in the same context, it could be enabled if only certain aspects of the situation were changed.
A command would be marked as hidden if, in that situation, the command will never be enabled.
For example, in the context menu for a water faucet, the command "open" might be disabled if
the faucet is already open, but the command "eat" would be marked hidden since the faucet could
never be eaten.

The checked attribute is a boolean attributep37 that, if present, indicates that the command is selected. The attribute
must be omitted unless the typep391 attribute is in either the Checkboxp391 state or the Radiop391 state.

The radiogroup attribute gives the name of the group of commands that will be toggled when the command itself is
toggled, for commands whose typep391 attribute has the value "radio". The scope of the name is the child list of the
parent element. The attribute must be omitted unless the typep391 attribute is in the Radiop391 state.

The type, label, icon, disabled, checked, and radiogroup IDL attributes must reflectp61 the respective content
attributes of the same name.

The element's activation behaviorp98 depends on the value of the typep391 attribute of the element, as follows:

↪ If the typep391 attribute is in the Checkboxp391 state
If the element has a checkedp392 attribute, the UA must remove that attribute. Otherwise, the UA must add a
checkedp392 attribute, with the literal value checked. The UA must then fire a click eventp523 at the element.

↪ If the typep391 attribute is in the Radiop391 state
If the element has a parent, then the UA must walk the list of child nodes of that parent element, and for
each node that is a commandp391 element, if that element has a radiogroupp392 attribute whose value exactly
matches the current element's (treating missing radiogroupp392 attributes as if they were the empty string),
and has a checkedp392 attribute, must remove that attribute.

Then, the element's checkedp392 attribute attribute must be set to the literal value checked and the user
agent must fire a click eventp523 at the element.

↪ Otherwise
The element has no activation behaviorp98.

Note: Firing a synthetic clickp33 event at the element does not cause any of the actions described
above to happen.

Note: commandp391 elements are not rendered unless they form part of a menup393.

Here is an example of a toolbar with three buttons that let the user toggle between left, center, and right
alignment. One could imagine such a toolbar as part of a text editor. The toolbar also has a separator followed
by another button labeled "Publish", though that button is disabled.

<menu type="toolbar">
<command type="radio" radiogroup="alignment" checked="checked"

label="Left" icon="icons/alL.png" onclick="setAlign('left')">
<command type="radio" radiogroup="alignment"

label="Center" icon="icons/alC.png" onclick="setAlign('center')">
<command type="radio" radiogroup="alignment"

label="Right" icon="icons/alR.png" onclick="setAlign('right')">
<hr>
<command type="command" disabled

label="Publish" icon="icons/pub.png" onclick="publish()">
</menu>

392

The menup393 element represents a list of commands.

The type attribute is an enumerated attributep37 indicating the kind of menu being declared. The attribute has three
states. The context keyword maps to the context menu state, in which the element is declaring a context menu. The
toolbar keyword maps to the toolbar state, in which the element is declaring a toolbar. The attribute may also be
omitted. The missing value default is the list state, which indicates that the element is merely a list of commands that
is neither declaring a context menu nor defining a toolbar.

If a menup393 element's typep393 attribute is in the context menup393 state, then the element representsp672 the
commands of a context menu, and the user can only interact with the commands if that context menu is activated.

If a menup393 element's typep393 attribute is in the toolbarp393 state, then the element representsp672 a list of active
commands that the user can immediately interact with.

If a menup393 element's typep393 attribute is in the listp393 state, then the element either representsp672 an unordered list
of items (each represented by an lip163 element), each of which represents a command that the user can perform or
activate, or, if the element has no lip163 element children, flow contentp96 describing available commands.

The label attribute gives the label of the menu. It is used by user agents to display nested menus in the UI. For
example, a context menu containing another menu would use the nested menu's labelp393 attribute for the submenu's
menu label.

The type and label IDL attributes must reflectp61 the respective content attributes of the same name.

4.11.4.1 Introduction

This section is non-normative.

The menup393 element is used to define context menus and toolbars.

For example, the following represents a toolbar with three menu buttons on it, each of which has a dropdown menu
with a series of options:

<menu type="toolbar">

<menu label="File">
<button type="button" onclick="fnew()">New...</button>
<button type="button" onclick="fopen()">Open...</button>
<button type="button" onclick="fsave()">Save</button>
<button type="button" onclick="fsaveas()">Save as...</button>

</menu>

Categories
Flow contentp96.
If the element's typep393 attribute is in the toolbarp393 state: Interactive contentp97.

Contexts in which this element may be used:
Where flow contentp96 is expected.

Content model:
Either: Zero or more lip163 elements.
Or: Flow contentp96.

Content attributes:
Global attributesp87

typep393

labelp393

DOM interface:

interface HTMLMenuElement : HTMLElement {
attribute DOMString type;
attribute DOMString label;

};

4.11.4 The menu element

393

<menu label="Edit">
<button type="button" onclick="ecopy()">Copy</button>
<button type="button" onclick="ecut()">Cut</button>
<button type="button" onclick="epaste()">Paste</button>

</menu>

<menu label="Help">
Help
About

</menu>

</menu>

In a supporting user agent, this might look like this:

In a legacy user agent, the above would look like a bulleted list with three items, the first of which has four buttons,
the second of which has three, and the third of which has two nested bullet points with two items consisting of links.

The following implements a similar toolbar, with a single button whose values, when selected, redirect the user to Web
sites.

<form action="redirect.cgi">
<menu type="toolbar">
<label for="goto">Go to...</label>
<menu label="Go">
<select id="goto">
<option value="" selected="selected"> Select site: </option>
<option value="http://www.apple.com/"> Apple </option>
<option value="http://www.mozilla.org/"> Mozilla </option>
<option value="http://www.opera.com/"> Opera </option>

</select>
<input type="submit" value="Go">

</menu>
</menu>

</form>

The behavior in supporting user agents is similar to the example above, but here the legacy behavior consists of a
single selectp353 element with a submit button. The submit button doesn't appear in the toolbar, because it is not a
direct child of the menup393 element or of its lip163 children.

4.11.4.2 Building menus and toolbars

A menu (or toolbar) consists of a list of zero or more of the following components:

• Commandsp396, which can be marked as default commands
• Separators
• Other menus (which allows the list to be nested)

The list corresponding to a particular menup393 element is built by iterating over its child nodes. For each child node in
tree orderp29, the required behavior depends on what the node is, as follows:

↪ An element that defines a commandp396

Append the command to the menu, respecting its facetsp396.

394

↪ An hrp158 element
↪ An optionp358 element that has a valuep359 attribute set to the empty string, and has a disabledp359

attribute, and whose textContentp33 consists of a string of one or more hyphens (U+002D HYPHEN-
MINUS)

Append a separator to the menu.

↪ An lip163 element
↪ A labelp319 element

Iterate over the children of the element.

↪ A menup393 element with no labelp393 attribute
↪ A selectp353 element

Append a separator to the menu, then iterate over the children of the menup393 or selectp353 element, then
append another separator.

↪ A menup393 element with a labelp393 attribute
↪ An optgroupp357 element with a labelp393 attribute

Append a submenu to the menu, using the value of the element's label attribute as the label of the menu.
The submenu must be constructed by taking the element and creating a new menu for it using the complete
process described in this section.

↪ Any other node
Ignorep29 the node.

Once all the nodes have been processed as described above, the user agent must the post-process the menu as
follows:

1. Except for separators, any menu item with no label, or whose label is the empty string, must be removed.

2. Any sequence of two or more separators in a row must be collapsed to a single separator.

3. Any separator at the start or end of the menu must be removed.

4.11.4.3 Context menus

The contextmenu attribute gives the element's context menup395. The value must be the ID of a menup393 element in
the DOM. If the node that would be obtained by the invoking the getElementById()p33 method using the attribute's
value as the only argument is null or not a menup393 element, then the element has no assigned context menu.
Otherwise, the element's assigned context menu is the element so identified.

When an element's context menu is requested (e.g. by the user right-clicking the element, or pressing a context menu
key), the UA must fire a simple eventp523 named contextmenu that bubbles and is cancelable at the element for which
the menu was requested.

Note: Typically, therefore, the firing of the contextmenu event will be the default action of a
mouseup or keyup event. The exact sequence of events is UA-dependent, as it will vary based on
platform conventions.

The default action of the contextmenu event depends on whether the element or one of its ancestors has a context
menu assigned (using the contextmenup395 attribute) or not. If there is no context menu assigned, the default action
must be for the user agent to show its default context menu, if it has one.

If the element or one of its ancestors does have a context menu assigned, then the user agent must fire a simple
eventp523 named show at the menup393 element of the context menu of the nearest ancestor (including the element
itself) with one assigned.

The default action of this event is that the user agent must show a context menu builtp394 from the menup393 element.

The user agent may also provide access to its default context menu, if any, with the context menu shown. For
example, it could merge the menu items from the two menus together, or provide the page's context menu as a
submenu of the default menu.

If the user dismisses the menu without making a selection, nothing in particular happens.

If the user selects a menu item that represents a commandp396, then the UA must invoke that command's Actionp397.

395

Context menus must not, while being shown, reflect changes in the DOM; they are constructed as the default action of
the show event and must remain as constructed until dismissed.

User agents may provide means for bypassing the context menu processing model, ensuring that the user can always
access the UA's default context menus. For example, the user agent could handle right-clicks that have the Shift key
depressed in such a way that it does not fire the contextmenu event and instead always shows the default context
menu.

The contextMenu attribute must reflectp61 the contextmenup395 content attribute.

Here is an example of a context menu for an input control:

<form name="npc">
<label>Character name: <input name=char type=text contextmenu=namemenu required></label>
<menu type=context id=namemenu>
<command label="Pick random name" onclick="document.forms.npc.elements.char.value =

getRandomName()">
<command label="Prefill other fields based on name"

onclick="prefillFields(document.forms.npc.elements.char.value)">
</menu>

</form>

This adds to items to the control's context menu, one called "Pick random name", and one called "Prefill other
fields based on name". They invoke scripts that are not shown in the example above.

4.11.4.4 Toolbars

When a menup393 element has a typep393 attribute in the toolbarp393 state, then the user agent must buildp394 the menu
for that menup393 element, and use the result in the rendering.

The user agent must reflect changes made to the menup393 's DOM, by immediately rebuildingp394 the menu.

A command is the abstraction behind menu items, buttons, and links.

Commands are defined to have the following facets:

Type
The kind of command: "command", meaning it is a normal command; "radio", meaning that triggering the
command will, amongst other things, set the Checked Statep396 to true (and probably uncheck some other
commands); or "checkbox", meaning that triggering the command will, amongst other things, toggle the value of
the Checked Statep396.

ID
The name of the command, for referring to the command from the markup or from script. If a command has no
ID, it is an anonymous command.

Label
The name of the command as seen by the user.

Hint
A helpful or descriptive string that can be shown to the user.

Icon
An absolute URLp55 identifying a graphical image that represents the action. A command might not have an Icon.

Access Key
A key combination selected by the user agent that triggers the command. A command might not have an Access
Key.

Hidden State
Whether the command is hidden or not (basically, whether it should be shown in menus).

Disabled State
Whether the command is relevant and can be triggered or not.

Checked State
Whether the command is checked or not.

4.11.5 Commands

396

Action
The actual effect that triggering the command will have. This could be a scripted event handler, a URLp54 to
which to navigatep484, or a form submission.

These facets are exposed on elements using the command API:

This box is non-normative. Implementation requirements are given below this box.

element . commandTypep397

Exposes the Typep396 facet of the command.

element . idp89

Exposes the IDp396 facet of the command.

element . labelp397

Exposes the Labelp396 facet of the command.

element . titlep89

Exposes the Hintp396 facet of the command.

element . iconp397

Exposes the Iconp396 facet of the command.

element . accessKeyLabelp541

Exposes the Access Keyp396 facet of the command.

element . hiddenp536

Exposes the Hidden Statep396 facet of the command.

element . disabledp397

Exposes the Disabled Statep396 facet of the command.

element . checkedp397

Exposes the Checked Statep396 facet of the command.

element . clickp537()
Triggers the Actionp397 of the command.

The commandType attribute must return a string whose value is either "command", "radio", or "checkbox", depending
on whether the Typep396 of the command defined by the element is "command", "radio", or "checkbox" respectively. If
the element does not define a command, it must return null.

The label attribute must return the command's Labelp396, or null if the element does not define a command or does
not specify a Labelp396. This attribute will be shadowed by the label IDL attribute on various elements.

The icon attribute must return the absolute URLp55 of the command's Iconp396. If the element does not specify an icon,
or if the element does not define a command, then the attribute must return null. This attribute will be shadowed by
the iconp392 IDL attribute on commandp391 elements.

The disabled attribute must return true if the command's Disabled Statep396 is that the command is disabled, and
false if the command is not disabled. This attribute is not affected by the command's Hidden Statep396. If the element
does not define a command, the attribute must return false. This attribute will be shadowed by the disabled IDL
attribute on various elements.

The checked attribute must return true if the command's Checked Statep396 is that the command is checked, and false
if it is that the command is not checked. If the element does not define a command, the attribute must return false.
This attribute will be shadowed by the checked IDL attribute on inputp320 and commandp391 elements.

Note: The IDp396 facet is exposed by the idp89 IDL attribute, the Hintp396 facet is exposed by the
titlep89 IDL attribute, the AccessKeyp396 facet is exposed by the accessKeyLabelp541 IDL attribute,
and the Hidden Statep396 facet is exposed by the hiddenp536 IDL attribute.

397

This box is non-normative. Implementation requirements are given below this box.

document . commandsp398

Returns an HTMLCollectionp63 of the elements in the Documentp33 that define commands and have IDs.

The commands attribute of the document's HTMLDocumentp75 interface must return an HTMLCollectionp63 rooted at the
Documentp33 node, whose filter matches only elements that define commandsp396 and have IDsp396.

User agents may expose the commandsp396 whose Hidden Statep396 facet is false (visible), e.g. in the user agent's
menu bar. User agents are encouraged to do this especially for commands that have Access Keysp396, as a way to
advertise those keys to the user.

4.11.5.1 Using the a element to define a command

An ap169 element with an hrefp404 attribute defines a commandp396.

The Typep396 of the command is "command".

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command is the string given by the element's textContentp33 IDL attribute.

The Hintp396 of the command is the value of the titlep89 attribute of the element. If the attribute is not present, the
Hintp396 is the empty string.

The Iconp396 of the command is the absolute URLp55 obtained from resolvingp55 the value of the srcp197 attribute of the
first imgp196 element descendant of the element, relative to that element, if there is such an element and resolving its
attribute is successful. Otherwise, there is no Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541, if any.

The Hidden Statep396 of the command is true (hidden) if the element has a hiddenp536 attribute, and false otherwise.

The Disabled Statep396 facet of the command is always false. (The command is always enabled.)

The Checked Statep396 of the command is always false. (The command is never checked.)

The Actionp397 of the command is to fire a click eventp523 at the element.

4.11.5.2 Using the button element to define a command

A buttonp351 element always defines a commandp396.

The Typep396, IDp396, Labelp396, Hintp396, Iconp396, Access Keyp396, Hidden Statep396, Checked Statep396, and Actionp397

facets of the command are determined as for a elementsp398 (see the previous section).

The Disabled Statep396 of the command mirrors the disabledp374 state of the button.

4.11.5.3 Using the input element to define a command

An inputp320 element whose typep321 attribute is in one of the Submit Buttonp339, Reset Buttonp341, Image Buttonp339,
Buttonp341, Radio Buttonp337, or Checkboxp336 states defines a commandp396.

The Typep396 of the command is "radio" if the typep321 attribute is in the Radio Buttonp337 state, "checkbox" if the
typep321 attribute is in the Checkboxp336 state, and "command" otherwise.

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command depends on the Type of the command:

If the Typep396 is "command", then it is the string given by the valuep323 attribute, if any, and a UA-dependent, locale-
dependent value that the UA uses to label the button itself if the attribute is absent.

398

Otherwise, the Typep396 is "radio" or "checkbox". If the element is a labeled controlp319, the textContentp33 of the first
labelp319 element in tree orderp29 whose labeled controlp319 is the element in question is the Labelp396 (in DOM terms,
this is the string given by element.labels[0].textContent). Otherwise, the value of the valuep323 attribute, if
present, is the Labelp396. Otherwise, the Labelp396 is the empty string.

The Hintp396 of the command is the value of the titlep89 attribute of the inputp320 element. If the attribute is not
present, the Hintp396 is the empty string.

If the element's typep321 attribute is in the Image Buttonp339 state, and the element has a srcp197 attribute, and that
attribute's value can be successfully resolvedp55 relative to the element, then the Iconp396 of the command is the
absolute URLp55 obtained from resolving that attribute that way. Otherwise, there is no Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541, if any.

The Hidden Statep396 of the command is true (hidden) if the element has a hiddenp536 attribute, and false otherwise.

The Disabled Statep396 of the command mirrors the disabledp374 state of the control.

The Checked Statep396 of the command is true if the command is of Typep396 "radio" or "checkbox" and the element is
checkedp374 attribute, and false otherwise.

The Actionp397 of the command, if the element has a defined activation behaviorp98, is to run synthetic click activation
stepsp97 on the element. Otherwise, it is just to fire a click eventp523 at the element.

4.11.5.4 Using the option element to define a command

An optionp358 element with an ancestor selectp353 element and either no valuep359 attribute or a valuep359 attribute
that is not the empty string defines a commandp396.

The Typep396 of the command is "radio" if the optionp358 's nearest ancestor selectp353 element has no multiplep354

attribute, and "checkbox" if it does.

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command is the value of the optionp358 element's labelp359 attribute, if there is one, or the value
of the optionp358 element's textContentp33 IDL attribute if there isn't.

The Hintp396 of the command is the string given by the element's titlep89 attribute, if any, and the empty string if the
attribute is absent.

There is no Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541, if any.

The Hidden Statep396 of the command is true (hidden) if the element has a hiddenp536 attribute, and false otherwise.

The Disabled Statep396 of the command is true (disabled) if the element is disabledp359 or if its nearest ancestor
selectp353 element is disabledp359, and false otherwise.

The Checked Statep396 of the command is true (checked) if the element's selectednessp359 is true, and false otherwise.

The Actionp397 of the command depends on its Typep396. If the command is of Typep396 "radio" then it must pickp354 the
optionp358 element. Otherwise, it must togglep354 the optionp358 element.

4.11.5.5 Using the command element to define a command

A commandp391 element defines a commandp396.

The Typep396 of the command is "radio" if the commandp391 's typep391 attribute is "radio", "checkbox" if the attribute's
value is "checkbox", and "command" otherwise.

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command is the value of the element's labelp391 attribute, if there is one, or the empty string if it
doesn't.

399

The Hintp396 of the command is the string given by the element's titlep391 attribute, if any, and the empty string if the
attribute is absent.

The Iconp396 for the command is the absolute URLp55 obtained from resolvingp55 the value of the element's iconp392

attribute, relative to the element, if it has such an attribute and resolving it is successful. Otherwise, there is no
Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541, if any.

The Hidden Statep396 of the command is true (hidden) if the element has a hiddenp536 attribute, and false otherwise.

The Disabled Statep396 of the command is true (disabled) if the element has a disabledp392 attribute, and false
otherwise.

The Checked Statep396 of the command is true (checked) if the element has a checkedp392 attribute, and false
otherwise.

The Actionp397 of the command, if the element has a defined activation behaviorp98, is to run synthetic click activation
stepsp97 on the element. Otherwise, it is just to fire a click eventp523 at the element.

4.11.5.6 Using the accesskey attribute on a label element to define a command

A labelp319 element that has an assigned access keyp541 and a labeled controlp319 and whose labeled controlp319

defines a commandp396, itself defines a commandp396.

The Typep396 of the command is "command".

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command is the string given by the element's textContentp33 IDL attribute.

The Hintp396 of the command is the value of the titlep89 attribute of the element.

There is no Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541.

The Hidden Statep396, Disabled Statep396, and Actionp397 facets of the command are the same as the respective facets
of the element's labeled controlp319.

The Checked Statep396 of the command is always false. (The command is never checked.)

4.11.5.7 Using the accesskey attribute on a legend element to define a command

A legendp318 element that has an assigned access keyp541 and is a child of a fieldsetp317 element that has a
descendant that is not a descendant of the legendp318 element and is neither a labelp319 element nor a legendp318

element but that defines a commandp396, itself defines a commandp396.

The Typep396 of the command is "command".

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command is the string given by the element's textContentp33 IDL attribute.

The Hintp396 of the command is the value of the titlep89 attribute of the element.

There is no Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541.

The Hidden Statep396, Disabled Statep396, and Actionp397 facets of the command are the same as the respective facets
of the first element in tree orderp29 that is a descendant of the parent of the legendp318 element that defines a
commandp396 but is not a descendant of the legendp318 element and is neither a labelp319 nor a legendp318 element.

The Checked Statep396 of the command is always false. (The command is never checked.)

400

4.11.5.8 Using the accesskey attribute to define a command on other elements

An element that has an assigned access keyp541 defines a commandp396.

If one of the other sections that define elements that define commandsp396 define that this element defines a
commandp396, then that section applies to this element, and this section does not. Otherwise, this section applies to
that element.

The Typep396 of the command is "command".

The IDp396 of the command is the value of the idp89 attribute of the element, if the attribute is present and not empty.
Otherwise the command is an anonymous commandp396.

The Labelp396 of the command depends on the element. If the element is a labeled controlp319, the textContentp33 of
the first labelp319 element in tree orderp29 whose labeled controlp319 is the element in question is the Labelp396 (in DOM
terms, this is the string given by element.labels[0].textContent). Otherwise, the Labelp396 is the textContentp33 of
the element itself.

The Hintp396 of the command is the value of the titlep89 attribute of the element. If the attribute is not present, the
Hintp396 is the empty string.

There is no Iconp396 for the command.

The AccessKeyp396 of the command is the element's assigned access keyp541.

The Hidden Statep396 of the command is true (hidden) if the element has a hiddenp536 attribute, and false otherwise.

The Disabled Statep396 facet of the command is always false. (The command is always enabled.)

The Checked Statep396 of the command is always false. (The command is never checked.)

The Actionp397 of the command is to run the following steps:

1. If the element is focusablep538, run the focusing stepsp539 for the element.

2. If the element has a defined activation behaviorp98, run synthetic click activation stepsp97 on the element.

3. Otherwise, if the element does not have a defined activation behaviorp98, fire a click eventp523 at the
element.

The devicep401 element represents a device selector, to allow the user to give the page access to a device, for
example a video camera.

Categories
Flow contentp96.
Phrasing contentp96.
Interactive contentp97.

Contexts in which this element may be used:
Where phrasing contentp96 is expected.

Content model:
Empty.

Content attributes:
Global attributesp87

typep402

DOM interface:

interface HTMLDeviceElement : HTMLElement {
attribute DOMString type;

readonly attribute any data;
};

4.11.6 The device element

401

The type attribute allows the author to specify which kind of device the page would like access to. The attribute is an
enumerated attributep37 with the keywords given in the first column of the following table, and their corresponding
states given in the cell in second column of the same row.

RS232 is only included below to give an idea of where we could go with this. Should we instead just make this
only useful for audiovisual streams? Unless there are compelling reasons, we probably should not be this
generic. So far, the reasons aren't that compelling.

Keyword State Device description Examples

media Media Stream of audio and/or video data. A webcam.
fs File system File system. A USB-connected media player.
rs232 RS232 RS232 device. A serial port.

processing model: 'change' event fires once user selects a new device; .data is set to new Stream, LocalFS, or
RS232 object as appropriate.

<p>To start chatting, select a video camera: <device type=media
onchange="update(this.data)"></p>
<video autoplay></video>
<script>
function update(stream) {

document.getElementsByTagName('video')[0].src = stream.URL;
}

</script>

4.11.6.1 Stream API

The Streamp402 interface is used to represent streams.

interface Stream {
readonly attribute DOMString URL;
StreamRecorder record();

};

The URL attribute must return a File URN representing the stream. [FILEAPI]p739

For audio and video streams, the stream must be in a format supported by the user agent for use in audiop228 and
videop225 elements.

This will be pinned down to a specific codec.

When the record() method is invoked, the user agent must return a new StreamRecorderp402 object associated with
the stream.

interface StreamRecorder {
File stop();

};

The stop() method must return a new File object representing the data that was streamed between the creation of
the StreamRecorderp402 object and the invocation of the stop()p402 method. [FILEAPI]p739

For audio and video streams, the file must be in a format supported by the user agent for use in audiop228 and
videop225 elements.

This again will be pinned down to a specific codec.

4.11.6.2 Peer-to-peer connections

This section will be moved to a more appropriate location in due course; it is here currently to keep it near the
devicep401 element to allow reviewers to look at it.

**

**

**
**

**
**

402

[NoInterfaceObject]
interface AbstractPeer {

void sendText(in DOMString text);
attribute Function ontext; // receiving

void sendBitmap(in HTMLImageElement image);
attribute Function onbitmap; // receiving

void sendFile(in File file);
attribute Function onfile; // receiving

attribute Stream localStream; // video/audio to send
readonly attribute Stream remoteStream; // video/audio from remote peer
attribute Function onstreamchange; // when the remote peer changes whether the video is

being sent or not

attribute Function onconnect;
attribute Function onerror;
attribute Function ondisconnect;

};

[Constructor(in DOMString serverConfiguration)]
interface PeerToPeerServer : AbstractPeer {

void getClientConfiguration(in PeerToPeerConfigurationCallback callback);

void close(); // disconnects and stops listening
};

[Constructor]
interface PeerToPeerClient : AbstractPeer {

void addConfiguration(in DOMString configuration);
void close(); // disconnects

};

[Callback=FunctionOnly, NoInterfaceObject]
interface PeerToPeerConfigurationCallback {

void handleEvent(in PeerToPeerServer server, in DOMString configuration);
};

...

This relies on some currently hypothetical other standard to define:

• The format of server configuration strings.

• The format of client configuration strings.

• The protocols that servers and clients use to talk to third-party servers mentioned in the server
configuration strings.

• The protocols that servers and clients use to talk to each other.

Server:

var serverConfig = ...; // configuration string obtained from server
// contains details such as the IP address of a server that can speak some
// protocol to help the client determine its public IP address, route packets
// if necessary, etc.

var local = new PeerToPeerServer(serverConfig);
local.getClientConfiguration(function (configuration) {

if (configuration != '') {
...; // send configuration to other peer using out-of-band mechanism

} else {

**

**

403

// we've exhausted our options; wait for connection
}

});

Client:

var local = new PeerToPeerClient();
function ... (configuration) {

// called whenever we get configuration information out-of-band
local.addConfiguration(configuration);

}

Both client and server:

local.onconnect = function (event) {
// we are connected!
local.sendText('Hello');
local.localStream = ...; // send video
local.onstreamchange = function (event) {

// receive video
// (videoElement is some <video> element)
videoElement.src = local.remoteStream.URL;

};
};

⚠Warning! To prevent network sniffing from allowing a fourth party to establish a connection to the
PeerToPeerServerp403 using the information sent out-of-band to the PeerToPeerClientp403 and thus spoofing
the client, the configuration information should always be transmitted using an encrypted connection.

4.12 Links

The ap169, areap280, and linkp115 elements can, in certain situations described in the definitions of those elements,
represent hyperlinks.

The href attribute on ap169 and areap280 elements must have a value that is a valid URLp54. This URLp54 is the
destination resource of the hyperlink.

Note: The hrefp404 attribute on ap169 and areap280 elements is not required; when those elements do
not have hrefp404 attributes they do not represent hyperlinks.

Note: The hrefp116 attribute on the linkp115 element is required (and has to be a valid non-empty
URLp54), but whether a linkp115 element represents a hyperlink or not depends on the value of the
relp116 attribute of that element.

The target attribute, if present, must be a valid browsing context name or keywordp466. It gives the name of the
browsing contextp463 that will be used. User agents use this name when following hyperlinksp405.

The ping attribute, if present, gives the URLs of the resources that are interested in being notified if the user follows
the hyperlink. The value must be a set of space-separated tokensp52, each of which must be a valid non-empty URLp54.
The value is used by the user agent for hyperlink auditingp405.

For ap169 and areap280 elements that represent hyperlinks, the relationship between the document containing the
hyperlink and the destination resource indicated by the hyperlink is given by the value of the element's rel attribute,
which must be a set of space-separated tokensp52. The allowed values and their meaningsp406 are defined below. The
relp404 attribute has no default value. If the attribute is omitted or if none of the values in the attribute are recognized
by the user agent, then the document has no particular relationship with the destination resource other than there
being a hyperlink between the two.

The media attribute describes for which media the target document was designed. It is purely advisory. The value
must be a valid media queryp54. The default, if the mediap404 attribute is omitted, is "all".

The hreflang attribute on hyperlink elements, if present, gives the language of the linked resource. It is purely
advisory. The value must be a valid BCP 47 language code. [BCP47]p738 User agents must not consider this attribute

4.12.1 Hyperlink elements

404

authoritative — upon fetching the resource, user agents must use only language information associated with the
resource to determine its language, not metadata included in the link to the resource.

The type attribute, if present, gives the MIME typep28 of the linked resource. It is purely advisory. The value must be a
valid MIME typep28. User agents must not consider the typep405 attribute authoritative — upon fetching the resource,
user agents must not use metadata included in the link to the resource to determine its type.

When a user follows a hyperlink, the user agent must resolvep55 the URLp54 given by the hrefp404 attribute of that
hyperlink, relative to the hyperlink element, and if that is successful, must navigatep484 a browsing contextp463 to the
resulting absolute URLp55. In the case of server-side image maps, the URL of the hyperlink must further have its
hyperlink suffixp171 appended to it.

If resolvingp55 the URLp54 fails, the user agent may report the error to the user in a user-agent-specific manner, may
navigate to an error page to report the error, or may ignore the error and do nothing.

If the user indicated a specific browsing contextp463 when following the hyperlink, or if the user agent is configured to
follow hyperlinks by navigating a particular browsing context, then that must be the browsing contextp463 that is
navigated.

Otherwise, if the hyperlink element is an ap169 or areap280 element that has a targetp404 attribute, then the browsing
contextp463 that is navigated must be chosen by applying the rules for choosing a browsing context given a browsing
context namep466, using the value of the targetp404 attribute as the browsing context name. If these rules result in the
creation of a new browsing contextp463, it must be navigated with replacement enabledp492.

Otherwise, if the hyperlink element is a sidebar hyperlinkp412 and the user agent implements a feature that can be
considered a secondary browsing context, such a secondary browsing context may be selected as the browsing
context to be navigated.

Otherwise, if the hyperlink element is an ap169 or areap280 element with no targetp404 attribute, but one of the child
nodes of the head elementp80 is a basep114 element with a targetp115 attribute, then the browsing context that is
navigated must be chosen by applying the rules for choosing a browsing context given a browsing context namep466,
using the value of the targetp115 attribute of the first such basep114 element as the browsing context name. If these
rules result in the creation of a new browsing contextp463, it must be navigated with replacement enabledp492.

Otherwise, the browsing context that must be navigated is the same browsing context as the one which the hyperlink
element itself is in.

The navigation must be done with the browsing contextp463 that contains the Documentp33 object with which the
hyperlink's element in question is associated as the source browsing contextp484.

4.12.2.1 Hyperlink auditing

If an ap169 or areap280 hyperlink element has a pingp404 attribute, and the user follows the hyperlink, and the hyperlink's
URLp54 can be resolvedp55, relative to the hyperlink element, without failure, then the user agent must take the
pingp404 attribute's value, split that string on spacesp52, resolvep55 each resulting token relative to the hyperlink
element, and then should send a request (as described below) to each of the resulting absolute URLsp55. (Tokens that
fail to resolve are ignored.) This may be done in parallel with the primary request, and is independent of the result of
that request.

User agents should allow the user to adjust this behavior, for example in conjunction with a setting that disables the
sending of HTTP Referer (sic) headers. Based on the user's preferences, UAs may either ignorep29 the pingp404

attribute altogether, or selectively ignore URLs in the list (e.g. ignoring any third-party URLs).

For URLs that are HTTP URLs, the requests must be performed by fetchingp58 the specified URLs using the POST
method, with an entity body with the MIME typep28 text/pingp719 consisting of the four-character string "PING", from
the originp474 of the Documentp33 containing the hyperlinkp404. All relevant cookie and HTTP authentication headers
must be included in the request. Which other headers are required depends on the URLs involved.

↪ If both the addressp75 of the Documentp33 object containing the hyperlink being audited and the ping
URL have the same originp476

The request must include a Ping-Fromp720 HTTP header with, as its value, the addressp75 of the document
containing the hyperlink, and a Ping-Top721 HTTP header with, as its value, the address of the absolute
URLp55 of the target of the hyperlink. The request must not include a Referer (sic) HTTP header.

4.12.2 Following hyperlinks

405

↪ Otherwise, if the origins are different, but the document containing the hyperlink being audited was
not retrieved over an encrypted connection

The request must include a Referer (sic) HTTP header with, as its value, the current addressp75 of the
document containing the hyperlink, a Ping-Fromp720 HTTP header with the same value, and a Ping-Top721

HTTP header with, as its value, the address of the target of the hyperlink.

↪ Otherwise, the origins are different and the document containing the hyperlink being audited was
retrieved over an encrypted connection

The request must include a Ping-Top721 HTTP header with, as its value, the address of the target of the
hyperlink. The request must neither include a Referer (sic) HTTP header nor include a Ping-Fromp720 HTTP
header.

Note: To save bandwidth, implementors might also wish to consider omitting optional headers
such as Accept from these requests.

User agents must, unless otherwise specified by the user, honor the HTTP headers (including, in particular, redirects
and HTTP cookie headers), but must ignore any entity bodies returned in the responses. User agents may close the
connection prematurely once they start receiving an entity body. [COOKIES]p738

For URLs that are not HTTP URLs, the requests must be performed by fetchingp58 the specified URL normally, and
discarding the results.

When the pingp404 attribute is present, user agents should clearly indicate to the user that following the hyperlink will
also cause secondary requests to be sent in the background, possibly including listing the actual target URLs.

For example, a visual user agent could include the hostnames of the target ping URLs along with the hyperlink's
actual URL in a status bar or tooltip.

The pingp404 attribute is redundant with pre-existing technologies like HTTP redirects and
JavaScript in allowing Web pages to track which off-site links are most popular or allowing
advertisers to track click-through rates.

However, the pingp404 attribute provides these advantages to the user over those alternatives:

• It allows the user to see the final target URL unobscured.

• It allows the UA to inform the user about the out-of-band notifications.

• It allows the user to disable the notifications without losing the underlying link
functionality.

• It allows the UA to optimize the use of available network bandwidth so that the target
page loads faster.

Thus, while it is possible to track users without this feature, authors are encouraged to use the
pingp404 attribute so that the user agent can make the user experience more transparent.

The following table summarizes the link types that are defined by this specification. This table is non-normative; the
actual definitions for the link types are given in the next few sections.

In this section, the term referenced document refers to the resource identified by the element representing the link,
and the term current document refers to the resource within which the element representing the link finds itself.

To determine which link types apply to a linkp115, ap169, or areap280 element, the element's rel attribute must be split
on spacesp52. The resulting tokens are the link types that apply to that element.

Except where otherwise specified, a keyword must not be specified more than once per rel attribute.

The link types that contain no U+003A COLON characters (:), including all those defined in this specification, are ASCII
case-insensitivep35 values, and must be compared as such.

Thus, rel="next" is the same as rel="NEXT".

4.12.3 Link types

406

Effect on...Link type
linkp115 ap169 and

areap280

Brief description

alternatep407 Hyperlinkp116 Hyperlinkp404 Gives alternate representations of the current document.

archivesp408 Hyperlinkp116 Hyperlinkp404 Provides a link to a collection of records, documents, or other materials of historical interest.

authorp408 Hyperlinkp116 Hyperlinkp404 Gives a link to the current document's author.

bookmarkp409 not allowed Hyperlinkp404 Gives the permalink for the nearest ancestor section.

externalp409 not allowed Hyperlinkp404 Indicates that the referenced document is not part of the same site as the current document.

firstp414 Hyperlinkp116 Hyperlinkp404 Indicates that the current document is a part of a series, and that the first document in the
series is the referenced document.

helpp409 Hyperlinkp116 Hyperlinkp404 Provides a link to context-sensitive help.

iconp409 External
Resourcep116

not allowed Imports an icon to represent the current document.

indexp413 Hyperlinkp116 Hyperlinkp404 Gives a link to the document that provides a table of contents or index listing the current
document.

lastp414 Hyperlinkp116 Hyperlinkp404 Indicates that the current document is a part of a series, and that the last document in the
series is the referenced document.

licensep410 Hyperlinkp116 Hyperlinkp404 Indicates that the main content of the current document is covered by the copyright license
described by the referenced document.

nextp414 Hyperlinkp116 Hyperlinkp404 Indicates that the current document is a part of a series, and that the next document in the
series is the referenced document.

nofollowp411 not allowed Hyperlinkp404 Indicates that the current document's original author or publisher does not endorse the
referenced document.

noreferrerp411 not allowed Hyperlinkp404 Requires that the user agent not send an HTTP Referer (sic) header if the user follows the
hyperlink.

pingbackp411 External
Resourcep116

not allowed Gives the address of the pingback server that handles pingbacks to the current document.

prefetchp412 External
Resourcep116

not allowed Specifies that the target resource should be preemptively cached.

prevp414 Hyperlinkp116 Hyperlinkp404 Indicates that the current document is a part of a series, and that the previous document in
the series is the referenced document.

searchp412 Hyperlinkp116 Hyperlinkp404 Gives a link to a resource that can be used to search through the current document and its
related pages.

stylesheetp412 External
Resourcep116

not allowed Imports a stylesheet.

sidebarp412 Hyperlinkp116 Hyperlinkp404 Specifies that the referenced document, if retrieved, is intended to be shown in the browser's
sidebar (if it has one).

tagp412 Hyperlinkp116 Hyperlinkp404 Gives a tag (identified by the given address) that applies to the current document.

upp413 Hyperlinkp116 Hyperlinkp404 Provides a link to a document giving the context for the current document.

Some of the types described below list synonyms for these values. These are to be handled as specified by user
agents, but must not be used in documents.

4.12.3.1 Link type "alternate"

The alternatep407 keyword may be used with linkp115, ap169, and areap280 elements.

The meaning of this keyword depends on the values of the other attributes.

↪ If the element is a linkp115 element and the relp116 attribute also contains the keyword stylesheetp412

The alternatep407 keyword modifies the meaning of the stylesheetp412 keyword in the way described for
that keyword. The alternatep407 keyword does not create a link of its own.

↪ The alternatep407 keyword is used with the typep405 attribute set to the value application/rss+xml or
the value application/atom+xml

The link is a hyperlinkp116 referencing a syndication feed (though not necessarily syndicating exactly the
same content as the current page).

The first linkp115, ap169, or areap280 element in the document (in tree order) with the alternatep407 keyword
used with the typep405 attribute set to the value application/rss+xml or the value application/atom+xml
must be treated as the default syndication feed for the purposes of feed autodiscovery.

The following linkp115 element gives the syndication feed for the current page:

<link rel="alternate" type="application/atom+xml" href="data.xml">

407

The following extract offers various different syndication feeds:

<p>You can access the planets database using Atom feeds:</p>

<a href="recently-visited-planets.xml" rel="alternate" type="application/

atom+xml">Recently Visited Planets
<a href="known-bad-planets.xml" rel="alternate" type="application/

atom+xml">Known Bad Planets
<a href="unexplored-planets.xml" rel="alternate" type="application/

atom+xml">Unexplored Planets

↪ Otherwise
The link is a hyperlinkp116 referencing an alternate representation of the current document.

The nature of the referenced document is given by the mediap404, hreflangp404, and typep405 attributes.

If the alternatep407 keyword is used with the mediap404 attribute, it indicates that the referenced document is
intended for use with the media specified.

If the alternatep407 keyword is used with the hreflangp404 attribute, and that attribute's value differs from
the root elementp29 's languagep90, it indicates that the referenced document is a translation.

If the alternatep407 keyword is used with the typep405 attribute, it indicates that the referenced document is
a reformulation of the current document in the specified format.

The mediap404, hreflangp404, and typep405 attributes can be combined when specified with the alternatep407

keyword.

For example, the following link is a French translation that uses the PDF format:

<link rel=alternate type=application/pdf hreflang=fr href=manual-fr>
This relationship is transitive — that is, if a document links to two other documents with the link type
"alternatep407", then, in addition to implying that those documents are alternative representations of the
first document, it is also implying that those two documents are alternative representations of each other.

4.12.3.2 Link type "archives"

The archivesp408 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The archivesp408 keyword indicates that the referenced document describes a collection of records, documents, or
other materials of historical interest.

A blog's index page could link to an index of the blog's past posts with rel="archives".

Synonyms: For historical reasons, user agents must also treat the keyword "archive" like the archivesp408 keyword.

4.12.3.3 Link type "author"

The authorp408 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

For ap169 and areap280 elements, the authorp408 keyword indicates that the referenced document provides further
information about the author of the nearest articlep144 element ancestor of the element defining the hyperlink, if
there is one, or of the page as a whole, otherwise.

For linkp115 elements, the authorp408 keyword indicates that the referenced document provides further information
about the author for the page as a whole.

Note: The "referenced document" can be, and often is, a mailto: URL giving the e-mail address of
the author. [MAILTO]p740

Synonyms: For historical reasons, user agents must also treat linkp115, ap169, and areap280 elements that have a rev
attribute with the value "made" as having the authorp408 keyword specified as a link relationship.

408

4.12.3.4 Link type "bookmark"

The bookmarkp409 keyword may be used with ap169 and areap280 elements.

The bookmarkp409 keyword gives a permalink for the nearest ancestor articlep144 element of the linking element in
question, or of the section the linking element is most closely associated withp155, if there are no ancestor articlep144

elements.

The following snippet has three permalinks. A user agent could determine which permalink applies to which part
of the spec by looking at where the permalinks are given.

...
<body>
<h1>Example of permalinks</h1>
<div id="a">
<h2>First example</h2>
<p>This permalink applies to
only the content from the first H2 to the second H2. The DIV isn't
exactly that section, but it roughly corresponds to it.</p>

</div>
<h2>Second example</h2>
<article id="b">
<p>This permalink applies to
the outer ARTICLE element (which could be, e.g., a blog post).</p>
<article id="c">
<p>This permalink applies to
the inner ARTICLE element (which could be, e.g., a blog comment).</p>

</article>
</article>

</body>
...

4.12.3.5 Link type "external"

The externalp409 keyword may be used with ap169 and areap280 elements.

The externalp409 keyword indicates that the link is leading to a document that is not part of the site that the current
document forms a part of.

4.12.3.6 Link type "help"

The helpp409 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

For ap169 and areap280 elements, the helpp409 keyword indicates that the referenced document provides further help
information for the parent of the element defining the hyperlink, and its children.

In the following example, the form control has associated context-sensitive help. The user agent could use this
information, for example, displaying the referenced document if the user presses the "Help" or "F1" key.

<p><label> Topic: <input name=topic> <a href="help/topic.html"
rel="help">(Help)</label></p>

For linkp115 elements, the helpp409 keyword indicates that the referenced document provides help for the page as a
whole.

4.12.3.7 Link type "icon"

The iconp409 keyword may be used with linkp115 elements, for which it creates an external resource linkp116.

The specified resource is an icon representing the page or site, and should be used by the user agent when
representing the page in the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are provided, the user agent must
select the most appropriate icon according to the typep117, mediap117, and sizesp410 attributes. If there are multiple
equally appropriate icons, user agents must use the last one declared in tree orderp29. If the user agent tries to use an

409

icon but that icon is determined, upon closer examination, to in fact be inappropriate (e.g. because it uses an
unsupported format), then the user agent must try the next-most-appropriate icon as determined by the attributes.

There is no default type for resources given by the iconp409 keyword. However, for the purposes of determining the
type of the resourcep117, user agents must expect the resource to be an image.

The sizes attribute gives the sizes of icons for visual media.

If specified, the attribute must have a value that is an unordered set of unique space-separated tokensp52. The values
must all be either anyp410 or a value that consists of two valid non-negative integersp37 that do not have a leading
U+0030 DIGIT ZERO (0) character and that are separated by a single U+0078 LATIN SMALL LETTER X character (x).

The keywords represent icon sizes.

To parse and process the attribute's value, the user agent must first split the attribute's value on spacesp52, and must
then parse each resulting keyword to determine what it represents.

The any keyword represents that the resource contains a scalable icon, e.g. as provided by an SVG image.

Other keywords must be further parsed as follows to determine what they represent:

• If the keyword doesn't contain exactly one U+0078 LATIN SMALL LETTER X character (x), then this keyword
doesn't represent anything. Abort these steps for that keyword.

• Let width string be the string before the "x".

• Let height string be the string after the "x".

• If either width string or height string start with a U+0030 DIGIT ZERO (0) character or contain any characters
other than characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then this keyword
doesn't represent anything. Abort these steps for that keyword.

• Apply the rules for parsing non-negative integersp37 to width string to obtain width.

• Apply the rules for parsing non-negative integersp37 to height string to obtain height.

• The keyword represents that the resource contains a bitmap icon with a width of width device pixels and a
height of height device pixels.

The keywords specified on the sizesp410 attribute must not represent icon sizes that are not actually available in the
linked resource.

If the attribute is not specified, then the user agent must assume that the given icon is appropriate, but less
appropriate than an icon of a known and appropriate size.

The following snippet shows the top part of an application with several icons.

<!DOCTYPE HTML>
<html>
<head>
<title>lsForums — Inbox</title>
<link rel=icon href=favicon.png sizes="16x16" type="image/png">
<link rel=icon href=windows.ico sizes="32x32 48x48" type="image/vnd.microsoft.icon">
<link rel=icon href=mac.icns sizes="128x128 512x512 8192x8192 32768x32768">
<link rel=icon href=iphone.png sizes="59x60" type="image/png">
<link rel=icon href=gnome.svg sizes="any" type="image/svg+xml">
<link rel=stylesheet href=lsforums.css>
<script src=lsforums.js></script>
<meta name=application-name content="lsForums">

</head>
<body>
...

4.12.3.8 Link type "license"

The licensep410 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

410

The licensep410 keyword indicates that the referenced document provides the copyright license terms under which the
main content of the current document is provided.

This specification does not specify how to distinguish between the main content of a document and content that is not
deemed to be part of that main content. The distinction should be made clear to the user.

Consider a photo sharing site. A page on that site might describe and show a photograph, and the page might
be marked up as follows:

<!DOCTYPE HTML>
<html>
<head>
<title>Exampl Pictures: Kissat</title>
<link rel="stylesheet" href="/style/default">

</head>
<body>
<h1>Kissat</h1>
<nav>
Return to photo index

</nav>
<figure>

<figcaption>Kissat</figcaption>

</figure>
<p>One of them has six toes!</p>
<p><small><a rel="license" href="http://www.opensource.org/licenses/

mit-license.php">MIT Licensed</small></p>
<footer>
Home | Photo index
<p><small>© copyright 2009 Exampl Pictures. All Rights Reserved.</small></p>

</footer>
</body>

</html>

In this case the licensep410 applies to just the photo (the main content of the document), not the whole
document. In particular not the design of the page itself, which is covered by the copyright given at the bottom
of the document. This could be made clearer in the styling (e.g. making the license link prominently positioned
near the photograph, while having the page copyright in light small text at the foot of the page.

Synonyms: For historical reasons, user agents must also treat the keyword "copyright" like the licensep410 keyword.

4.12.3.9 Link type "nofollow"

The nofollowp411 keyword may be used with ap169 and areap280 elements.

The nofollowp411 keyword indicates that the link is not endorsed by the original author or publisher of the page, or
that the link to the referenced document was included primarily because of a commercial relationship between people
affiliated with the two pages.

4.12.3.10 Link type "noreferrer"

The noreferrerp411 keyword may be used with ap169 and areap280 elements.

It indicates that no referrer information is to be leaked when following the link.

If a user agent follows a link defined by an ap169 or areap280 element that has the noreferrerp411 keyword, the user
agent must not include a Referer (sic) HTTP header (or equivalentp60 for other protocols) in the request.

This keyword also causes the opener attribute to remain nullp466 if the hyperlink creates a new browsing contextp463.

4.12.3.11 Link type "pingback"

The pingbackp411 keyword may be used with linkp115 elements, for which it creates an external resource linkp116.

For the semantics of the pingbackp411 keyword, see the Pingback 1.0 specification. [PINGBACK]p740

411

4.12.3.12 Link type "prefetch"

The prefetchp412 keyword may be used with linkp115 elements, for which it creates an external resource linkp116.

The prefetchp412 keyword indicates that preemptively fetching and caching the specified resource is likely to be
beneficial, as it is highly likely that the user will require this resource.

There is no default type for resources given by the prefetchp412 keyword.

4.12.3.13 Link type "search"

The searchp412 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The searchp412 keyword indicates that the referenced document provides an interface specifically for searching the
document and its related resources.

Note: OpenSearch description documents can be used with linkp115 elements and the searchp412

link type to enable user agents to autodiscover search interfaces. [OPENSEARCH]p740

4.12.3.14 Link type "stylesheet"

The stylesheetp412 keyword may be used with linkp115 elements, for which it creates an external resource linkp116

that contributes to the styling processing modelp128.

The specified resource is a resource that describes how to present the document. Exactly how the resource is to be
processed depends on the actual type of the resource.

If the alternatep407 keyword is also specified on the linkp115 element, then the link is an alternative stylesheet;
in this case, the titlep89 attribute must be specified on the linkp115 element, with a non-empty value.

The default type for resources given by the stylesheetp412 keyword is text/css.

Quirk: If the document has been set to quirks modep79 and the Content-Type metadatap61 of the external resource is
not a supported style sheet type, the user agent must instead assume it to be text/css.

4.12.3.15 Link type "sidebar"

The sidebarp412 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The sidebarp412 keyword indicates that the referenced document, if retrieved, is intended to be shown in a secondary
browsing contextp465 (if possible), instead of in the current browsing contextp463.

A hyperlink elementp404 with the sidebarp412 keyword specified is a sidebar hyperlink.

4.12.3.16 Link type "tag"

The tagp412 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The tagp412 keyword indicates that the tag that the referenced document represents applies to the current document.

Note: Since it indicates that the tag applies to the current document, it would be inappropriate to
use this keyword in the markup of a tag cloudp415, which lists the popular tag across a set of
pages.

4.12.3.17 Hierarchical link types

Some documents form part of a hierarchical structure of documents.

A hierarchical structure of documents is one where each document can have various subdocuments. The document of
which a document is a subdocument is said to be the document's parent. A document with no parent forms the top of
the hierarchy.

412

A document may be part of multiple hierarchies.

4.12.3.17.1 Link type "index"

The indexp413 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The indexp413 keyword indicates that the document is part of a hierarchical structure, and that the link is leading to the
document that is the top of the hierarchy. It conveys more information when used with the upp413 keyword (q.v.).

Synonyms: For historical reasons, user agents must also treat the keywords "top", "contents", and "toc" like the
indexp413 keyword.

4.12.3.17.2 Link type "up"

The upp413 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The upp413 keyword indicates that the document is part of a hierarchical structure, and that the link is leading to a
document that is an ancestor of the current document.

The upp413 keyword may be repeated within a relp404 attribute to indicate the hierarchical distance from the current
document to the referenced document. If it occurs only once, then the link is leading to the current document's parent;
each additional occurrence of the keyword represents one further level. If the indexp413 keyword is also present, then
the number of upp413 keywords is the depth of the current page relative to the top of the hierarchy. Only one link is
created for the set of one or more upp413 keywords and, if present, the indexp413 keyword.

If the page is part of multiple hierarchies, then they should be described in different paragraphsp98. User agents must
scope any interpretation of the upp413 and indexp413 keywords together indicating the depth of the hierarchy to the
paragraphp98 in which the link finds itself, if any, or to the document otherwise.

When two links have both the upp413 and indexp413 keywords specified together in the same scope and contradict each
other by having a different number of upp413 keywords, the link with the greater number of upp413 keywords must be
taken as giving the depth of the document.

This can be used to mark up a navigation style sometimes known as bread crumbs. In the following example,
the current page can be reached via two paths.

<nav>
<p>
Main >
Products >
Dishwashers >
<a>Second hand

</p>
<p>
Main >
Second hand >
<a>Dishwashers

</p>
</nav>

Note: The relListp171 IDL attribute (e.g. on the ap169 element) does not currently represent multiple
upp413 keywords (the interface hides duplicates).

4.12.3.18 Sequential link types

Some documents form part of a sequence of documents.

A sequence of documents is one where each document can have a previous sibling and a next sibling. A document
with no previous sibling is the start of its sequence, a document with no next sibling is the end of its sequence.

A document may be part of multiple sequences.

413

4.12.3.18.1 Link type "first"

The firstp414 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The firstp414 keyword indicates that the document is part of a sequence, and that the link is leading to the document
that is the first logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keywords "begin" and "start" like the firstp414

keyword.

4.12.3.18.2 Link type "last"

The lastp414 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The lastp414 keyword indicates that the document is part of a sequence, and that the link is leading to the document
that is the last logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "end" like the lastp414 keyword.

4.12.3.18.3 Link type "next"

The nextp414 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The nextp414 keyword indicates that the document is part of a sequence, and that the link is leading to the document
that is the next logical document in the sequence.

4.12.3.18.4 Link type "prev"

The prevp414 keyword may be used with linkp115, ap169, and areap280 elements. For linkp115 elements, it creates a
hyperlinkp116.

The prevp414 keyword indicates that the document is part of a sequence, and that the link is leading to the document
that is the previous logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "previous" like the prevp414 keyword.

4.12.3.19 Other link types

Extensions to the predefined set of link types may be registered in the WHATWG Wiki RelExtensions page.
[WHATWGWIKI]p743

Anyone is free to edit the WHATWG Wiki RelExtensions page at any time to add a type. Extension types must be
specified with the following information:

Keyword
The actual value being defined. The value should not be confusingly similar to any other defined value (e.g.
differing only in case).

If the value contains a U+003A COLON character (:), it must also be an absolute URLp55.

Effect on... linkp115

One of the following:

not allowed
The keyword is not allowed to be specified on linkp115 elements.

Hyperlink
The keyword may be specified on a linkp115 element; it creates a hyperlink linkp116.

External Resource
The keyword may be specified on a linkp115 element; it creates a external resource linkp116.

Effect on... ap169 and areap280

One of the following:

414

http://wiki.whatwg.org/wiki/RelExtensions

not allowed
The keyword is not allowed to be specified on ap169 and areap280 elements.

Hyperlink
The keyword may be specified on ap169 and areap280 elements.

Brief description
A short non-normative description of what the keyword's meaning is.

Specification
A link to a more detailed description of the keyword's semantics and requirements. It could be another page on
the Wiki, or a link to an external page.

Synonyms
A list of other keyword values that have exactly the same processing requirements. Authors should not use the
values defined to be synonyms, they are only intended to allow user agents to support legacy content. Anyone
may remove synonyms that are not used in practice; only names that need to be processed as synonyms for
compatibility with legacy content are to be registered in this way.

Status
One of the following:

Proposed
The keyword has not received wide peer review and approval. Someone has proposed it and is, or soon will
be, using it.

Ratified
The keyword has received wide peer review and approval. It has a specification that unambiguously defines
how to handle pages that use the keyword, including when they use it in incorrect ways.

Discontinued
The keyword has received wide peer review and it has been found wanting. Existing pages are using this
keyword, but new pages should avoid it. The "brief description" and "specification" entries will give details
of what authors should use instead, if anything.

If a keyword is found to be redundant with existing values, it should be removed and listed as a synonym for the
existing value.

If a keyword is registered in the "proposed" state for a period of a month or more without being used or specified,
then it may be removed from the registry.

If a keyword is added with the "proposed" status and found to be redundant with existing values, it should be
removed and listed as a synonym for the existing value. If a keyword is added with the "proposed" status and
found to be harmful, then it should be changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

Conformance checkers must use the information given on the WHATWG Wiki RelExtensions page to establish if a value
is allowed or not: values defined in this specification or marked as "proposed" or "ratified" must be accepted when
used on the elements for which they apply as described in the "Effect on..." field, whereas values marked as
"discontinued" or not listed in either this specification or on the aforementioned page must be rejected as invalid.
Conformance checkers may cache this information (e.g. for performance reasons or to avoid the use of unreliable
network connectivity).

When an author uses a new type not defined by either this specification or the Wiki page, conformance checkers
should offer to add the value to the Wiki, with the details described above, with the "proposed" status.

Types defined as extensions in the WHATWG Wiki RelExtensions page with the status "proposed" or "ratified" may be
used with the rel attribute on linkp115, ap169, and areap280 elements in accordance to the "Effect on..." field.
[WHATWGWIKI]p743

4.13 Common idioms without dedicated elements

This specification does not define any markup specifically for marking up lists of keywords that apply to a group of
pages (also known as tag clouds). In general, authors are encouraged to either mark up such lists using ulp162

elements with explicit inline counts that are then hidden and turned into a presentational effect using a style sheet, or
to use SVG.

4.13.1 Tag clouds

415

http://wiki.whatwg.org/wiki/RelExtensions

Here, three tags are included in a short tag cloud:

<style>
@media screen, print, handheld, tv {

/* should be ignored by non-visual browsers */
.tag-cloud > li > span { display: none; }
.tag-cloud > li { display: inline; }
.tag-cloud-1 { font-size: 0.7em; }
.tag-cloud-2 { font-size: 0.9em; }
.tag-cloud-3 { font-size: 1.1em; }
.tag-cloud-4 { font-size: 1.3em; }
.tag-cloud-5 { font-size: 1.5em; }

}
</style>
...
<ul class="tag-cloud">
<li class="tag-cloud-4">apple

(popular)
<li class="tag-cloud-2">kiwi

(rare)
<li class="tag-cloud-5">pear (very

popular)

The actual frequency of each tag is given using the titlep89 attribute. A CSS style sheet is provided to convert
the markup into a cloud of differently-sized words, but for user agents that do not support CSS or are not visual,
the markup contains annotations like "(popular)" or "(rare)" to categorize the various tags by frequency, thus
enabling all users to benefit from the information.

The ulp162 element is used (rather than olp161) because the order is not particularly important: while the list is in
fact ordered alphabetically, it would convey the same information if ordered by, say, the length of the tag.

The tagp412 relp404-keyword is not used on these ap169 elements because they do not represent tags that apply
to the page itself; they are just part of an index listing the tags themselves.

This specification does not define a specific element for marking up conversations, meeting minutes, chat transcripts,
dialogues in screenplays, instant message logs, and other situations where different players take turns in discourse.

Instead, authors are encouraged to mark up conversations using pp157 elements and punctuation. Authors who need to
mark the speaker for styling purposes are encouraged to use spanp191 or bp185. Paragraphs with their text wrapped in
the ip184 element can be used for marking up stage directions.

This example demonstrates this using an extract from Abbot and Costello's famous sketch, Who's on first:

<p> Costello: Look, you gotta first baseman?
<p> Abbott: Certainly.
<p> Costello: Who's playing first?
<p> Abbott: That's right.
<p> Costello becomes exasperated.
<p> Costello: When you pay off the first baseman every month, who gets the money?
<p> Abbott: Every dollar of it.

The following extract shows how an IM conversation log could be marked up.

<p> <time>14:22</time> egof I'm not that nerdy, I've only seen 30% of the star
trek episodes
<p> <time>14:23</time> kaj if you know what percentage of the star trek episodes
you have seen, you are inarguably nerdy
<p> <time>14:23</time> egof it's unarguably
<p> <time>14:23</time> <i>* kaj blinks</i>
<p> <time>14:24</time> kaj you are not helping your case

4.13.2 Conversations

416

HTML does not have a dedicated mechanism for marking up footnotes. Here are the recommended alternatives.

For short inline annotations, the titlep89 attribute should be used.

In this example, two parts of a dialogue are annotated with footnote-like content using the titlep89 attribute.

<p> Customer: Hello! I wish to register a complaint. Hello. Miss?
<p> Shopkeeper: <span title="Colloquial pronunciation of 'What do you'"
>Watcha mean, miss?
<p> Customer: Uh, I'm sorry, I have a cold. I wish to make a complaint.
<p> Shopkeeper: Sorry, we're
closing for lunch.

For longer annotations, the ap169 element should be used, pointing to an element later in the document. The
convention is that the contents of the link be a number in square brackets.

In this example, a footnote in the dialogue links to a paragraph below the dialogue. The paragraph then
reciprocally links back to the dialogue, allowing the user to return to the location of the footnote.

<p> Announcer: Number 16: The <i>hand</i>.
<p> Interviewer: Good evening. I have with me in the studio tonight
Mr Norman St John Polevaulter, who for the past few years has been
contradicting people. Mr Polevaulter, why do you
contradict people?
<p> Norman: I don't. ^{[1]}
<p> Interviewer: You told me you did!
...
<section>
<p id="fn1">[1] This is, naturally, a lie,
but paradoxically if it were true he could not say so without
contradicting the interviewer and thus making it false.</p>

</section>

For side notes, longer annotations that apply to entire sections of the text rather than just specific words or sentences,
the asidep145 element should be used.

In this example, a sidebar is given after a dialogue, giving it some context.

<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: I'm sorry?
<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: No no no, this's'a tobacconist's.
<aside>
<p>In 1970, the British Empire lay in ruins, and foreign
nationalists frequented the streets — many of them Hungarians
(not the streets — the foreign nationals). Sadly, Alexander
Yalt has been publishing incompetently-written phrase books.

</aside>

For figures or tables, footnotes can be included in the relevant figcaptionp168 or captionp292 element, or in
surrounding prose.

In this example, a table has cells with footnotes that are given in prose. A figurep167 element is used to give a
single legend to the combination of the table and its footnotes.

<figure>
<figcaption>Table 1. Alternative activities for knights.</figcaption>
<table>
<tr>
<th> Activity
<th> Location
<th> Cost

<tr>
<td> Dance

4.13.3 Footnotes

417

<td> Wherever possible
<td> £0^{1}

<tr>
<td> Routines, chorus scenes^{2}
<td> Undisclosed
<td> Undisclosed

<tr>
<td> Dining^{3}
<td> Camelot
<td> Cost of ham, jam, and spam^{4}

</table>
<p id="fn1">1. Assumed.</p>
<p id="fn2">2. Footwork impeccable.</p>
<p id="fn3">3. Quality described as "well".</p>
<p id="fn4">4. A lot.</p>

</figure>

4.14 Matching HTML elements using selectors

Attribute and element names of HTML elementsp28 in HTML documentsp75 must be treated as ASCII case-insensitivep35.

Classes from the classp91 attribute of HTML elementsp28 in documents that are in quirks modep79 must be treated as
ASCII case-insensitivep35.

Attribute selectors on an HTML elementp28 in an HTML documentp75 must treat the values of attributes with the
following names as ASCII case-insensitivep35:

• accept
• accept-charset
• align
• alink
• axis
• bgcolor
• charset
• checked
• clear
• codetype
• color
• compact
• declare
• defer
• dir
• direction
• disabled
• enctype
• face
• frame
• hreflang
• http-equiv
• lang
• language
• link
• media
• method
• multiple
• nohref
• noresize
• noshade
• nowrap
• readonly
• rel
• rev
• rules
• scope
• scrolling
• selected
• shape
• target
• text
• type
• valign

4.14.1 Case-sensitivity

418

• valuetype
• vlink

All other attribute values on HTML elementsp28 must be treated as case-sensitivep35.

There are a number of dynamic selectors that can be used with HTML. This section defines when these selectors
match HTML elements.

:link
:visited

All ap169 elements that have an hrefp404 attribute, all areap280 elements that have an hrefp404 attribute, and all
linkp115 elements that have an hrefp116 attribute, must match one of :linkp419 and :visitedp419.

:active
The :activep419 pseudo-class must match the following elements between the time the user begins to activate
the element and the time the user stops activating the element:

• ap169 elements that have an hrefp404 attribute

• areap280 elements that have an hrefp404 attribute

• linkp115 elements that have an hrefp116 attribute

• buttonp351 elements that are not disabledp374

• inputp320 elements whose typep321 attribute is in the Submit Buttonp339, Image Buttonp339, Reset
Buttonp341, or Buttonp341 state

• commandp391 elements that do not have a disabledp392 attribute

• any other element, if it is specially focusablep538

For example, if the user is using a keyboard to push a buttonp351 element by pressing the space bar, the
element would match this pseudo-class in between the time that the element received the keydown event
and the time the element received the keyup event.

:enabled
The :enabledp419 pseudo-class must match the following elements:

• ap169 elements that have an hrefp404 attribute

• areap280 elements that have an hrefp404 attribute

• linkp115 elements that have an hrefp116 attribute

• buttonp351 elements that are not disabledp374

• inputp320 elements whose typep321 attribute are not in the Hiddenp324 state and that are not
disabledp374

• selectp353 elements that are not disabledp374

• textareap360 elements that are not disabledp374

• optionp358 elements that do not have a disabledp359 attribute

• commandp391 elements that do not have a disabledp392 attribute

• lip163 elements that are children of menup393 elements, and that have a child element that defines a
commandp396, if the first such element's Disabled Statep396 facet is false (not disabled)

:disabled
The :disabledp419 pseudo-class must match the following elements:

• buttonp351 elements that are disabledp374

• inputp320 elements whose typep321 attribute are not in the Hiddenp324 state and that are disabledp374

4.14.2 Pseudo-classes

419

• selectp353 elements that are disabledp374

• textareap360 elements that are disabledp374

• optionp358 elements that have a disabledp359 attribute

• commandp391 elements that have a disabledp392 attribute

• lip163 elements that are children of menup393 elements, and that have a child element that defines a
commandp396, if the first such element's Disabled Statep396 facet is true (disabled)

:checked
The :checkedp420 pseudo-class must match the following elements:

• inputp320 elements whose typep321 attribute is in the Checkboxp336 state and whose checkednessp374

state is true

• inputp320 elements whose typep321 attribute is in the Radio Buttonp337 state and whose checkednessp374

state is true

• commandp391 elements whose typep391 attribute is in the Checkboxp391 state and that have a checkedp392

attribute

• commandp391 elements whose typep391 attribute is in the Radiop391 state and that have a checkedp392

attribute

:indeterminate
The :indeterminatep420 pseudo-class must match inputp320 elements whose typep321 attribute is in the
Checkboxp336 state and whose indeterminatep324 IDL attribute is set to true.

:default
The :defaultp420 pseudo-class must match the following elements:

• buttonp351 elements that are their form's default buttonp381

• inputp320 elements whose typep321 attribute is in the Submit Buttonp339 or Image Buttonp339 state, and
that are their form's default buttonp381

:valid
The :validp420 pseudo-class must match all elements that are candidates for constraint validationp376 and that
satisfy their constraintsp377.

:invalid
The :invalidp420 pseudo-class must match all elements that are candidates for constraint validationp376 but that
do not satisfy their constraintsp377.

:in-range
The :in-rangep420 pseudo-class must match all elements that are candidates for constraint validationp376 and
that are neither suffering from an underflowp377 nor suffering from an overflowp377.

:out-of-range
The :out-of-rangep420 pseudo-class must match all elements that are candidates for constraint validationp376

and that are suffering from an underflowp377 or suffering from an overflowp377.

:required
The :requiredp420 pseudo-class must match the following elements:

• inputp320 elements that are requiredp344

• textareap360 elements that have a requiredp362 attribute

:optional
The :optionalp420 pseudo-class must match the following elements:

• buttonp351 elements

• inputp320 elements that are not requiredp344

• selectp353 elements

420

• textareap360 elements that do not have a requiredp362 attribute

:read-only
:read-write

The :read-writep421 pseudo-class must match the following elements:

• inputp320 elements to which the readonlyp344 attribute applies, but that are not immutablep324 (i.e. that
do not have the readonlyp344 attribute specified and that are not disabledp374)

• textareap360 elements that do not have a readonlyp361 attribute, and that are not disabledp374

• any element that is editablep546

The :read-onlyp421 pseudo-class must match all other HTML elementsp28.

Note: Another section of this specification defines the target elementp491 used with the :target
pseudo-class.

Note: This specification does not define when an element matches the :hover, :focus, or :lang()
dynamic pseudo-classes, as those are all defined in sufficient detail in a language-agnostic
fashion in the Selectors specification. [SELECTORS]p742

421

5 Microdata

5.1 Introduction

This section is non-normative.

Sometimes, it is desirable to annotate content with specific machine-readable labels, e.g. to allow generic scripts to
provide services that are customised to the page, or to enable content from a variety of cooperating authors to be
processed by a single script in a consistent manner.

For this purpose, authors can use the microdata features described in this section. Microdata allows nested groups of
name-value pairs to be added to documents, in parallel with the existing content.

This section is non-normative.

At a high level, microdata consists of a group of name-value pairs. The groups are called itemsp427, and each name-
value pair is a property. Items and properties are represented by regular elements.

To create an item, the itemscopep427 attribute is used.

To add a property to an item, the itempropp428 attribute is used on one of the item'sp427 descendants.

Here there are two items, each of which has the property "name":

<div itemscope>
<p>My name is Elizabeth.</p>

</div>

<div itemscope>
<p>My name is Daniel.</p>

</div>

Properties generally have values that are strings.

Here the item has three properties:

<div itemscope>
<p>My name is Neil.</p>
<p>My band is called Four Parts Water.</p>
<p>I am British.</p>

</div>

Properties can also have values that are URLsp54. This is achieved using the ap169 element and its hrefp404 attribute, the
imgp196 element and its srcp197 attribute, or other elements that link to or embed external resources.

In this example, the item has one property, "image", whose value is a URL:

<div itemscope>

</div>

Properties can also have values that are dates, times, or dates and times. This is achieved using the timep178 element
and its datetimep179 attribute.

In this example, the item has one property, "birthday", whose value is a date:

<div itemscope>
I was born on <time itemprop="birthday" datetime="2009-05-10">May 10th 2009</time>.

</div>

Properties can also themselves be groups of name-value pairs, by putting the itemscopep427 attribute on the element
that declares the property.

Items that are not part of others are called top-level microdata itemsp430.

5.1.1 Overview

5.1.2 The basic syntax

422

In this example, the outer item represents a person, and the inner one represents a band:

<div itemscope>
<p>Name: Amanda</p>
<p>Band: Jazz Band (<span

itemprop="size">12 players)</p>
</div>

The outer item here has two properties, "name" and "band". The "name" is "Amanda", and the "band" is an item
in its own right, with two properties, "name" and "size". The "name" of the band is "Jazz Band", and the "size" is
"12".

The outer item in this example is a top-level microdata item.

Properties that are not descendants of the element with the itemscopep427 attribute can be associated with the
itemp427 using the itemrefp428 attribute. This attribute takes a list of IDs of elements to crawl in addition to crawling
the children of the element with the itemscopep427 attribute.

This example is the same as the previous one, but all the properties are separated from their itemsp427:

<div itemscope id="amanda" itemref="a b"></div>
<p id="a">Name: Amanda</p>
<div id="b" itemprop="band" itemscope itemref="c"></div>
<div id="c">
<p>Band: Jazz Band</p>
<p>Size: 12 players</p>

</div>

This gives the same result as the previous example. The first item has two properties, "name", set to "Amanda",
and "band", set to another item. That second item has two further properties, "name", set to "Jazz Band", and
"size", set to "12".

An itemp427 can have multiple properties with the same name and different values.

This example describes an ice cream, with two flavors:

<div itemscope>
<p>Flavors in my favorite ice cream:</p>

<li itemprop="flavor">Lemon sorbet
<li itemprop="flavor">Apricot sorbet

</div>

This thus results in an item with two properties, both "flavor", having the values "Lemon sorbet" and "Apricot
sorbet".

An element introducing a property can also introduce multiple properties at once, to avoid duplication when some of
the properties have the same value.

Here we see an item with two properties, "favorite-color" and "favorite-fruit", both set to the value "orange":

<div itemscope>
orange

</div>

It's important to note that there is no relationship between the microdata and the content of the document where the
microdata is marked up.

There is no semantic difference, for instance, between the following two examples:

<figure>

<figcaption>The Castle

(1986)</figcaption>
</figure>
<meta itemprop="name" content="The Castle">
<figure>

423

<figcaption>The Castle (1986)</figcaption>
</figure>

Both have a figure with a caption, and both, completely unrelated to the figure, have an item with a name-value
pair with the name "name" and the value "The Castle". The only difference is that if the user drags the caption
out of the document, in the former case, the item will be included in the drag-and-drop data. In neither case is
the image in any way associated with the item.

This section is non-normative.

The examples in the previous section show how information could be marked up on a page that doesn't expect its
microdata to be re-used. Microdata is most useful, though, when it is used in contexts where other authors and readers
are able to cooperate to make new uses of the markup.

For this purpose, it is necessary to give each itemp427 a type, such as "http://example.com/person", or
"http://example.org/cat", or "http://band.example.net/". Types are identified as URLsp54.

The type for an itemp427 is given as the value of an itemtypep427 attribute on the same element as the itemscopep427

attribute.

Here, the item is "http://example.org/animals#cat":

<section itemscope itemtype="http://example.org/animals#cat">
<h1 itemprop="name">Hedral</h1>
<p itemprop="desc">Hedral is a male american domestic
shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

In this example the "http://example.org/animals#cat" item has three properties, a "name" ("Hedral"), a "desc"
("Hedral is..."), and an "img" ("hedral.jpeg").

An item can only have one type. The type gives the context for the properties, thus defining a vocabulary: a property
named "class" given for an item with the type "http://census.example/person" might refer to the economic class of an
individual, while a property named "class" given for an item with the type "http://example.com/school/teacher" might
refer to the classroom a teacher has been assigned.

This section is non-normative.

Sometimes, an itemp427 gives information about a topic that has a global identifier. For example, books can be
identified by their ISBN number.

Vocabularies (as identified by the itemtypep427 attribute) can be designed such that itemsp427 get associated with their
global identifier in an unambiguous way by expressing the global identifiers as URLsp54 given in an itemidp427

attribute.

The exact meaning of the URLsp54 given in itemidp427 attributes depends on the vocabulary used.

Here, an item is talking about a particular book:

<dl itemscope
itemtype="http://vocab.example.net/book"
itemid="urn:isbn:0-330-34032-8">

<dt>Title
<dd itemprop="title">The Reality Dysfunction
<dt>Author
<dd itemprop="author">Peter F. Hamilton
<dt>Publication date
<dd><time itemprop="pubdate" datetime="1996-01-26">26 January 1996</time>

</dl>

The "http://vocab.example.net/book" vocabulary in this example would define that the itemidp427 attribute
takes a urn: URLp54 pointing to the ISBN of the book.

5.1.3 Typed items

5.1.4 Global identifiers for items

424

This section is non-normative.

Using microdata means using a vocabulary. For some purposes, an ad-hoc vocabulary is adequate. For others, a
vocabulary will need to be designed. Where possible, authors are encouraged to re-use existing vocabularies, as this
makes content re-use easier.

When designing new vocabularies, identifiers can be created either using URLsp54, or, for properties, as plain words
(with no dots or colons). For URLs, conflicts with other vocabularies can be avoided by only using identifiers that
correspond to pages that the author has control over.

For instance, if Jon and Adam both write content at example.com, at http://example.com/~jon/... and
http://example.com/~adam/... respectively, then they could select identifiers of the form
"http://example.com/~jon/name" and "http://example.com/~adam/name" respectively.

Properties whose names are just plain words can only be used within the context of the types for which they are
intended; properties named using URLs can be reused in items of any type. If an item has no type, and is not part of
another item, then if its properties have names that are just plain words, they are not intended to be globally unique,
and are instead only intended for limited use. Generally speaking, authors are encouraged to use either properties
with globally unique names (URLs) or ensure that their items are typed.

Here, an item is an "http://example.org/animals#cat", and most of the properties have names that are words
defined in the context of that type. There are also a few additional properties whose names come from other
vocabularies.

<section itemscope itemtype="http://example.org/animals#cat">
<h1 itemprop="name http://example.com/fn">Hedral</h1>
<p itemprop="desc">Hedral is a male american domestic
shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

This example has one item with the type "http://example.org/animals#cat" and the following properties:

Property Value

name Hedral
http://example.com/fn Hedral
desc Hedral is a male american domestic shorthair, with a fluffy black fur with white paws and belly.
http://example.com/color black
http://example.com/color white
img .../hedral.jpeg

This section is non-normative.

The microdata becomes even more useful when scripts can use it to expose information to the user, for example
offering it in a form that can be used by other applications.

The document.getItems(typeNames)p431 method provides access to the top-level microdata itemsp430. It returns a
NodeListp33 containing the items with the specified types, or all types if no argument is specified.

Each itemp427 is represented in the DOM by the element on which the relevant itemscopep427 attribute is found. These
elements have their element.itemScopep431 IDL attribute set to true.

The type of itemsp427 can be obtained using the element.itemTypep431 IDL attribute on the element with the
itemscopep427 attribute.

This sample shows how the getItems()p431 method can be used to obtain a list of all the top-level microdata
items of one type given in the document:

var cats = document.getItems("http://example.com/feline");

5.1.5 Selecting names when defining vocabularies

5.1.6 Using the microdata DOM API

425

Once an element representing an itemp427 has been obtained, its properties can be extracted using the propertiesp432

IDL attribute. This attribute returns an HTMLPropertiesCollectionp68, which can be enumerated to go through each
element that adds one or more properties to the item. It can also be indexed by name, which will return an object with
a list of the elements that add properties with that name.

Each element that adds a property also has a itemValuep432 IDL attribute that returns its value.

This sample gets the first item of type "http://example.net/user" and then pops up an alert using the "name"
property from that item.

var user = document.getItems('http://example.net/user')[0];
alert('Hello ' + user.properties['name'][0].content + '!');

The HTMLPropertiesCollectionp68 object, when indexed by name in this way, actually returns a
PropertyNodeListp68 object with all the matching properties. The PropertyNodeListp68 object can be used to obtain
all the values at once using its valuesp69 attribute, which returns an array of all the values.

In an earlier example, a "http://example.org/animals#cat" item had two "http://example.com/color" values. This
script looks up the first such item and then lists all its values.

var cat = document.getItems('http://example.org/animals#cat')[0];
var colors = cat.properties['http://example.com/color'].values;
var result;
if (colors.length == 0) {

result = 'Color unknown.';
} else if (colors.length == 1) {

result = 'Color: ' + colors[0];
} else {

result = 'Colors:';
for (var i = 0; i < colors.length; i += 1)

result += ' ' + colors[i];
}

It's also possible to get a list of all the property namesp428 using the object's namesp69 IDL attribute.

This example creates a big list with a nested list for each item on the page, each with of all the property names
used in that item.

var outer = document.createElement('ul');
var items = document.getItems();
for (var item = 0; item < items.length; item += 1) {

var itemLi = document.createElement('li');
var inner = document.createElement('ul');
for (var name = 0; name < items[item].properties.names.length; name += 1) {

var propLi = document.createElement('li');
propLi.appendChild(document.createTextNode(items[item].properties.names[name]));
inner.appendChild(propLi);

}
itemLi.appendChild(inner);
outer.appendChild(itemLi);

}
document.body.appendChild(outer);

If faced with the following from an earlier example:

<section itemscope itemtype="http://example.org/animals#cat">
<h1 itemprop="name http://example.com/fn">Hedral</h1>
<p itemprop="desc">Hedral is a male american domestic
shorthair, with a fluffy black fur with white paws and belly.</p>

</section>

...it would result in the following output:

• • name
• http://example.com/fn

426

• desc
• http://example.com/color
• img

(The duplicate occurrence of "http://example.com/color" is not included in the list.)

5.2 Encoding microdata

The microdata model consists of groups of name-value pairs known as itemsp427.

Each group is known as an itemp427. Each itemp427 can have an item typep427, a global identifierp427 (if the item typep427

supports global identifiers for its itemsp427), and a list of name-value pairs. Each name in the name-value pair is known
as a propertyp429, and each propertyp429 has one or more valuesp429. Each valuep429 is either a string or itself a group of
name-value pairs (an itemp427).

An itemp427 is said to be a typed item when either it has an item typep427, or it is the valuep429 of a propertyp429 of a
typed itemp427. The relevant type for a typed itemp427 is the itemp427 's item typep427, if it has one, or else is the
relevant typep427 of the itemp427 for which it is a propertyp429 's valuep429.

Every HTML elementp28 may have an itemscope attribute specified. The itemscopep427 attribute is a boolean
attributep37.

An element with the itemscopep427 attribute specified creates a new item, a group of name-value pairs.

Elements with an itemscopep427 attribute may have an itemtype attribute specified, to give the item typep427 of the
itemp427.

The itemtypep427 attribute, if specified, must have a value that is a valid URLp54 that is an absolute URLp55 for which
the string "http://www.w3.org/1999/xhtml/microdata#" is not a prefix matchp36.

The item type of an itemp427 is the value of its element's itemtypep427 attribute, if it has one and its value is not the
empty string. If the itemtypep427 attribute is missing or its value is the empty string, the itemp427 is said to have no
item typep427.

The item typep427 must be a type defined in an applicable specificationp35.

Except if otherwise specified by that specification, the URLp54 given as the item typep427 should not be automatically
dereferenced.

Note: A specification could define that its item typep427 can be derefenced to provide the user
with help information, for example. In fact, vocabulary authors are encouraged to provide useful
information at the given URLp54.

Item typesp427 are opaque identifiers, and user agents must not dereference unknown item typesp427, or otherwise
deconstruct them, in order to determine how to process itemsp427 that use them.

The itemtypep427 attribute must not be specified on elements that do not have an itemscopep427 attribute specified.

Elements with an itemscopep427 attribute and an itemtypep427 attribute that references a vocabulary that is defined to
support global identifiers for items may also have an itemid attribute specified, to give a global identifier for the
itemp427, so that it can be related to other itemsp427 on pages elsewhere on the Web.

The itemidp427 attribute, if specified, must have a value that is a valid URLp54.

The global identifier of an itemp427 is the value of its element's itemidp427 attribute, if it has one, resolvedp55 relative
to the element on which the attribute is specified. If the itemidp427 attribute is missing or if resolving it fails, it is said
to have no global identifierp427.

The itemidp427 attribute must not be specified on elements that do not have both an itemscopep427 attribute and an
itemtypep427 attribute specified, and must not be specified on elements with an itemscopep427 attribute whose

5.2.1 The microdata model

5.2.2 Items

427

itemtypep427 attribute specifies a vocabulary that does not support global identifiers for itemsp427, as defined by that
vocabulary's specification.

Elements with an itemscopep427 attribute may have an itemref attribute specified, to give a list of additional elements
to crawl to find the name-value pairs of the itemp427.

The itemrefp428 attribute, if specified, must have a value that is an unordered set of unique space-separated tokensp52

consisting of IDsp89 of elements in the same home subtreep29.

The itemrefp428 attribute must not be specified on elements that do not have an itemscopep427 attribute specified.

Every HTML elementp28 may have an itempropp428 attribute specified, if doing so adds a propertyp429 to one or more
itemsp427 (as defined below).

The itempropp428 attribute, if specified, must have a value that is an unordered set of unique space-separated
tokensp52 representing the names of the name-value pairs that it adds. The attribute's value must have at least one
token.

Each token must be either:

• A valid URLp54 that is an absolute URLp55 for which the string "http://www.w3.org/1999/xhtml/
microdata#" is not a prefix matchp36, or

• If the item is a typed itemp427: a defined property name allowed in this situation according to the
specification that defines the relevant typep427 for the item, or

• If the item is not a typed itemp427: a string that contains no U+002E FULL STOP characters (.) and no
U+003A COLON characters (:).

When an element with an itemprop attribute adds a propertyp429 to multiple itemsp427, the requirement above
regarding the tokens applies for each itemp427 individually.

The property names of an element are the tokens that the element's itempropp428 attribute is found to contain when
its value is split on spacesp52, with the order preserved but with duplicates removed (leaving only the first occurrence
of each name).

Within an itemp427, the properties are unordered with respect to each other, except for properties with the same name,
which are ordered in the order they are given by the algorithm that defines the properties of an itemp429.

In the following example, the "a" property has the values "1" and "2", in that order, but whether the "a" property
comes before the "b" property or not is not important:

<div itemscope>
<p itemprop="a">1</p>
<p itemprop="a">2</p>
<p itemprop="b">test</p>

</div>

Thus, the following is equivalent:

<div itemscope>
<p itemprop="b">test</p>
<p itemprop="a">1</p>
<p itemprop="a">2</p>

</div>

As is the following:

<div itemscope>
<p itemprop="a">1</p>
<p itemprop="b">test</p>
<p itemprop="a">2</p>

</div>

And the following:

5.2.3 Names: the itemprop attribute

428

<div itemscope itemref="x">
<p itemprop="b">test</p>
<p itemprop="a">2</p>

</div>
<div id="x">
<p itemprop="a">1</p>

</div>

The property value of a name-value pair added by an element with an itempropp428 attribute depends on the
element, as follows:

If the element also has an itemscopep427 attribute
The value is the itemp427 created by the element.

If the element is a metap119 element
The value is the value of the element's content attribute, if any, or the empty string if there is no such attribute.

If the element is an audiop228, embedp217, iframep211, imgp196, sourcep229, or videop225 element
The value is the absolute URLp55 that results from resolvingp55 the value of the element's src attribute relative to
the element at the time the attribute is set, or the empty string if there is no such attribute or if resolvingp55 it
results in an error.

If the element is an ap169, areap280, or linkp115 element
The value is the absolute URLp55 that results from resolvingp55 the value of the element's href attribute relative
to the element at the time the attribute is set, or the empty string if there is no such attribute or if resolvingp55 it
results in an error.

If the element is an objectp220 element
The value is the absolute URLp55 that results from resolvingp55 the value of the element's data attribute relative
to the element at the time the attribute is set, or the empty string if there is no such attribute or if resolvingp55 it
results in an error.

If the element is a timep178 element with a datetimep179 attribute
The value is the value of the element's datetimep179 attribute.

Otherwise
The value is the element's textContentp33.

The URL property elements are the ap169, areap280, audiop228, embedp217, iframep211, imgp196, linkp115, objectp220,
sourcep229, and videop225 elements.

If a property's valuep429 is an absolute URLp55, the property must be specified using a URL property elementp429.

If a property's valuep429 represents a datep44, timep45, or global date and timep46, the property must be specified using
the datetimep179 attribute of a timep178 element.

To find the properties of an item defined by the element root, the user agent must try to crawl the propertiesp429 of
the element root, with an empty list as the value of memory: if this fails, then the properties of the itemp429 defined by
the element root is an empty list; otherwise, it is the returned list.

To crawl the properties of an element root with a list memory, the user agent must run the following steps. These
steps either fail or return a list with a count of errors. The count of errors is used as part of the authoring conformance
criteria below.

1. If root is in memory, then the algorithm fails; abort these steps.

2. Collect all the elements in the itemp430 root; let results be the resulting list of elements, and errors be the
resulting count of errors.

3. Remove any elements from results that do not have an itempropp428 attribute specified.

5.2.4 Values

5.2.5 Associating names with items

429

4. Let new memory be a new list consisting of the old list memory with the addition of root.

5. For each element in results that has an itemscopep427 attribute specified, crawl the propertiesp429 of the
element, with new memory as the memory. If this fails, then remove the element from results and increment
errors. (If it succeeds, the return value is discarded.)

6. Sort results in tree orderp29.

7. Return results and errors.

To collect all the elements in the item root, the user agent must run these steps. They return a list of elements
and a count of errors.

1. Let results and pending be empty lists of elements.

2. Let errors be zero.

3. Add all the children elements of root to pending.

4. If root has an itemrefp428 attribute, split the value of that itemref attribute on spacesp52. For each resulting
token ID, if there is an element in the home subtreep29 of root with the IDp89 ID, then add the first such
element to pending.

5. Loop: Remove an element from pending and let current be that element.

6. If current is already in results, increment errors.

7. If current is not already in results and current does not have an itemscopep427 attribute, then: add all the
child elements of current to pending.

8. If current is not already in results, then: add current to results.

9. End of loop: If pending is not empty, return to the step labeled loop.

10. Return results and errors.

An itemp427 is a top-level microdata item if its element does not have an itempropp428 attribute.

An itemp427 is a used microdata item if it is a top-level microdata itemp430, or if it has an itempropp428 attribute and
would be found to be the propertyp429 of an itemp427 that is itself a used microdata itemp430.

A document must not contain any itemsp427 that are not used microdata itemsp430.

A document must not contain any elements that have an itempropp428 attribute that would not be found to be a
property of any of the itemsp427 in that document were their propertiesp429 all to be determined.

A document must not contain any itemsp427 for which crawling the propertiesp429 of the element, with an empty list as
the value of memory, either fails or returns an error count other than zero.

Note: The algorithms in this section are especially inefficient, in the interests of keeping them
easy to understand. Implementors are strongly encouraged to refactor and optimize them in their
user agents.

In this example, a single license statement is applied to two works, using itemrefp428 from the items
representing the works:

<!DOCTYPE HTML>
<html>
<head>
<title>Photo gallery</title>

</head>
<body>
<h1>My photos</h1>
<figure itemscope itemtype="http://n.whatwg.org/work" itemref="licenses">
<img itemprop="work" src="images/house.jpeg" alt="A white house, boarded up, sits in a

forest.">
<figcaption itemprop="title">The house I found.</figcaption>

</figure>
<figure itemscope itemtype="http://n.whatwg.org/work" itemref="licenses">
<img itemprop="work" src="images/mailbox.jpeg" alt="Outside the house is a mailbox. It

has a leaflet inside.">

430

<figcaption itemprop="title">The mailbox.</figcaption>
</figure>
<footer>
<p id="licenses">All images licensed under the <a itemprop="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
license.</p>

</footer>
</body>

</html>

The above results in two items with the type "http://n.whatwg.org/work", one with:

work
images/house.jpeg

title
The house I found.

license
http://www.opensource.org/licenses/mit-license.php

...and one with:

work
images/mailbox.jpeg

title
The mailbox.

license
http://www.opensource.org/licenses/mit-license.php

5.3 Microdata DOM API

This box is non-normative. Implementation requirements are given below this box.

document . getItemsp431([types])
Returns a NodeListp33 of the elements in the Documentp33 that create itemsp427, that are not part of other
itemsp427, and that are of one of the types given in the argument, if any are listed.
The types argument is interpreted as a space-separated list of types.

element . propertiesp432

If the element has an itemscopep427 attribute, returns an HTMLPropertiesCollectionp68 object with all the
element's properties. Otherwise, an empty HTMLPropertiesCollectionp68 object.

element . itemValuep432 [= value]
Returns the element's valuep429.

Can be set, to change the element's valuep429. Setting the valuep429 when the element has no itempropp428

attribute or when the element's value is an itemp427 throws an INVALID_ACCESS_ERRp74 exception.

The document.getItems(typeNames) method takes an optional string that contains an unordered set of unique space-
separated tokensp52 representing types. When called, the method must return a livep29 NodeListp33 object containing
all the elements in the document, in tree orderp29, that are each top-level microdata itemsp430 with a typep427 equal to
one of the types specified in that argument, having obtained the types by splitting the string on spacesp52. If there are
no tokens specified in the argument, or if the argument is missing, then the method must return a NodeListp33

containing all the top-level microdata itemsp430 in the document. When the method is invoked on a Documentp33 object
again with the same argument, the user agent may return the same object as the object returned by the earlier call. In
other cases, a new NodeListp33 object must be returned.

The itemScope IDL attribute on HTML elementsp28 must reflectp61 the itemscopep427 content attribute. The itemType
IDL attribute on HTML elementsp28 must reflectp61 the itemtypep427 content attribute, as if it was a regular string
attribute, not a URLp54 string attribute. The itemId IDL attribute on HTML elementsp28 must reflectp61 the itemidp427

content attribute. The itemProp IDL attribute on HTML elementsp28 must reflectp61 the itempropp428 content attribute.
The itemRef IDL attribute on HTML elementsp28 must reflectp61 the itemrefp428 content attribute.

431

The properties IDL attribute on HTML elementsp28 must return an HTMLPropertiesCollectionp68 rooted at the
Documentp33 node, whose filter matches only elements that have property namesp428 and are the properties of the
itemp429 created by the element on which the attribute was invoked, while that element is an itemp427, and matches
nothing the rest of the time.

The itemValue IDL attribute's behavior depends on the element, as follows:

If the element has no itempropp428 attribute
The attribute must return null on getting and must throw an INVALID_ACCESS_ERRp74 exception on setting.

If the element has an itemscopep427 attribute
The attribute must return the element itself on getting and must throw an INVALID_ACCESS_ERRp74 exception on
setting.

If the element is a metap119 element
The attribute must act as it would if it was reflectingp61 the element's contentp120 content attribute.

If the element is an audiop228, embedp217, iframep211, imgp196, sourcep229, or videop225 element
The attribute must act as it would if it was reflectingp61 the element's src content attribute.

If the element is an ap169, areap280, or linkp115 element
The attribute must act as it would if it was reflectingp61 the element's href content attribute.

If the element is an objectp220 element
The attribute must act as it would if it was reflectingp61 the element's data content attribute.

If the element is a timep178 element with a datetimep179 attribute
The attribute must act as it would if it was reflectingp61 the element's datetimep179 content attribute.

Otherwise
The attribute must act the same as the element's textContentp33 attribute.

When the itemValuep432 IDL attribute is reflectingp61 a content attribute or acting like the element's textContentp33

attribute, the user agent must, on setting, convert the new value to the IDL DOMString value before using it according
to the mappings described above.

In this example, a script checks to see if a particular element element is declaring a particular property, and if it is, it
increments a counter:

if (element.itemProp.contains('color'))
count += 1;

This script iterates over each of the values of an element's itemrefp428 attribute, calling a function for each referenced
element:

for (var index = 0; index < element.itemRef.length; index += 1)
process(document.getElementById(element.itemRef[index]));

5.4 Microdata vocabularies

An item with the item typep427 http://microformats.org/profile/hcard represents a person's or organization's
contact information.

This vocabulary supports global identifiers for itemsp427.

The following are the type's defined property namesp428. They are based on the vocabulary defined in the vCard
specification and its extensions, where more information on how to interpret the values can be found. [RFC2426]p741

[RFC4770]p741

fn
Gives the formatted text corresponding to the name of the person or organization.

The valuep429 must be text.

5.4.1 vCard

432

Exactly one property with the name fnp432 must be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

n
Gives the structured name of the person or organization.

The valuep429 must be an itemp427 with zero or more of each of the family-namep433, given-namep433,
additional-namep433, honorific-prefixp433, and honorific-suffixp433 properties.

Exactly one property with the name np433 must be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

family-name (inside np433)
Gives the family name of the person, or the full name of the organization.

The valuep429 must be text.

Any number of properties with the name family-namep433 may be present within the itemp427 that forms the
valuep429 of the np433 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

given-name (inside np433)
Gives the given-name of the person.

The valuep429 must be text.

Any number of properties with the name given-namep433 may be present within the itemp427 that forms the
valuep429 of the np433 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

additional-name (inside np433)
Gives the any additional names of the person.

The valuep429 must be text.

Any number of properties with the name additional-namep433 may be present within the itemp427 that forms the
valuep429 of the np433 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

honorific-prefix (inside np433)
Gives the honorific prefix of the person.

The valuep429 must be text.

Any number of properties with the name honorific-prefixp433 may be present within the itemp427 that forms
the valuep429 of the np433 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

honorific-suffix (inside np433)
Gives the honorific suffix of the person.

The valuep429 must be text.

Any number of properties with the name honorific-suffixp433 may be present within the itemp427 that forms
the valuep429 of the np433 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

nickname
Gives the nickname of the person or organization.

Note: The nickname is the descriptive name given instead of or in addition to the one
belonging to a person, place, or thing. It can also be used to specify a familiar form of a
proper name specified by the fnp432 or np433 properties.

The valuep429 must be text.

Any number of properties with the name nicknamep433 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

photo
Gives a photograph of the person or organization.

The valuep429 must be an absolute URLp55.

433

Any number of properties with the name photop433 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

bday
Gives the birth date of the person or organization.

The valuep429 must be a valid date stringp44.

A single property with the name bdayp434 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

adr
Gives the delivery address of the person or organization.

The valuep429 must be an itemp427 with zero or more typep434, post-office-boxp434, extended-addressp434, and
street-addressp434 properties, and optionally a localityp434 property, optionally a regionp435 property,
optionally a postal-codep435 property, and optionally a country-namep435 property.

If no typep434 properties are present within an itemp427 that forms the valuep429 of an adrp434 property of an
itemp427 with the type http://microformats.org/profile/hcardp432, then the address type stringsp439 intl,
postal, parcel, and work are implied.

Any number of properties with the name adrp434 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

type (inside adrp434)
Gives the type of delivery address.

The valuep429 must be text that, when compared in a case-sensitivep35 manner, is equal to one of the address
type stringsp439.

Within each itemp427 with the type http://microformats.org/profile/hcardp432, there must be no more than
one adrp434 property itemp427 with a typep434 property whose value is prefp440.

Any number of properties with the name typep434 may be present within the itemp427 that forms the valuep429 of
an adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432, but within each
such adrp434 property itemp427 there must only be one typep434 property per distinct value.

post-office-box (inside adrp434)
Gives the post office box component of the delivery address of the person or organization.

The valuep429 must be text.

Any number of properties with the name post-office-boxp434 may be present within the itemp427 that forms the
valuep429 of an adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

extended-address (inside adrp434)
Gives an additional component of the delivery address of the person or organization.

The valuep429 must be text.

Any number of properties with the name extended-addressp434 may be present within the itemp427 that forms
the valuep429 of an adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

street-address (inside adrp434)
Gives the street address component of the delivery address of the person or organization.

The valuep429 must be text.

Any number of properties with the name street-addressp434 may be present within the itemp427 that forms the
valuep429 of an adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

locality (inside adrp434)
Gives the locality component (e.g. city) of the delivery address of the person or organization.

The valuep429 must be text.

A single property with the name localityp434 may be present within the itemp427 that forms the valuep429 of an
adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

434

region (inside adrp434)
Gives the region component (e.g. state or province) of the delivery address of the person or organization.

The valuep429 must be text.

A single property with the name regionp435 may be present within the itemp427 that forms the valuep429 of an
adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

postal-code (inside adrp434)
Gives the postal code component of the delivery address of the person or organization.

The valuep429 must be text.

A single property with the name postal-codep435 may be present within the itemp427 that forms the valuep429 of
an adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

country-name (inside adrp434)
Gives the country name component of the delivery address of the person or organization.

The valuep429 must be text.

A single property with the name country-namep435 may be present within the itemp427 that forms the valuep429 of
an adrp434 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

label
Gives the formatted text corresponding to the delivery address of the person or organization.

The valuep429 must be either text or an itemp427 with zero or more typep435 properties and exactly one valuep435

property.

If no typep435 properties are present within an itemp427 that forms the valuep429 of a labelp435 property of an
itemp427 with the type http://microformats.org/profile/hcardp432, or if the valuep429 of such a labelp435

property is text, then the address type stringsp439 intl, postal, parcel, and work are implied.

Any number of properties with the name labelp435 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

type (inside labelp435)
Gives the type of delivery address.

The valuep429 must be text that, when compared in a case-sensitivep35 manner, is equal to one of the address
type stringsp439.

Within each itemp427 with the type http://microformats.org/profile/hcardp432, there must be no more than
one labelp435 property itemp427 with a typep435 property whose value is prefp440.

Any number of properties with the name typep435 may be present within the itemp427 that forms the valuep429 of a
labelp435 property of an itemp427 with the type http://microformats.org/profile/hcardp432, but within each
such labelp435 property itemp427 there must only be one typep435 property per distinct value.

value (inside labelp435)
Gives the actual formatted text corresponding to the delivery address of the person or organization.

The valuep429 must be text.

Exactly one property with the name valuep435 must be present within the itemp427 that forms the valuep429 of a
labelp435 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

tel
Gives the telephone number of the person or organization.

The valuep429 must be either text that can be interpreted as a telephone number as defined in the CCITT
specifications E.163 and X.121, or an itemp427 with zero or more typep436 properties and exactly one valuep436

property. [E163]p739 [X121]p743

If no typep436 properties are present within an itemp427 that forms the valuep429 of a telp435 property of an
itemp427 with the type http://microformats.org/profile/hcardp432, or if the valuep429 of such a telp435

property is text, then the telephone type stringp440 voice is implied.

435

Any number of properties with the name telp435 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

type (inside telp435)
Gives the type of telephone number.

The valuep429 must be text that, when compared in a case-sensitivep35 manner, is equal to one of the telephone
type stringsp440.

Within each itemp427 with the type http://microformats.org/profile/hcardp432, there must be no more than
one telp435 property itemp427 with a typep436 property whose value is prefp440.

Any number of properties with the name typep436 may be present within the itemp427 that forms the valuep429 of a
telp435 property of an itemp427 with the type http://microformats.org/profile/hcardp432, but within each
such telp435 property itemp427 there must only be one typep436 property per distinct value.

value (inside telp435)
Gives the actual telephone number of the person or organization.

The valuep429 must be text that can be interpreted as a telephone number as defined in the CCITT specifications
E.163 and X.121. [E163]p739 [X121]p743

Exactly one property with the name valuep436 must be present within the itemp427 that forms the valuep429 of a
telp435 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

email
Gives the e-mail address of the person or organization.

The valuep429 must be either text or an itemp427 with zero or more typep436 properties and exactly one valuep436

property.

If no typep436 properties are present within an itemp427 that forms the valuep429 of an emailp436 property of an
itemp427 with the type http://microformats.org/profile/hcardp432, or if the valuep429 of such an emailp436

property is text, then the e-mail type stringp440 internet is implied.

Any number of properties with the name emailp436 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

type (inside emailp436)
Gives the type of e-mail address.

The valuep429 must be text that, when compared in a case-sensitivep35 manner, is equal to one of the e-mail type
stringsp440.

Within each itemp427 with the type http://microformats.org/profile/hcardp432, there must be no more than
one emailp436 property itemp427 with a typep436 property whose value is prefp441.

Any number of properties with the name typep436 may be present within the itemp427 that forms the valuep429 of
an emailp436 property of an itemp427 with the type http://microformats.org/profile/hcardp432, but within
each such emailp436 property itemp427 there must only be one typep436 property per distinct value.

value (inside emailp436)
Gives the actual e-mail address of the person or organization.

The valuep429 must be text.

Exactly one property with the name valuep436 must be present within the itemp427 that forms the valuep429 of an
emailp436 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

mailer
Gives the name of the e-mail software used by the person or organization.

The valuep429 must be text.

Any number of properties with the name mailerp436 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

436

tz
Gives the time zone of the person or organization.

The valuep429 must be text and must match the following syntax:

1. Either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. A valid non-negative integerp37 that is exactly two digits long and that represents a number in the
range 00..23.

3. A U+003A COLON character (:).

4. A valid non-negative integerp37 that is exactly two digits long and that represents a number in the
range 00..59.

Any number of properties with the name tzp437 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

geo
Gives the geographical position of the person or organization.

The valuep429 must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. One or more digits in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more digits in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

4. A U+003B SEMICOLON character (;).

5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

6. One or more digits in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

7. Optionally*, a U+002E FULL STOP character (.) followed by one or more digits in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

The optional components marked with an asterisk (*) should be included, and should have six digits each.

Note: The value specifies latitude and longitude, in that order (i.e., "LAT LON" ordering), in
decimal degrees. The longitude represents the location east and west of the prime meridian
as a positive or negative real number, respectively. The latitude represents the location
north and south of the equator as a positive or negative real number, respectively.

Any number of properties with the name geop437 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

title
Gives the job title, functional position or function of the person or organization.

The valuep429 must be text.

Any number of properties with the name titlep437 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

role
Gives the role, occupation, or business category of the person or organization.

The valuep429 must be text.

Any number of properties with the name rolep437 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

logo
Gives the logo of the person or organization.

The valuep429 must be an absolute URLp55.

437

Any number of properties with the name logop437 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

agent
Gives the contact information of another person who will act on behalf of the person or organization.

The valuep429 must be either an itemp427 with the type http://microformats.org/profile/hcardp432, or an
absolute URLp55, or text.

Any number of properties with the name agentp438 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

org
Gives the name and units of the organization.

The valuep429 must be either text or an itemp427 with one organization-namep438 property and zero or more
organization-unit properties.

Any number of properties with the name orgp438 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

organization-name (inside orgp438)
Gives the name of the organization.

The valuep429 must be text.

Exactly one property with the name organization-namep438 must be present within the itemp427 that forms the
valuep429 of an orgp438 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

organization-unit (inside orgp438)
Gives the name of the organization unit.

The valuep429 must be text.

Any number of properties with the name organization-unitp438 may be present within the itemp427 that forms
the valuep429 of the orgp438 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

categories
Gives the name of a category or tag that the person or organization could be classified as.

The valuep429 must be text.

Any number of properties with the name categoriesp438 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

note
Gives supplemental information or a comment about the person or organization.

The valuep429 must be text.

Any number of properties with the name notep438 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

rev
Gives the revision date and time of the contact information.

The valuep429 must be text that is a valid global date and time stringp47.

Note: The value distinguishes the current revision of the information for other renditions of
the information.

Any number of properties with the name revp438 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

sort-string
Gives the string to be used for sorting the person or organization.

The valuep429 must be text.

438

Any number of properties with the name sort-stringp438 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

sound
Gives a sound file relating to the person or organization.

The valuep429 must be an absolute URLp55.

Any number of properties with the name soundp439 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

url
Gives a URLp54 relating to the person or organization.

The valuep429 must be an absolute URLp55.

Any number of properties with the name urlp439 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

class
Gives the access classification of the information regarding the person or organization.

The valuep429 must be text with one of the following values:

• public
• private
• confidential

⚠Warning! This is merely advisory and cannot be considered a confidentiality measure.

Any number of properties with the name classp439 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

impp
Gives a URLp54 for instant messaging and presence protocol communications with the person or organization.

The valuep429 must be either an absolute URLp55 or an itemp427 with zero or more typep439 properties and exactly
one valuep439 property.

If no typep439 properties are present within an itemp427 that forms the valuep429 of an imppp439 property of an
itemp427 with the type http://microformats.org/profile/hcardp432, or if the valuep429 of such an imppp439

property is an absolute URLp55, then no IMPP type stringsp441 are implied.

Any number of properties with the name imppp439 may be present within each itemp427 with the type
http://microformats.org/profile/hcardp432.

type (inside imppp439)
Gives the intended use of the IMPP URLp54.

The valuep429 must be text that, when compared in a case-sensitivep35 manner, is equal to one of the IMPP type
stringsp441.

Within each itemp427 with the type http://microformats.org/profile/hcardp432, there must be no more than
one imppp439 property itemp427 with a typep439 property whose value is prefp441.

Any number of properties with the name typep439 may be present within the itemp427 that forms the valuep429 of
an imppp439 property of an itemp427 with the type http://microformats.org/profile/hcardp432, but within each
such imppp439 property itemp427 there must only be one typep439 property per distinct value.

value (inside imppp439)
Gives the actual URLp54 for instant messaging and presence protocol communications with the person or
organization.

The valuep429 must be an absolute URLp55.

Exactly one property with the name valuep439 must be present within the itemp427 that forms the valuep429 of an
imppp439 property of an itemp427 with the type http://microformats.org/profile/hcardp432.

The address type strings are:

439

dom
Indicates a domestic delivery address.

intl
Indicates an international delivery address.

postal
Indicates a postal delivery address.

parcel
Indicates a parcel delivery address.

home
Indicates a residential delivery address.

work
Indicates a delivery address for a place of work.

pref
Indicates the preferred delivery address when multiple addresses are specified.

The telephone type strings are:

home
Indicates a residential number.

msg
Indicates a telephone number with voice messaging support.

work
Indicates a telephone number for a place of work.

voice
Indicates a voice telephone number.

fax
Indicates a facsimile telephone number.

cell
Indicates a cellular telephone number.

video
Indicates a video conferencing telephone number.

pager
Indicates a paging device telephone number.

bbs
Indicates a bulletin board system telephone number.

modem
Indicates a MODEM-connected telephone number.

car
Indicates a car-phone telephone number.

isdn
Indicates an ISDN service telephone number.

pcs
Indicates a personal communication services telephone number.

pref
Indicates the preferred telephone number when multiple telephone numbers are specified.

The e-mail type strings are:

440

internet
Indicates an Internet e-mail address.

x400
Indicates a X.400 addressing type.

pref
Indicates the preferred e-mail address when multiple e-mail addresses are specified.

The IMPP type strings are:

personal
business

Indicates the type of communication for which this IMPP URLp54 is appropriate.

home
work
mobile

Indicates the location of a device associated with this IMPP URLp54.

pref
Indicates the preferred address when multiple IMPP URLp54s are specified.

5.4.1.1 Conversion to vCard

Given a list of nodes nodes in a Documentp33, a user agent must run the following algorithm to extract any vCard
data represented by those nodes (only the first vCard is returned):

1. If none of the nodes in nodes are itemsp427 with the item typep427 http://microformats.org/profile/
hcardp432, then there is no vCard. Abort the algorithm, returning nothing.

2. Let node be the first node in nodes that is an itemp427 with the item typep427 http://microformats.org/
profile/hcardp432.

3. Let output be an empty string.

4. Add a vCard linep443 with the type "BEGIN" and the value "VCARD" to output.

5. Add a vCard linep443 with the type "PROFILE" and the value "VCARD" to output.

6. Add a vCard linep443 with the type "VERSION" and the value "3.0" to output.

7. Add a vCard linep443 with the type "SOURCE" and the result of escaping the vCard text stringp444 that is the
document's current addressp75 as the value to output.

8. If the title elementp80 is not null, add a vCard linep443 with the type "NAME" and with the result of escaping
the vCard text stringp444 obtained from the textContentp33 of the title elementp80 as the value to output.

9. If node has a global identifierp427, add a vCard linep443 with the type "UID" and with the result of escaping the
vCard text stringp444 of that global identifierp427 as the value to output.

10. For each element element that is a property of the itemp429 node: for each name name in element's property
namesp428, run the following substeps:

1. Let parameters be an empty set of name-value pairs.

2. Run the appropriate set of substeps from the following list. The steps will set a variable value,
which is used in the next step.

If the property's valuep429 is an itemp427 subitem and name is np433

1. Let value be the empty string.

2. Append to value the result of collecting the first vCard subpropertyp444 named
family-namep433 in subitem.

3. Append a U+003B SEMICOLON character (;) to value.

441

4. Append to value the result of collecting the first vCard subpropertyp444 named
given-namep433 in subitem.

5. Append a U+003B SEMICOLON character (;) to value.

6. Append to value the result of collecting the first vCard subpropertyp444 named
additional-namep433 in subitem.

7. Append a U+003B SEMICOLON character (;) to value.

8. Append to value the result of collecting the first vCard subpropertyp444 named
honorific-prefixp433 in subitem.

9. Append a U+003B SEMICOLON character (;) to value.

10. Append to value the result of collecting the first vCard subpropertyp444 named
honorific-suffixp433 in subitem.

If the property's valuep429 is an itemp427 subitem and name is adrp434

1. Let value be the empty string.

2. Append to value the result of collecting vCard subpropertiesp444 named post-
office-boxp434 in subitem.

3. Append a U+003B SEMICOLON character (;) to value.

4. Append to value the result of collecting vCard subpropertiesp444 named extended-
addressp434 in subitem.

5. Append a U+003B SEMICOLON character (;) to value.

6. Append to value the result of collecting vCard subpropertiesp444 named street-
addressp434 in subitem.

7. Append a U+003B SEMICOLON character (;) to value.

8. Append to value the result of collecting the first vCard subpropertyp444 named
localityp434 in subitem.

9. Append a U+003B SEMICOLON character (;) to value.

10. Append to value the result of collecting the first vCard subpropertyp444 named
regionp435 in subitem.

11. Append a U+003B SEMICOLON character (;) to value.

12. Append to value the result of collecting the first vCard subpropertyp444 named
postal-codep435 in subitem.

13. Append a U+003B SEMICOLON character (;) to value.

14. Append to value the result of collecting the first vCard subpropertyp444 named
country-namep435 in subitem.

15. If there is a property named typep434 in subitem, and the first such property has a
valuep429 that is not an itemp427 and whose value consists only of alphanumeric
ASCII charactersp36, then add a parameter named "TYPE" whose value is the
valuep429 of that property to parameters.

If the property's valuep429 is an itemp427 subitem and name is orgp438

1. Let value be the empty string.

2. Append to value the result of collecting the first vCard subpropertyp444 named
organization-namep438 in subitem.

3. For each property named organization-unitp438 in subitem, run the following
steps:

1. If the valuep429 of the property is an itemp427, then skip this property.

442

2. Append a U+003B SEMICOLON character (;) to value.

3. Append the result of escaping the vCard text stringp444 given by the
valuep429 of the property to value.

If the property's valuep429 is an itemp427 subitem with the item typep427

http://microformats.org/profile/hcardp432 and name is agentp438

1. Let value be the result of escaping the vCard text stringp444 obtained from
extracting a vCardp441 from the element that represents subitem.

2. Add a parameter named "VALUE" whose value is "VCARD" to parameters.

If the property's valuep429 is an itemp427 and name is none of the above

1. Let value be the result of collecting the first vCard subpropertyp444 named value in
subitem.

2. If there is a property named type in subitem, and the first such property has a
valuep429 that is not an itemp427 and whose value consists only of alphanumeric
ASCII charactersp36, then add a parameter named "TYPE" whose value is the
valuep429 of that property to parameters.

Otherwise (the property's valuep429 is not an itemp427)

1. Let value be the property's valuep429.

2. If element is one of the URL property elementsp429, add a parameter with the name
"VALUE" and the value "URI" to parameters.

3. Otherwise, if element is a timep178 element and the value is a valid date stringp44,
add a parameter with the name "VALUE" and the value "DATE" to parameters.

4. Otherwise, if element is a timep178 element and the value is a valid global date and
time stringp47, add a parameter with the name "VALUE" and the value "DATE-TIME"
to parameters.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C
REVERSE SOLIDUS character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE
SOLIDUS character (\).

7. Unless name is geop437, prefix every U+003B SEMICOLON character (;) in value with
a U+005C REVERSE SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair
(CRLF) in value with a U+005C REVERSE SOLIDUS character (\) followed by a
U+006E LATIN SMALL LETTER N character (n).

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED
(LF) character in value with a U+005C REVERSE SOLIDUS character (\) followed by
a U+006E LATIN SMALL LETTER N character (n).

3. Add a vCard linep443 with the type name, the parameters parameters, and the value value to
output.

11. Add a vCard linep443 with the type "END" and the value "VCARD" to output.

When the above algorithm says that the user agent is to add a vCard line consisting of a type type, optionally some
parameters, and a value value to a string output, it must run the following steps:

1. Let line be an empty string.

2. Append type, converted to ASCII uppercasep36, to line.

3. If there are any parameters, then for each parameter, in the order that they were added, run these substeps:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the parameter's name to line.

443

3. Append a U+003D EQUALS SIGN character (=) to line.

4. Append the parameter's value to line.

4. Append a U+003A COLON character (:) to line.

5. Append value to line.

6. Let maximum length be 75.

7. If and while line is longer than maximum length Unicode code points long, run the following substeps:

1. Append the first maximum length Unicode code points of line to output.

2. Remove the first maximum length Unicode code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

8. Append (what remains of) line to output.

9. Append a U+000D CARRIAGE RETURN character (CR) to output.

10. Append a U+000A LINE FEED character (LF) to output.

When the steps above require the user agent to obtain the result of collecting vCard subproperties named
subname in subitem, the user agent must run the following steps:

1. Let value be the empty string.

2. For each property named subname in the item subitem, run the following substeps:

1. If the valuep429 of the property is itself an itemp427, then skip this property.

2. If this is not the first property named subname in subitem (ignoring any that were skipped by the
previous step), then append a U+002C COMMA character (,) to value.

3. Append the result of escaping the vCard text stringp444 given by the valuep429 of the property to
value.

3. Return value.

When the steps above require the user agent to obtain the result of collecting the first vCard subproperty named
subname in subitem, the user agent must run the following steps:

1. If there are no properties named subname in subitem, then abort these substeps, returning the empty string.

2. If the valuep429 of the first property named subname in subitem is an itemp427, then abort these substeps,
returning the empty string.

3. Return the result of escaping the vCard text stringp444 given by the valuep429 of the first property named
subname in subitem.

When the above algorithms say the user agent is to escape the vCard text string value, the user agent must use
the following steps:

1. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE SOLIDUS
character (\).

2. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

3. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE SOLIDUS character (\).

4. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a U+005C
REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

5. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in value with
a U+005C REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

444

6. Return the mutated value.

Note: This algorithm can generate invalid vCard output, if the input does not conform to the rules
described for the http://microformats.org/profile/hcardp432 item typep427 and defined property
namesp428.

5.4.1.2 Examples

This section is non-normative.

Here is a long example vCard for a fictional character called "Jack Bauer":

<section id="jack" itemscope itemtype="http://microformats.org/profile/hcard">
<h1 itemprop="fn">Jack Bauer</h1>
<div itemprop="n">
<meta itemprop="given-name" content="Jack">
<meta itemprop="family-name" content="Bauer">

</div>

<p itemprop="org" itemscope>
Counter-Terrorist Unit
(Los Angeles Division)

</p>
<p>

10201 W. Pico Blvd.

Los Angeles,
CA
90064

United States

34.052339;-118.410623

</p>
<h2>Assorted Contact Methods</h2>

<li itemprop="tel" itemscope>
+1 (310) 597 3781 work
<meta itemprop="type" content="pref">

I'm on

Wikipedia
so you can leave a message on my user talk page.
Jack Bauer Facts
<li itemprop="email">j.bauer@la.ctu.gov.invalid
<li itemprop="tel" itemscope>
+1 (310) 555 3781
<meta itemprop="type" content="cell">mobile phone

<p itemprop="note">If I'm out in the field, you may be better off contacting Chloe O'Brian
if it's about work, or ask Tony Almeida
if you're interested in the CTU five-a-side football team we're trying to get going.</p>
<ins datetime="2008-07-20T21:00:00+01:00">

<meta itemprop="type" content="date-time">
<meta itemprop="value" content="2008-07-20T21:00:00+01:00">

<p itemprop="tel" itemscope>Update!
My new home phone number is
01632 960 123.</p>

445

</ins>
</section>

The odd line wrapping is needed because newlines are meaningful in microdata: newlines would be preserved in
a conversion to, for example, the vCard format.

This example shows a site's contact details (using the addressp151 element) containing an address with two
street components:

<address itemscope itemtype="http://microformats.org/profile/hcard">
<strong itemprop="fn">Alfred
Person

1600 Amphitheatre Parkway

Building 43, Second Floor

Mountain View,
CA 94043

</address>

The vCard vocabulary can be used to just mark up people's names:

<span itemscope itemtype="http://microformats.org/profile/hcard"
><span itemprop="given-name"
>George Washington

This creates a single item with a two name-value pairs, one with the name "fn" and the value "George
Washington", and the other with the name "n" and a second item as its value, the second item having the two
name-value pairs "given-name" and "family-name" with the values "George" and "Washington" respectively.
This is defined to map to the following vCard:

BEGIN:VCARD
PROFILE:VCARD
VERSION:3.0
SOURCE:document's address
FN:George Washington
N:Washington;George;;;
END:VCARD

An item with the item typep427 http://microformats.org/profile/hcalendar#vevent represents an event.

This vocabulary supports global identifiers for itemsp427.

The following are the type's defined property namesp428. They are based on the vocabulary defined in the iCalendar
specification, where more information on how to interpret the values can be found. [RFC2445]p741

Note: Only the parts of the iCalendar vocabulary relating to events are used here; this vocabulary
cannot express a complete iCalendar instance.

attach
Gives the address of an associated document for the event.

The valuep429 must be an absolute URLp55.

Any number of properties with the name attachp446 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

categories
Gives the name of a category or tag that the event could be classified as.

The valuep429 must be text.

Any number of properties with the name categoriesp446 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

5.4.2 vEvent

446

class
Gives the access classification of the information regarding the event.

The valuep429 must be text with one of the following values:

• public
• private
• confidential

⚠Warning! This is merely advisory and cannot be considered a confidentiality measure.

A single property with the name classp447 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

comment
Gives a comment regarding the event.

The valuep429 must be text.

Any number of properties with the name commentp447 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

description
Gives a detailed description of the event.

The valuep429 must be text.

A single property with the name descriptionp447 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

geo
Gives the geographical position of the event.

The valuep429 must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

2. One or more digits in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more digits in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

4. A U+003B SEMICOLON character (;).

5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS character (-).

6. One or more digits in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

7. Optionally*, a U+002E FULL STOP character (.) followed by one or more digits in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

The optional components marked with an asterisk (*) should be included, and should have six digits each.

Note: The value specifies latitude and longitude, in that order (i.e., "LAT LON" ordering), in
decimal degrees. The longitude represents the location east and west of the prime meridian
as a positive or negative real number, respectively. The latitude represents the location
north and south of the equator as a positive or negative real number, respectively.

A single property with the name geop447 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

location
Gives the location of the event.

The valuep429 must be text.

A single property with the name locationp447 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

447

resources
Gives a resource that will be needed for the event.

The valuep429 must be text.

Any number of properties with the name resourcesp448 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

status
Gives the confirmation status of the event.

The valuep429 must be text with one of the following values:

• tentative
• confirmed
• cancelled

A single property with the name statusp448 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

summary
Gives a short summary of the event.

The valuep429 must be text.

User agents should replace U+000A LINE FEED (LF) characters in the valuep429 by U+0020 SPACE characters
when using the value.

A single property with the name summaryp448 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

dtend
Gives the date and time by which the event ends.

If the property with the name dtendp448 is present within an itemp427 with the type http://microformats.org/
profile/hcalendar#veventp446 that has a property with the name dtstartp448 whose value is a valid date
stringp44, then the valuep429 of the property with the name dtendp448 must be text that is a valid date stringp44

also. Otherwise, the valuep429 of the property must be text that is a valid global date and time stringp47.

In either case, the valuep429 be later in time than the value of the dtstart property of the same itemp427.

Note: The time given by the dtendp448 property is not inclusive. For day-long events,
therefore, the dtendp448 property's valuep429 will be the day after the end of the event.

A single property with the name dtendp448 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446, so long as that http://microformats.org/
profile/hcalendar#veventp446 does not have a property with the name durationp448.

dtstart
Gives the date and time at which the event starts.

The valuep429 must be text that is either a valid date stringp44 or a valid global date and time stringp47.

Exactly one property with the name dtstartp448 must be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

duration
Gives the date and time at which the event starts.

The valuep429 must be text that is a valid vevent duration stringp450.

The duration represented is the sum of all the durations represented by integers in the value.

A single property with the name durationp448 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446, so long as that http://microformats.org/
profile/hcalendar#veventp446 does not have a property with the name dtendp448.

448

transp
Gives whether the event is to be considered as consuming time on a calendar, for the purpose of free-busy time
searches.

The valuep429 must be text with one of the following values:

• opaque
• transparent

A single property with the name transpp449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

contact
Gives the contact information for the event.

The valuep429 must be text.

Any number of properties with the name contactp449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

url
Gives a URLp54 for the event.

The valuep429 must be an absolute URLp55.

A single property with the name urlp449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

exdate
Gives a date and time at which the event does not occur despite the recurrence rules.

The valuep429 must be text that is either a valid date stringp44 or a valid global date and time stringp47.

Any number of properties with the name exdatep449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

exrule
Gives a rule for finding dates and times at which the event does not occur despite the recurrence rules.

The valuep429 must be text that matches the RECUR value type defined in the iCalendar specification.
[RFC2445]p741

Any number of properties with the name exrulep449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

rdate
Gives a date and time at which the event recurs.

The valuep429 must be text that is one of the following:

• A valid date stringp44.

• A valid global date and time stringp47.

• A valid global date and time stringp47 followed by a U+002F SOLIDUS character (/) followed by a
second valid global date and time stringp47 representing a later time.

• A valid global date and time stringp47 followed by a U+002F SOLIDUS character (/) followed by a valid
vevent duration stringp450.

Any number of properties with the name rdatep449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

rrule
Gives a rule for finding dates and times at which the event occurs.

The valuep429 must be text that matches the RECUR value type defined in the iCalendar specification.
[RFC2445]p741

449

Any number of properties with the name rrulep449 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

created
Gives the date and time at which the event information was first created in a calendaring system.

The valuep429 must be text that is a valid global date and time stringp47.

A single property with the name createdp450 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

last-modified
Gives the date and time at which the event information was last modified in a calendaring system.

The valuep429 must be text that is a valid global date and time stringp47.

A single property with the name last-modifiedp450 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

sequence
Gives a revision number for the event information.

The valuep429 must be text that is a valid non-negative integerp37.

A single property with the name sequencep450 may be present within each itemp427 with the type
http://microformats.org/profile/hcalendar#veventp446.

A string is a valid vevent duration string if it matches the following pattern:

1. A U+0050 LATIN CAPITAL LETTER P character (P).

2. One of the following:
• A valid non-negative integerp37 followed by a U+0057 LATIN CAPITAL LETTER W character (W). The

integer represents a duration of that number of weeks.
• At least one, and possible both in this order, of the following:

1. A valid non-negative integerp37 followed by a U+0044 LATIN CAPITAL LETTER D character
(D). The integer represents a duration of that number of days.

2. A U+0054 LATIN CAPITAL LETTER T character (T) followed by any one of the following, or
the first and second of the following in that order, or the second and third of the
following in that order, or all three of the following in this order:

1. A valid non-negative integerp37 followed by a U+0048 LATIN CAPITAL LETTER H
character (H). The integer represents a duration of that number of hours.

2. A valid non-negative integerp37 followed by a U+004D LATIN CAPITAL LETTER M
character (M). The integer represents a duration of that number of minutes.

3. A valid non-negative integerp37 followed by a U+0053 LATIN CAPITAL LETTER S
character (S). The integer represents a duration of that number of seconds.

5.4.2.1 Conversion to iCalendar

Given a list of nodes nodes in a Documentp33, a user agent must run the following algorithm to extract any vEvent
data represented by those nodes:

1. If none of the nodes in nodes are itemsp427 with the type http://microformats.org/profile/
hcalendar#veventp446, then there is no vEvent data. Abort the algorithm, returning nothing.

2. Let output be an empty string.

3. Add an iCalendar linep451 with the type "BEGIN" and the value "VCALENDAR" to output.

4. Add an iCalendar linep451 with the type "PRODID" and the value equal to a user-agent-specific string
representing the user agent to output.

5. Add an iCalendar linep451 with the type "VERSION" and the value "2.0" to output.

6. For each node node in nodes that is an itemp427 with the type http://microformats.org/profile/
hcalendar#veventp446, run the following steps:

1. Add an iCalendar linep451 with the type "BEGIN" and the value "VEVENT" to output.

450

2. Add an iCalendar linep451 with the type "DTSTAMP" and a value consisting of an iCalendar DATE-
TIME string representing the current date and time, with the annotation "VALUE=DATE-TIME", to
output. [RFC2445]p741

3. If the itemp427 has a global identifierp427, add an iCalendar linep451 with the type "UID" and that
global identifierp427 as the value to output.

4. For each element element that is a property of the itemp429 node: for each name name in
element's property namesp428, run the appropriate set of substeps from the following list:

If the property's valuep429 is an itemp427

Skip the property.

If element is a timep178 element
Let value be the result of stripping all U+002D HYPHEN-MINUS (-) and U+003A COLON (:)
characters from the property's valuep429.

If the property's valuep429 is a valid date stringp44 then add an iCalendar linep451 with the type
name and the value value to output, with the annotation "VALUE=DATE".

Otherwise, if the property's valuep429 is a valid global date and time stringp47 then add an
iCalendar linep451 with the type name and the value value to output, with the annotation
"VALUE=DATE-TIME".

Otherwise skip the property.

Otherwise
Add an iCalendar linep451 with the type name and the property's valuep429 to output.

5. Add an iCalendar linep451 with the type "END" and the value "VEVENT" to output.

7. Add an iCalendar linep451 with the type "END" and the value "VCALENDAR" to output.

When the above algorithm says that the user agent is to add an iCalendar line consisting of a type type, a value
value, and optionally an annotation, to a string output, it must run the following steps:

1. Let line be an empty string.

2. Append type, converted to ASCII uppercasep36, to line.

3. If there is an annotation:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the annotation to line.

4. Append a U+003A COLON character (:) to line.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another U+005C REVERSE SOLIDUS
character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE SOLIDUS character (\).

7. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF) in value with a U+005C
REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE FEED (LF) character in value with
a U+005C REVERSE SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N character (n).

10. Append value to line.

11. Let maximum length be 75.

12. If and while line is longer than maximum length Unicode code points long, run the following substeps:

1. Append the first maximum length Unicode code points of line to output.

2. Remove the first maximum length Unicode code points from line.

451

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

13. Append (what remains of) line to output.

14. Append a U+000D CARRIAGE RETURN character (CR) to output.

15. Append a U+000A LINE FEED character (LF) to output.

Note: This algorithm can generate invalid iCalendar output, if the input does not conform to the
rules described for the http://microformats.org/profile/hcalendar#veventp446 item typep427 and
defined property namesp428.

5.4.2.2 Examples

This section is non-normative.

Here is an example of a page that uses the vEvent vocabulary to mark up an event:

<body itemscope itemtype="http://microformats.org/profile/hcalendar#vevent">
...
<h1 itemprop="summary">Bluesday Tuesday: Money Road</h1>
...
<time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th @ 7pm</time>
(until <time itemprop="dtend" datetime="2009-05-05T21:00:00Z">9pm</time>)
...
<a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"

rel="bookmark" itemprop="url">Link to this page
...
<p>Location: The RoadHouse</p>
...
<p><input type=button value="Add to Calendar"

onclick="location = getCalendar(this)"></p>
...
<meta itemprop="description" content="via livebrum.co.uk">

</body>

The "getCalendar()" method could look like this:

function getCalendar(node) {
// This function assumes the content is valid.
// It is not a compliant implementation of the algorithm for extracting vEvent data.
while (node && (!node.itemScope || !node.itemType == 'http://microformats.org/profile/

hcalendar#vevent'))
node = node.parentNode;

if (!node) {
alert('No event data found.');
return;

}
var stamp = new Date();
var stampString = '' + stamp.getUTCFullYear() + (stamp.getUTCMonth() + 1) +

stamp.getUTCDate() + 'T' +
stamp.getUTCHours() + stamp.getUTCMinutes() +

stamp.getUTCSeconds() + 'Z';
var calendar =

'BEGIN:VCALENDAR\r\nPRODID:HTML\r\nVERSION:2.0\r\nBEGIN:VEVENT\r\nDTSTAMP:' + stampString
+ '\r\n';

if (node.itemId)
calendar += 'UID:' + node.itemId + '\r\n';

for (var propIndex = 0; propIndex < node.properties.length; propIndex += 1) {
var prop = node.properties[propIndex];
var value = prop.itemValue;
var parameters = '';

452

if (prop.localName == 'time') {
value = value.replace(/[:-]/g, '');
if (value.match(/T/))

parameters = ';VALUE=DATE';
else

parameters = ';VALUE=DATE-TIME';
} else {

value = value.replace(/\\/g, '\\n');
value = value.replace(/;/g, '\\;');
value = value.replace(/,/g, '\\,');
value = value.replace(/\n/g, '\\n');

}
for (var nameIndex = 0; nameIndex < prop.itemProp.length; nameIndex += 1) {

var name = prop.itemProp[nameIndex];
if (!name.match(/:/) && !name.match(/\./))

calendar += name.toUpperCase() + parameters + ':' + value + '\r\n';
}

}
calendar += 'END:VEVENT\r\nEND:VCALENDAR\r\n';
return 'data:text/calendar;component=vevent,' + encodeURI(calendar);

}

The same page could offer some markup, such as the following, for copy-and-pasting into blogs:

<div itemscope itemtype="http://microformats.org/profile/hcalendar#vevent">
<p>I'm going to
<strong itemprop="summary">Bluesday Tuesday: Money Road,
<time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th at 7pm</time>
to <time itemprop="dtend" content="2009-05-05T21:00:00Z">9pm</time>,
at The RoadHouse!</p>
<p><a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"

itemprop="url">See this event on livebrum.co.uk.</p>
<meta itemprop="description" content="via livebrum.co.uk">

</div>

An item with the item typep427 http://n.whatwg.org/work represents a work (e.g. an article, an image, a video, a
song, etc). This type is primarily intended to allow authors to include licensing information for works.

The following are the type's defined property namesp428.

work
Identifies the work being described.

The valuep429 must be an absolute URLp55.

Exactly one property with the name workp453 must be present within each itemp427 with the type
http://n.whatwg.org/workp453.

title
Gives the name of the work.

A single property with the name titlep453 may be present within each itemp427 with the type
http://n.whatwg.org/workp453.

author
Gives the name or contact information of one of the authors or creators of the work.

The valuep429 must be either an itemp427 with the type http://microformats.org/profile/hcardp432, or text.

Any number of properties with the name authorp453 may be present within each itemp427 with the type
http://n.whatwg.org/workp453.

license
Identifies one of the licenses under which the work is available.

5.4.3 Licensing works

453

The valuep429 must be an absolute URLp55.

Any number of properties with the name licensep453 may be present within each itemp427 with the type
http://n.whatwg.org/workp453.

5.4.3.1 Conversion to RDF

For the purposes of RDF processors, the triples obtained from the following Turtle must be applied:

<http://www.w3.org/1999/xhtml/microdata#http%3A%2F%2Fn.whatwg.org%2Fwork%23%3Awork>
<http://www.w3.org/2002/07/owl#equivalentProperty>
<http://www.w3.org/2002/07/owl#sameAs> .

<http://www.w3.org/1999/xhtml/microdata#http%3A%2F%2Fn.whatwg.org%2Fwork%23%3Atitle>
<http://www.w3.org/2002/07/owl#equivalentProperty>
<http://purl.org/dc/terms/title> .

<http://www.w3.org/1999/xhtml/microdata#http%3A%2F%2Fn.whatwg.org%2Fwork%23%3Aauthor>
<http://www.w3.org/2002/07/owl#equivalentProperty>
<http://creativecommons.org/ns#attributionName> .

<http://www.w3.org/1999/xhtml/microdata#http%3A%2F%2Fn.whatwg.org%2Fwork%23%3Alicense>
<http://www.w3.org/2002/07/owl#equivalentProperty>
<http://www.w3.org/1999/xhtml/vocab#license> .

Note: The subjects of the statements above are the predicates that result from converting to
RDFp455 an HTML page containing microdata with an item whose typep427 is "http://n.whatwg.org/
workp453".

5.4.3.2 Examples

This section is non-normative.

This example shows an embedded image entitled My Pond, licensed under the Creative Commons Attribution-
Share Alike 3.0 United States License and the MIT license simultaneously.

<figure itemscope itemtype="http://n.whatwg.org/work">

<figcaption>
<p><cite itemprop="title">My Pond</cite></p>
<p><small>Licensed under the <a itemprop="license"
href="http://creativecommons.org/licenses/by-sa/3.0/us/">Creative
Commons Attribution-Share Alike 3.0 United States License
and the <a itemprop="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
license.</small>

</figcaption>
</figure>

5.5 Converting HTML to other formats

Given a list of nodes nodes in a Documentp33, a user agent must run the following algorithm to extract the microdata
from those nodes into a JSON form:

1. Let result be an empty object.

2. Let items be an empty array.

3. For each node in nodes, check if the element is a top-level microdata itemp430, and if it is then get the
objectp454 for that element and add it to items.

4. Add an entry to result called "items" whose value is the array items.

5. Return the result of serializing result to JSON.

When the user agent is to get the object for an item item, it must run the following substeps:

5.5.1 JSON

454

1. Let result be an empty object.

2. If the item has an item typep427, add an entry to result called "type" whose value is the item typep427 of item.

3. If the item has an global identifierp427, add an entry to result called "id" whose value is the global
identifierp427 of item.

4. Let properties be an empty object.

5. For each element element that has one or more property namesp428 and is one of the properties of the
itemp429 item, in the order those elements are given by the algorithm that returns the properties of an
itemp429, run the following substeps:

1. Let value be the property valuep429 of element.

2. If value is an itemp427, then get the objectp454 for value, and then replace value with the object
returned from those steps.

3. For each name name in element's property namesp428, run the following substeps:

1. If there is no entry named name in properties, then add an entry named name to
properties whose value is an empty array.

2. Append value to the entry named name in properties.

6. Add an entry to result called "properties" whose value is the object properties.

7. Return result.

To convert a Document to RDF, a user agent must run the following algorithm:

1. If the title elementp80 is not null, then generate the following triple:

subject : the document's current addressp75

predicate : http://purl.org/dc/terms/title
object : the concatenation of the data of all the child text nodesp29 of the title elementp80, in tree
orderp29, as a plain literal, with the language information set from the languagep90 of the title elementp80,
if it is not unknown.

2. For each ap169, areap280, and linkp115 element in the Documentp33, run these substeps:

1. If the element does not have a rel attribute, then skip this element.

2. If the element does not have an href attribute, then skip this element.

3. If resolvingp55 the element's href attribute relative to the element is not successful, then skip this
element.

4. Otherwise, split the value of the element's rel attribute on spacesp52, obtaining list of tokens.

5. Convert each token in list of tokens that does not contain a U+003A COLON characters (:) to ASCII
lowercasep36.

6. If list of tokens contains more than one instance of the token upp413, then remove all such tokens.

7. Coalesce duplicate tokens in list of tokens.

8. If list of tokens contains both the tokens alternatep407 and stylesheetp412, then remove them
both and replace them with the single (uppercase) token ALTERNATE-STYLESHEET.

9. For each token token in list of tokens that contains no U+003A COLON characters (:), generate the
following triple:

subject : the document's current addressp75

predicate : the concatenation of the string "http://www.w3.org/1999/xhtml/vocab#" and
token, with any characters in token that are not valid in the <ifragment> production of the IRI
syntax being %-escaped [RFC3987]p741

5.5.2 RDF

455

object : the absolute URLp55 that results from resolvingp55 the value of the element's href
attribute relative to the element

For each token token in list of tokens that is an absolute URLp55, generate the following triple:

subject : the document's current addressp75

predicate : token
object : the absolute URLp55 that results from resolvingp55 the value of the element's href
attribute relative to the element

3. For each metap119 element in the Documentp33 that has a namep120 attribute and a contentp120 attribute, if the
value of the namep120 attribute contains no U+003A COLON characters (:), generate the following triple:

subject : the document's current addressp75

predicate : the concatenation of the string "http://www.w3.org/1999/xhtml/vocab#" and the value of
the element's namep120 attribute, converted to ASCII lowercasep36, with any characters in the value that are
not valid in the <ifragment> production of the IRI syntax being %-escaped [RFC3987]p741

object : the value of the element's contentp120 attribute, as a plain literal, with the language information
set from the languagep90 of the element, if it is not unknown

For each metap119 element in the Documentp33 that has a namep120 attribute and a contentp120 attribute, if the
value of the namep120 attribute is an absolute URLp55, generate the following triple:

subject : the document's current addressp75

predicate : the value of the element's namep120 attribute
object : the value of the element's contentp120 attribute, as a plain literal, with the language information
set from the languagep90 of the element, if it is not unknown

4. For each blockquotep159 and qp175 element in the Documentp33 that has a cite attribute that resolvesp55

successfully relative to the element, generate the following triple:

subject : the document's current addressp75

predicate : http://purl.org/dc/terms/source
object : the absolute URLp55 that results from resolvingp55 the value of the element's cite attribute
relative to the element

5. Let memory be a mapping of items to subjects, initially empty.

6. For each element that is also a top-level microdata itemp430, run the following steps:

1. Generate the triples for the itemp456. Pass a reference to memory as the item/subject list. Let result
be the subject returned.

2. Generate the following triple:

subject : the document's current addressp75

predicate : http://www.w3.org/1999/xhtml/microdata#item
object : result

When the user agent is to generate the triples for an item item, given a reference to an item/subject list memory,
and optionally given a fallback type fallback type and property name fallback name, it must follow the following steps:

1. If there is an entry for item in memory, then let subject be the subject of that entry. Otherwise, if item has a
global identifierp427 and that global identifierp427 is an absolute URLp55, let subject be that global identifierp427.
Otherwise, let subject be a new blank node.

2. Add a mapping from item to subject in memory, if there isn't one already.

3. If item has an item typep427 and that item typep427 is an absolute URLp55, let type be that item typep427.
Otherwise, let type be the empty string.

4. If type is not the empty string, run the following steps:

1. Generate the following triple:

subject : subject
predicate : http://www.w3.org/1999/02/22-rdf-syntax-ns#type
object : type

456

2. If type does not contain a U+0023 NUMBER SIGN character (#), then append a U+0023 NUMBER
SIGN character (#) to type.

3. If type does not have a U+003A COLON character (:) after its U+0023 NUMBER SIGN character (#),
append a U+003A COLON character (:) to type.

5. If type is the empty string, but fallback type is not, run the following substeps:

1. Let type have the value of fallback type.

2. If type does not contain a U+0023 NUMBER SIGN character (#), then append a U+0023 NUMBER
SIGN character (#) to type.

3. If type does not have a U+003A COLON character (:) after its U+0023 NUMBER SIGN character (#),
append a U+003A COLON character (:) to type.

4. If the last character of type is not a U+003A COLON character (:), append a U+0025 PERCENT
SIGN character (%), a U+0032 DIGIT TWO character (2), and a U+0030 DIGIT ZERO character (0)
to type.

5. Append the value of fallback name to type, with any characters in fallback name that are not valid
in the <ifragment> production of the IRI syntax being %-escaped. [RFC3987]p741

6. For each element element that has one or more property namesp428 and is one of the properties of the
itemp429 item, in the order those elements are given by the algorithm that returns the properties of an
itemp429, run the following substep:

1. For each name name in element's property namesp428, run the following substeps:

1. If type is the empty string and name is not an absolute URLp55, then abort these
substeps.

2. Let value be the property valuep429 of element.

3. If value is an itemp427, then generate the triplesp456 for value. Pass a reference to
memory as the item/subject list, and pass type as the fallback type and name as the
fallback property name. Replace value by the subject returned from those steps.

4. Otherwise, if element is not one of the URL property elementsp429, let value be a plain
literal, with the language information set from the languagep90 of the element, if it is not
unknown.

5. If name is an absolute URLp55

Let predicate be name.

If name contains no U+003A COLON characters (:)

1. Let s be type.

2. If the last character of s is not a U+003A COLON character (:), append a
U+0025 PERCENT SIGN character (%), a U+0032 DIGIT TWO character
(2), and a U+0030 DIGIT ZERO character (0) to s.

3. Append the value of name to s, with any characters in name that are not
valid in the <ifragment> production of the IRI syntax being %-escaped.
[RFC3987]p741

4. Let predicate be the concatenation of the string "http://www.w3.org/
1999/xhtml/microdata#" and s, with any characters in s that are not
valid in the <ifragment> production of the IRI syntax being %-escaped,
but without double-escaping existing %-escapes. [RFC3987]p741

For example if the string s is "http://example.com/a#:q%20r",
the resulting predicate would be "http://www.w3.org/1999/
xhtml/microdata#http://example.com/a%23:q%20r".

6. Generate the following triple:

457

subject : subject
predicate : predicate
object : value

7. Return subject.

5.5.2.1 Examples

This section is non-normative.

Here is an example of some HTML using Microdata to express RDF statements:

<dl itemscope
itemtype="http://purl.org/vocab/frbr/core#Work"
itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N">

<dt>Title</dt>
<dd><cite itemprop="http://purl.org/dc/terms/title">Just a Geek</cite></dd>
<dt>By</dt>
<dd>Wil Wheaton</dd>
<dt>Format</dt>
<dd itemprop="http://purl.org/vocab/frbr/core#realization"

itemscope
itemtype="http://purl.org/vocab/frbr/core#Expression"
itemid="http://purl.oreilly.com/products/9780596007683.BOOK">

<link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/
product-types/BOOK">

Print
</dd>
<dd itemprop="http://purl.org/vocab/frbr/core#realization"

itemscope
itemtype="http://purl.org/vocab/frbr/core#Expression"
itemid="http://purl.oreilly.com/products/9780596802189.EBOOK">

<link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/
product-types/EBOOK">

Ebook
</dd>

</dl>

This is equivalent to the following Turtle:

@prefix dc: <http://purl.org/dc/terms/> .
@prefix frbr: <http://purl.org/vocab/frbr/core#> .

<http://purl.oreilly.com/works/45U8QJGZSQKDH8N> a frbr:Work ;
dc:creator "Wil Wheaton"@en ;
dc:title "Just a Geek"@en ;
frbr:realization <http://purl.oreilly.com/products/9780596007683.BOOK>,

<http://purl.oreilly.com/products/9780596802189.EBOOK> .

<http://purl.oreilly.com/products/9780596007683.BOOK> a frbr:Expression ;
dc:type <http://purl.oreilly.com/product-types/BOOK> .

<http://purl.oreilly.com/products/9780596802189.EBOOK> a frbr:Expression ;
dc:type <http://purl.oreilly.com/product-types/EBOOK> .

The following snippet of HTML has microdata for two people with the same address:

<p>
Both
<span

itemprop="fn"
><span

itemprop="given-name">Princeton
and
<span

itemprop="fn"
><span

458

itemprop="given-name">Trekkie
live at
Avenue

Q.
</p>

It generates these triples expressed in Turtle (including a triple that in this case is expressed twice, though that
is not meaningful in RDF):

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix hcard: <http://www.w3.org/1999/xhtml/microdata#http://microformats.org/profile/
hcard%23:> .

<> <http://www.w3.org/1999/xhtml/microdata#item> _:n0 ;
<http://www.w3.org/1999/xhtml/microdata#item> _:n1 .

_:n0 rdf:type <http://microformats.org/profile/hcard> ;
hcard:fn "Princeton" ;
hcard:n _:n0a
hcard:adr _:n2 .

_:n0a hcard:n%20given-name "Princeton" .
_:n1 rdf:type <http://microformats.org/profile/hcard> ;

hcard:fn "Trekkie" ;
hcard:n _:n1a
hcard:adr _:n2 .

_:n1a hcard:n%20given-name "Trekkie" .
_:n2 hcard:adr%20street-address "Avenue Q" ;

hcard:adr%20street-address "Avenue Q" .

Given a Documentp33 source, a user agent may run the following algorithm to extract an Atom feed. This is not the
only algorithm that can be used for this purpose; for instance, a user agent might instead use the hAtom algorithm.
[HATOM]p739

1. If the Documentp33 source does not contain any articlep144 elements, then return nothing and abort these
steps. This algorithm can only be used with documents that contain distinct articles.

2. Let R be an empty XMLp75 Documentp33 object whose addressp75 is user-agent defined.

3. Append a feed element in the Atom namespacep462 to R.

4. For each metap119 element with a namep120 attribute and a contentp120 attribute and whose namep120

attribute's value is authorp120, run the following substeps:

1. Append an author element in the Atom namespacep462 to the root element of R.

2. Append a name element in the Atom namespacep462 to the element created in the previous step.

3. Append a text node whose data is the value of the metap119 element's contentp120 attribute to the
element created in the previous step.

5. If there is a linkp115 element whose relp116 attribute's value includes the keyword iconp409, and that element
also has an hrefp116 attribute whose value successfully resolvesp55 relative to the linkp115 element, then
append an icon element in the Atom namespacep462 to the root element of R whose contents is a text node
with its data set to the absolute URLp55 resulting from resolvingp55 the value of the hrefp116 attribute.

6. Append an id element in the Atom namespacep462 to the root element of R whose contents is a text node
with its data set to the document's current addressp75.

7. Optionally: Let x be a link element in the Atom namespacep462. Add a rel attribute whose value is the
string "self" to x. Append a text node with its data set to the (user-agent-defined) addressp75 of R to x.
Append x to the root element of R.

5.5.3 Atom

459

Note: This step would be skipped when the document R has no convenient addressp75.
The presence of the rel="self" link is a "should"-level requirement in the Atom
specification.

8. Let x be a link element in the Atom namespacep462. Add a rel attribute whose value is the string
"alternate" to x. If the document being converted is an HTML documentp75, add a type attribute whose
value is the string "text/htmlp715" to x. Otherwise, the document being converted is an XML documentp75;
add a type attribute whose value is the string "application/xhtml+xmlp717" to x. Append a text node with
its data set to the document's current addressp75 to x. Append x to the root element of R.

9. Let subheading text be the empty string.

10. Let heading be the first element of heading contentp96 whose nearest ancestor of sectioning contentp96 is the
body elementp81, if any, or null if there is none.

11. Take the appropriate action from the following list, as determined by the type of the heading element:

If heading is null
Let heading text be the textContentp33 of the title elementp80, if there is one, or the empty string
otherwise.

If heading is a hgroupp148 element
If heading contains no child h1p147–h6p147 elements, let heading text be the empty string.

Otherwise, let headings list be a list of all the h1p147–h6p147 element children of heading, sorted first by
descending rankp147 and then in tree orderp29 (so h1p147s first, then h2p147s, etc, with each group in the
order they appear in the document). Then, let heading text be the textContentp33 of the first entry in
headings list, and if there are multiple entries, let subheading text be the textContentp33 of the
second entry in headings list.

If heading is an h1p147–h6p147 element
Let heading text be the textContentp33 of heading.

12. Append a title element in the Atom namespacep462 to the root element of R whose contents is a text node
with its data set to heading text.

13. If subheading text is not the empty string, append a subtitle element in the Atom namespacep462 to the
root element of R whose contents is a text node with its data set to subheading text.

14. Let global update date have no value.

15. For each articlep144 element article that does not have an ancestor articlep144 element, run the following
steps:

1. Let E be an entry element in the Atom namespacep462, and append E to the root element of R.

2. Let heading be the first element of heading contentp96 whose nearest ancestor of sectioning
contentp96 is article, if any, or null if there is none.

3. Take the appropriate action from the following list, as determined by the type of the heading
element:

If heading is null
Let heading text be the empty string.

If heading is a hgroupp148 element
If heading contains no child h1p147–h6p147 elements, let heading text be the empty string.

Otherwise, let headings list be a list of all the h1p147–h6p147 element children of heading,
sorted first by descending rankp147 and then in tree orderp29 (so h1p147s first, then h2p147s, etc,
with each group in the order they appear in the document). Then, let heading text be the
textContentp33 of the first entry in headings list.

If heading is an h1p147–h6p147 element
Let heading text be the textContentp33 of heading.

460

4. Append a title element in the Atom namespacep462 to E whose contents is a text node with its
data set to heading text.

5. Clone article and its descendants into an environment that has scripting disabledp514, has no
pluginsp29, and fails any attempt to fetchp58 any resources. Let cloned article be the resulting clone
articlep144 element.

6. Remove from the subtree rooted at cloned article any articlep144 elements other than the cloned
article itself, any headerp148, footerp150, or navp142 elements whose nearest ancestor of sectioning
contentp96 is the cloned article, and the first element of heading contentp96 whose nearest ancestor
of sectioning contentp96 is the cloned article, if any.

7. If cloned article contains any insp193 or delp194 elements with datetimep195 attributes whose values
parse as global date and time stringsp47 without errors, then let update date be the value of the
datetimep195 attribute that parses to the newest global date and timep46.

Otherwise, let update date have no value.

Note: This value is used below; it is calculated here because in certain cases the
next step mutates the cloned article.

8. If the document being converted is an HTML documentp75, then: Let x be a content element in the
Atom namespacep462. Add a type attribute whose value is the string "html" to x. Append a text
node with its data set to the result of running the HTML fragment serialization algorithmp659 on
cloned article to x. Append x to E.

Otherwise, the document being converted is an XML documentp75: Let x be a content element in
the Atom namespacep462. Add a type attribute whose value is the string "xml" to x. Append a
divp168 element to x. Move all the child nodes of the cloned article node to that divp168 element,
preserving their relative order. Append x to E.

9. Establish the value of id and has-alternate from the first of the following to apply:

If the article node has a descendant ap169 or areap280 element with an hrefp404 attribute
that successfully resolvesp55 relative to that descendant and a rel attribute whose
value includes the bookmarkp409 keyword

Let id be the absolute URLp55 resulting from resolvingp55 the value of the hrefp404 attribute of
the first such ap169 or areap280 element, relative to the element. Let has-alternate be true.

If the article node has an idp89 attribute
Let id be the document's current addressp75, with the fragment identifier (if any) removed,
and with a new fragment identifier specified, consisting of the value of the article element's
idp89 attribute. Let has-alternate be false.

Otherwise
Let id be a user-agent-defined undereferenceable yet globally unique validp54 absolute
URLp55. The same absolute URLp55 should be generated for each run of this algorithm when
given the same input. Let has-alternate be false.

10. Append an id element in the Atom namespacep462 to E whose contents is a text node with its data
set to id.

11. If has-alternate is true: Let x be a link element in the Atom namespacep462. Add a rel attribute
whose value is the string "alternate" to x. Append a text node with its data set to id to x. Append
x to E.

12. If article has a timep178 element descendant that has a pubdatep179 attribute and whose nearest
ancestor articlep144 element is article, and the first such element's datep180 is not unknown, then
run the following substeps, with e being the first such element:

1. Let datetime be a global date and timep46 whose date component is the datep180 of e.

2. If e's timep180 and time-zone offsetp180 are not unknown, then let datetime's time and
time-zone offset components be the timep180 and time-zone offsetp180 of e. Otherwise, let
them be midnight and no offset respectively ("00:00Z").

461

3. Let publication date be the best representation of the global date and time stringp47

datetime.

Otherwise, let publication date have no value.

13. If update date has no value but publication date does, then let update date have the value of
publication date.

Otherwise, if publication date has no value but update date does, then let publication date have
the value of update date.

14. If update date has a value, and global update date has no value or is less recent than update date,
then let global update date have the value of update date.

15. If publication date and update date both still have no value, then let them both value a value that
is a valid global date and time stringp47 representing the global date and timep46 of the moment
that this algorithm was invoked.

16. Append an published element in the Atom namespacep462 to E whose contents is a text node with
its data set to publication date.

17. Append an updated element in the Atom namespacep462 to E whose contents is a text node with its
data set to update date.

16. If global update date has no value, then let it have a value that is a valid global date and time stringp47

representing the global date and timep46 of the date and time of the Documentp33 's source file's last
modification, if it is known, or else of the moment that this algorithm was invoked.

17. Insert an updated element in the Atom namespacep462 into the root element of R before the first entry in the
Atom namespacep462 whose contents is a text node with its data set to global update date.

18. Return the Atom document R.

Note: The above algorithm does not guarantee that the output will be a conforming Atom feed. In
particular, if insufficient information is provided in the document (e.g. if the document does not
have any <meta name="author" content="..."> elements), then the output will not be conforming.

The Atom namespace is: http://www.w3.org/2005/Atom

462

6 Loading Web pages

This section describes features that apply most directly to Web browsers. Having said that, except where specified
otherwise, the requirements defined in this section do apply to all user agents, whether they are Web browsers or not.

6.1 Browsing contexts

A browsing context is an environment in which Documentp33 objects are presented to the user.

Note: A tab or window in a Web browser typically contains a browsing contextp463, as does an
iframep211 or framep705s in a framesetp704.

Each browsing contextp463 has a corresponding WindowProxyp473 object.

A browsing contextp463 has a session historyp478, which lists the Documentp33 objects that that browsing contextp463 has
presented, is presenting, or will present. At any time, one Documentp33 in each browsing contextp463 is designated the
active document.

Each Documentp33 is associated with a Windowp467 object. A browsing contextp463 's WindowProxyp473 object forwards
everything to the browsing contextp463 's active documentp463 's Windowp467 object.

Note: In general, there is a 1-to-1 mapping from the Windowp467 object to the Documentp33 object. In
one particular case, a Windowp467 can be reused for the presentation of a second Documentp33 in the
same browsing contextp463, such that the mapping is then 2-to-1. This occurs when a browsing
contextp463 is navigatedp484 from the initial about:blankp59 Documentp33 to another, with replacement
enabledp492.

Note: A Documentp33 does not necessarily have a browsing contextp463 associated with it. In
particular, data mining tools are likely to never instantiate browsing contexts.

A browsing contextp463 can have a creator browsing context, the browsing contextp463 that was responsible for its
creation. If a browsing contextp463 has a parent browsing contextp463, then that is its creator browsing contextp463.
Otherwise, if the browsing contextp463 has an opener browsing contextp465, then that is its creator browsing contextp463.
Otherwise, the browsing contextp463 has no creator browsing contextp463.

If a browsing contextp463 A has a creator browsing contextp463, then the Documentp33 that was the active documentp463

of that creator browsing contextp463 at the time A was created is the creator Document.

When a browsing contextp463 is first created, it must be created with a single Documentp33 in its session history, whose
addressp75 is about:blankp59, which is marked as being an HTML documentp75, and whose character encodingp79 is
UTF-8. The Documentp33 must have a single child htmlp112 node, which itself has a single child bodyp138 node.

Note: If the browsing contextp463 is created specifically to be immediately navigated, then that
initial navigation will have replacement enabledp492.

The originp474 of the about:blankp59 Documentp33 is set when the Documentp33 is created. If the new browsing
contextp463 has a creator browsing contextp463, then the originp474 of the about:blankp59 Documentp33 is the originp474 of
the creator Documentp463. Otherwise, the originp474 of the about:blankp59 Documentp33 is a globally unique identifier
assigned when the new browsing contextp463 is created.

Certain elements (for example, iframep211 elements) can instantiate further browsing contextsp463. These are called
nested browsing contexts. If a browsing context P has an element E in one of its Documentp33s D that nests another
browsing context C inside it, then P is said to be the parent browsing context of C, C is said to be a child browsing
context of P, C is said to be nested through D, and E is said to be the browsing context container of C.

A browsing context A is said to be an ancestor of a browsing context B if there exists a browsing context A' that is a
child browsing contextp463 of A and that is itself an ancestor of B, or if there is a browsing context P that is a child
browsing contextp463 of A and that is the parent browsing contextp463 of B.

6.1.1 Nested browsing contexts

463

The browsing context with no parent browsing contextp463 is the top-level browsing context of all the browsing
contexts nestedp463 within it (either directly or indirectly through other nested browsing contexts).

The transitive closure of parent browsing contextsp463 for a nested browsing contextp463 gives the list of ancestor
browsing contexts.

The list of the descendant browsing contexts of a Documentp33 d is the list returned by the following algorithm:

1. Let list be an empty list.

2. For each child browsing contextp463 of d that is nested throughp463 an element that is in the Documentp29 d, in
the tree orderp29 of the elements of the elements nesting those browsing contextsp463, append to the list list
the list of the descendant browsing contextsp464 of the active documentp463 of that child browsing
contextp463.

3. Return the constructed list.

A Documentp33 is said to be fully active when it is the active documentp463 of its browsing contextp463, and either its
browsing context is a top-level browsing contextp464, or the Documentp33 through whichp463 that browsing context is
nestedp463 is itself fully activep464.

Because they are nested through an element, child browsing contextsp463 are always tied to a specific Documentp33 in
their parent browsing contextp463. User agents must not allow the user to interact with child browsing contextsp463 of
elements that are in Documentp33s that are not themselves fully activep464.

A nested browsing contextp463 can have a seamless browsing context flagp216 set, if it is embedded through an
iframep211 element with a seamlessp216 attribute.

6.1.1.1 Navigating nested browsing contexts in the DOM

This box is non-normative. Implementation requirements are given below this box.

window . topp464

Returns the WindowProxyp473 for the top-level browsing contextp464.

window . parentp464

Returns the WindowProxyp473 for the parent browsing contextp463.

window . frameElementp464

Returns the Elementp33 for the browsing context containerp463.
Returns null if there isn't one.

Throws a SECURITY_ERRp74 exception in cross-origin situations.

The top IDL attribute on the Windowp467 object of a Documentp33 in a browsing contextp463 b must return the
WindowProxyp473 object of its top-level browsing contextp464 (which would be its own WindowProxyp473 object if it was a
top-level browsing contextp464 itself).

The parent IDL attribute on the Windowp467 object of a Documentp33 in a browsing contextp463 b must return the
WindowProxyp473 object of the parent browsing contextp463, if there is one (i.e. if b is a child browsing contextp463), or
the WindowProxyp473 object of the browsing contextp463 b itself, otherwise (i.e. if it is a top-level browsing contextp464).

The frameElement IDL attribute on the Windowp467 object of a Documentp33 d, on getting, must run the following
algorithm:

1. If d is not a Documentp33 in a child browsing contextp463, return null and abort these steps.

2. If the parent browsing contextp463 's active documentp463 does not have the samep476 effective script originp474

as the entry scriptp466, then throw a SECURITY_ERRp74 exception.

3. Otherwise, return the browsing context containerp463 for b.

464

It is possible to create new browsing contexts that are related to a top-level browsing contextp464 without being nested
through an element. Such browsing contexts are called auxiliary browsing contexts. Auxiliary browsing contexts
are always top-level browsing contextsp464.

An auxiliary browsing contextp465 has an opener browsing context, which is the browsing contextp463 from which the
auxiliary browsing contextp465 was created, and it has a furthest ancestor browsing context, which is the top-level
browsing contextp464 of the opener browsing contextp465 when the auxiliary browsing contextp465 was created.

6.1.2.1 Navigating auxiliary browsing contexts in the DOM

The opener IDL attribute on the Windowp467 object must return the WindowProxyp473 object of the browsing contextp463

from which the current browsing contextp463 was created (its opener browsing contextp465), if there is one and it is still
available.

User agents may support secondary browsing contexts, which are browsing contextsp463 that form part of the user
agent's interface, apart from the main content area.

A browsing contextp463 A is allowed to navigate a second browsing contextp463 B if one of the following conditions is
true:

• Either the originp474 of the active documentp463 of A is the samep476 as the originp474 of the active
documentp463 of B, or

• The browsing context A is a nested browsing contextp463 and its top-level browsing contextp464 is B, or

• The browsing context B is an auxiliary browsing contextp465 and A is allowed to navigatep465 B's opener
browsing contextp465, or

• The browsing context B is not a top-level browsing contextp464, but there exists an ancestor browsing
contextp464 of B whose active documentp463 has the samep476 originp474 as the active documentp463 of A
(possibly in fact being A itself).

An element has a browsing context scope origin if its Documentp33 's browsing contextp463 is a top-level browsing
contextp464 or if all of its Documentp33 's ancestor browsing contextsp464 all have active documentsp463 whose originp474

are the same originp476 as the element's Documentp33 's originp474. If an element has a browsing context scope originp465,
then its value is the originp474 of the element's Documentp33.

Each browsing contextp463 is defined as having a list of zero or more directly reachable browsing contexts. These
are:

• All the browsing contextp463 's child browsing contextsp463.

• The browsing contextp463 's parent browsing contextp463.

• All the browsing contextsp463 that have the browsing contextp463 as their opener browsing contextp465.

• The browsing contextp463 's opener browsing contextp465.

The transitive closure of all the browsing contextsp463 that are directly reachable browsing contextsp465 forms a unit of
related browsing contexts.

Each unit of related browsing contextsp465 is then further divided into the smallest number of groups such that every
member of each group has an effective script originp474 that, through appropriate manipulation of the
document.domainp477 attribute, could be made to be the same as other members of the group, but could not be made
the same as members of any other group. Each such group is a unit of related similar-origin browsing contexts.

6.1.2 Auxiliary browsing contexts

6.1.3 Secondary browsing contexts

6.1.4 Security

6.1.5 Groupings of browsing contexts

465

Each unit of related similar-origin browsing contextsp465 can have a entry script which is used to obtain, amongst
other things, the script's base URLp515 to resolvep55 relative URLsp54 used in scripts running in that unit of related
similar-origin browsing contextsp465. Initially, there is no entry scriptp466.

Note: There is at most one event loopp516 per unit of related similar-origin browsing contextsp465.

Browsing contexts can have a browsing context name. By default, a browsing context has no name (its name is not
set).

A valid browsing context name is any string with at least one character that does not start with a U+005F LOW
LINE character. (Names starting with an underscore are reserved for special keywords.)

A valid browsing context name or keyword is any string that is either a valid browsing context namep466 or that is
an ASCII case-insensitivep35 match for one of: _blank, _self, _parent, or _top.

The rules for choosing a browsing context given a browsing context name are as follows. The rules assume
that they are being applied in the context of a browsing contextp463.

1. If the given browsing context name is the empty string or _self, then the chosen browsing context must be
the current one.

2. If the given browsing context name is _parent, then the chosen browsing context must be the parent
browsing contextp463 of the current one, unless there isn't one, in which case the chosen browsing context
must be the current browsing context.

3. If the given browsing context name is _top, then the chosen browsing context must be the most top-level
browsing contextp464 of the current one.

4. If the given browsing context name is not _blank and there exists a browsing context whose namep466 is the
same as the given browsing context name, and the current browsing context is allowed to navigatep465 that
browsing context, and the user agent determines that the two browsing contexts are related enough that it
is ok if they reach each other, then that browsing context must be the chosen one. If there are multiple
matching browsing contexts, the user agent should select one in some arbitrary consistent manner, such as
the most recently opened, most recently focused, or more closely related.

5. Otherwise, a new browsing context is being requested, and what happens depends on the user agent's
configuration and/or abilities:

If the current browsing context had the sandboxed navigation browsing context flagp214 set
when its active documentp463 was created.

The user agent may offer to create a new top-level browsing contextp464 or reuse an existing top-level
browsing contextp464. If the user picks one of those options, then the designated browsing context must
be the chosen one (the browsing context's name isn't set to the given browsing context name).
Otherwise (if the user agent doesn't offer the option to the user, or if the user declines to allow a
browsing context to be used) there must not be a chosen browsing context.

If the user agent has been configured such that in this instance it will create a new browsing
context, and the browsing context is being requested as part of following a hyperlinkp405 whose
link typesp406 include the noreferrerp411 keyword

A new top-level browsing contextp464 must be created. If the given browsing context name is not
_blank, then the new top-level browsing context's name must be the given browsing context name
(otherwise, it has no name). The chosen browsing context must be this new browsing context.

Note: If it is immediately navigatedp484, then the navigation will be done with
replacement enabledp492.

If the user agent has been configured such that in this instance it will create a new browsing
context, and the noreferrerp411 keyword doesn't apply

A new auxiliary browsing contextp465 must be created, with the opener browsing contextp465 being the
current one. If the given browsing context name is not _blank, then the new auxiliary browsing
context's name must be the given browsing context name (otherwise, it has no name). The chosen
browsing context must be this new browsing context.

6.1.6 Browsing context names

466

If it is immediately navigatedp484, then the navigation will be done with replacement enabledp492.

If the user agent has been configured such that in this instance it will reuse the current
browsing context

The chosen browsing context is the current browsing context.

If the user agent has been configured such that in this instance it will not find a browsing
context

There must not be a chosen browsing context.

User agent implementors are encouraged to provide a way for users to configure the user agent to always
reuse the current browsing context.

6.2 The Windowp467 object

[OverrideBuiltins, ReplaceableNamedProperties]
interface Window {

// the current browsing context
readonly attribute WindowProxy window;
readonly attribute WindowProxy self;
readonly attribute Document document;

attribute DOMString name;
[PutForwards=href] readonly attribute Location location;
readonly attribute History history;
readonly attribute UndoManager undoManager;
Selection getSelection();
[Replaceable] readonly attribute BarProp locationbar;
[Replaceable] readonly attribute BarProp menubar;
[Replaceable] readonly attribute BarProp personalbar;
[Replaceable] readonly attribute BarProp scrollbars;
[Replaceable] readonly attribute BarProp statusbar;
[Replaceable] readonly attribute BarProp toolbar;
void close();
void focus();
void blur();

// other browsing contexts
[Replaceable] readonly attribute WindowProxy frames;
[Replaceable] readonly attribute unsigned long length;
readonly attribute WindowProxy top;
[Replaceable] readonly attribute WindowProxy opener;
readonly attribute WindowProxy parent;
readonly attribute Element frameElement;
WindowProxy open(in optional DOMString url, in optional DOMString target, in optional

DOMString features, in optional DOMString replace);
getter WindowProxy (in unsigned long index);
getter WindowProxy (in DOMString name);

// the user agent
readonly attribute Navigator navigator;
readonly attribute ApplicationCache applicationCache;

// user prompts
void alert(in DOMString message);
boolean confirm(in DOMString message);
DOMString prompt(in DOMString message, in optional DOMString default);
void print();
any showModalDialog(in DOMString url, in optional any argument);

// cross-document messaging
void postMessage(in any message, in DOMString targetOrigin);
void postMessage(in any message, in DOMString targetOrigin, in MessagePortArray ports);

467

// event handler IDL attributes
attribute Function onabort;
attribute Function onafterprint;
attribute Function onbeforeprint;
attribute Function onbeforeunload;
attribute Function onblur;
attribute Function oncanplay;
attribute Function oncanplaythrough;
attribute Function onchange;
attribute Function onclick;
attribute Function oncontextmenu;
attribute Function ondblclick;
attribute Function ondrag;
attribute Function ondragend;
attribute Function ondragenter;
attribute Function ondragleave;
attribute Function ondragover;
attribute Function ondragstart;
attribute Function ondrop;
attribute Function ondurationchange;
attribute Function onemptied;
attribute Function onended;
attribute Function onerror;
attribute Function onfocus;
attribute Function onformchange;
attribute Function onforminput;
attribute Function onhashchange;
attribute Function oninput;
attribute Function oninvalid;
attribute Function onkeydown;
attribute Function onkeypress;
attribute Function onkeyup;
attribute Function onload;
attribute Function onloadeddata;
attribute Function onloadedmetadata;
attribute Function onloadstart;
attribute Function onmessage;
attribute Function onmousedown;
attribute Function onmousemove;
attribute Function onmouseout;
attribute Function onmouseover;
attribute Function onmouseup;
attribute Function onmousewheel;
attribute Function onoffline;
attribute Function ononline;
attribute Function onpause;
attribute Function onplay;
attribute Function onplaying;
attribute Function onpagehide;
attribute Function onpageshow;
attribute Function onpopstate;
attribute Function onprogress;
attribute Function onratechange;
attribute Function onreadystatechange;
attribute Function onredo;
attribute Function onresize;
attribute Function onscroll;
attribute Function onseeked;
attribute Function onseeking;
attribute Function onselect;
attribute Function onshow;
attribute Function onstalled;
attribute Function onstorage;

468

attribute Function onsubmit;
attribute Function onsuspend;
attribute Function ontimeupdate;
attribute Function onundo;
attribute Function onunload;
attribute Function onvolumechange;
attribute Function onwaiting;

};
Window implements EventTarget;

This box is non-normative. Implementation requirements are given below this box.

window . windowp469

window . framesp469

window . selfp469

These attributes all return window.

window . documentp469

Returns the active documentp463.

document . defaultViewp469

Returns the Windowp467 object of the active documentp463.

The window, frames, and self IDL attributes must all return the Windowp467 object's browsing contextp463 's
WindowProxyp473 object.

The document IDL attribute must return the Documentp33 object of the Windowp467 object's Documentp33 's browsing
contextp463 's active documentp463.

The defaultView IDL attribute of the HTMLDocumentp75 interface must return the Documentp33 's browsing contextp463 's
WindowProxyp473 object.

User agents must raise a SECURITY_ERRp74 exception whenever any of the members of a Windowp467 object are
accessed by scripts whose effective script originp474 is not the same as the Windowp467 object's Documentp33 's effective
script originp474, with the following exceptions:

• The locationp482 object

• The postMessage()p572 method with two arguments

• The postMessage()p572 method with three arguments

• The framesp469 attribute

• The dynamic nested browsing context propertiesp471

When a script whose effective script originp474 is not the same as the Windowp467 object's Documentp33 's effective script
originp474 attempts to access that Windowp467 object's methods or attributes, the user agent must act as if any changes
to the Windowp467 object's properties, getters, setters, etc, were not present.

For members that return objects (including function objects), each distinct effective script originp474 that is not the
same as the Windowp467 object's Documentp33 's effective script originp474 must be provided with a separate set of
objects. These objects must have the prototype chain appropriate for the script for which the objects are created (not
those that would be appropriate for scripts whose script's global objectp515 is the Windowp467 object in question).

For instance, if two frames containing Documentp33s from different originsp474 access the same Windowp467

object's postMessage()p572 method, they will get distinct objects that are not equal.

6.2.1 Security

469

This box is non-normative. Implementation requirements are given below this box.

window = window . openp470([url [, target [, features [, replace]]]])
Opens a window to show url (defaults to about:blankp59), and returns it. The target argument gives the
name of the new window. If a window exists with that name already, it is reused. The replace attribute, if
true, means that whatever page is currently open in that window will be removed from the window's
session history. The features argument is ignored.

window . namep470 [= value]
Returns the name of the window.
Can be set, to change the name.

window . close()
Closes the window.

The open() method on Windowp467 objects provides a mechanism for navigatingp484 an existing browsing contextp463 or
opening and navigating an auxiliary browsing contextp465.

The method has four arguments, though they are all optional.

The first argument, url, must be a valid URLp54 for a page to load in the browsing context. If no arguments are
provided, or if the first argument is the empty string, then the url argument defaults to "about:blankp59". The
argument must be resolvedp55 to an absolute URLp55 (or an error), relative to the entry scriptp466 's base URLp515, when
the method is invoked.

The second argument, target, specifies the namep466 of the browsing context that is to be navigated. It must be a valid
browsing context name or keywordp466. If fewer than two arguments are provided, then the name argument defaults to
the value "_blank".

The third argument, features, has no effect and is supported for historical reasons only.

The fourth argument, replace, specifies whether or not the new page will replacep492 the page currently loaded in the
browsing context, when target identifies an existing browsing context (as opposed to leaving the current page in the
browsing context's session historyp478). When three or fewer arguments are provided, replace defaults to false.

When the method is invoked, the user agent must first select a browsing contextp463 to navigate by applying the rules
for choosing a browsing context given a browsing context namep466 using the target argument as the name and the
browsing contextp463 of the script as the context in which the algorithm is executed, unless the user has indicated a
preference, in which case the browsing context to navigate may instead be the one indicated by the user.

For example, suppose there is a user agent that supports control-clicking a link to open it in a new tab. If a user
clicks in that user agent on an element whose onclickp522 handler uses the window.open()p470 API to open a
page in an iframe, but, while doing so, holds the control key down, the user agent could override the selection of
the target browsing context to instead target a new tab.

Then, the user agent must navigatep484 the selected browsing contextp463 to the absolute URLp55 (or error) obtained
from resolvingp55 url earlier. If the replace is true, then replacement must be enabledp492; otherwise, it must not be
enabled unless the browsing contextp463 was just created as part of the rules for choosing a browsing context given a
browsing context namep466. The navigation must be done with the browsing contextp515 of the entry scriptp466 as the
source browsing contextp484.

The method must return the WindowProxyp473 object of the browsing contextp463 that was navigated, or null if no
browsing context was navigated.

The name attribute of the Windowp467 object must, on getting, return the current name of the browsing contextp463, and,
on setting, set the name of the browsing contextp463 to the new value.

Note: The name gets resetp491 when the browsing context is navigated to another domain.

The close() method on Windowp467 objects should, if the corresponding browsing contextp463 A is an auxiliary browsing
contextp465 that was created by a script (as opposed to by an action of the user), and if the browsing contextp515 of the

6.2.2 APIs for creating and navigating browsing contexts by name

470

scriptp514 that invokes the method is allowed to navigatep465 the browsing contextp463 A, close the browsing contextp463

A (and may discardp472 it too).

This box is non-normative. Implementation requirements are given below this box.

window . lengthp471

Returns the number of child browsing contextsp463.

window[index]
Returns the indicated child browsing contextp463.

The length IDL attribute on the Windowp467 interface must return the number of child browsing contextsp463 that are
nested throughp463 elements that are in the Documentp29 that is the active documentp463 of that Windowp467 object, if
that Windowp467 's browsing contextp463 shares the same event loopp516 as the script's browsing contextp515 of the entry
scriptp466 accessing the IDL attribute; otherwise, it must return zero.

The indices of the supported indexed properties on the Windowp467 object at any instant are the numbers in the range 0
.. n-1, where n is the number returned by the lengthp471 IDL attribute. If n is zero then there are no supported indexed
properties.

When a Windowp467 object is indexed to retrieve an indexed property index, the value returned must be the
indexth child browsing contextp463 of the Documentp33 that is nested through an element that is in the Documentp29,
sorted in the tree orderp29 of the elements nesting those browsing contextsp463.

These properties are the dynamic nested browsing context properties.

This box is non-normative. Implementation requirements are given below this box.

window[name]
Returns the indicated child browsing contextp463.

The Windowp467 interface supports named properties. The names of the supported named properties at any moment
consist of:

• the value of the name content attribute for all ap169, appletp701, areap280, embedp217, formp314, framep705,
framesetp704, iframep211, imgp196, and objectp220 elements in the active documentp463 that have a name
content attribute, and

• the value of the idp89 content attribute of any HTML elementp28 in the active documentp463 with an idp89

content attribute.

When the Window object is indexed for property retrieval using a name name, then the user agent must return
the value obtained using the following steps:

1. Let elements be the list of named elementsp471 with the name name in the active documentp463.

Note: There will be at least one such element, by definition.

2. If elements contains an iframep211 element, then return the WindowProxyp473 object of the nested browsing
contextp463 represented by the first such iframep211 element in tree orderp29, and abort these steps.

3. Otherwise, if elements has only one element, return that element and abort these steps.

4. Otherwise return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only named
elementsp471 with the name name.

Named elements with the name name, for the purposes of the above algorithm, are those that are either:

6.2.3 Accessing other browsing contexts

6.2.4 Named access on the Windowp467 object

471

• ap169, appletp701, areap280, embedp217, formp314, framep705, framesetp704, iframep211, imgp196, or objectp220

elements that have a name content attribute whose value is name, or

• HTML elementsp28 elements that have an idp89 content attribute whose value is name.

A browsing contextp463 has a strong reference to each of its Documentp33s and its WindowProxyp473 object, and the user
agent itself has a strong reference to its top-level browsing contextsp464.

A Documentp33 has a strong reference to its Windowp467 object.

Note: A Windowp467 object has a strong referencep74 to its Documentp33 object through its documentp469

attribute. Thus, references from other scripts to either of those objects will keep both alive.
Similarly, both Documentp33 and Windowp467 objects have implied strong referencesp74 to the
WindowProxyp473 object.

Each scriptp514 has a strong reference to its browsing contextp515 and its documentp515.

When a browsing contextp463 is to discard a Document, the user agent must run the following steps:

1. Set the Documentp33 's salvageable state to false.

2. Run any unloading document cleanup stepsp495 for the Documentp33 that are defined by this specification or
any other relevant specifications.

3. Remove any tasksp517 associated with the Documentp33 in any task sourcep517, without running those tasks.

4. Discardp472 all the child browsing contextsp463 of the Documentp33.

5. Lose the strong reference from the Documentp33 's browsing contextp463 to the Documentp33.

Note: Whenever a Documentp33 object is discardedp472, it is also removed from the list of the
worker's Documentp33s of each worker whose list contains that Documentp33.

When a browsing context is discarded, the strong reference from the user agent itself to the browsing contextp463

must be severed, and all the Documentp33 objects for all the entries in the browsing contextp463 's session history must
be discardedp472 as well.

User agents may discardp472 top-level browsing contextsp464 at any time (typically, in response to user requests, e.g.
when a user closes a window containing one or more top-level browsing contextsp464). Other browsing contextsp463

must be discarded once their WindowProxyp473 object is eligible for garbage collection.

To allow Web pages to integrate with Web browsers, certain Web browser interface elements are exposed in a limited
way to scripts in Web pages.

Each interface element is represented by a BarPropp472 object:

interface BarProp {
attribute boolean visible;

};

This box is non-normative. Implementation requirements are given below this box.

window . locationbarp473 . visiblep473

Returns true if the location bar is visible; otherwise, returns false.

window . menubarp473 . visiblep473

Returns true if the menu bar is visible; otherwise, returns false.

6.2.5 Garbage collection and browsing contexts

6.2.6 Browser interface elements

472

window . personalbarp473 . visiblep473

Returns true if the personal bar is visible; otherwise, returns false.

window . scrollbarsp473 . visiblep473

Returns true if the scroll bars are visible; otherwise, returns false.

window . statusbarp473 . visiblep473

Returns true if the status bar is visible; otherwise, returns false.

window . toolbarp473 . visiblep473

Returns true if the toolbar is visible; otherwise, returns false.

The visible attribute, on getting, must return either true or a value determined by the user agent to most accurately
represent the visibility state of the user interface element that the object represents, as described below. On setting,
the new value must be discarded.

The following BarPropp472 objects exist for each Documentp33 object in a browsing contextp463. Some of the user
interface elements represented by these objects might have no equivalent in some user agents; for those user agents,
except when otherwise specified, the object must act as if it was present and visible (i.e. its visiblep473 attribute must
return true).

The location bar BarProp object
Represents the user interface element that contains a control that displays the URLp54 of the active
documentp463, or some similar interface concept.

The menu bar BarProp object
Represents the user interface element that contains a list of commands in menu form, or some similar interface
concept.

The personal bar BarProp object
Represents the user interface element that contains links to the user's favorite pages, or some similar interface
concept.

The scrollbar BarProp object
Represents the user interface element that contains a scrolling mechanism, or some similar interface concept.

The status bar BarProp object
Represents a user interface element found immediately below or after the document, as appropriate for the
user's media. If the user agent has no such user interface element, then the object may act as if the
corresponding user interface element was absent (i.e. its visiblep473 attribute may return false).

The toolbar BarProp object
Represents the user interface element found immediately above or before the document, as appropriate for the
user's media. If the user agent has no such user interface element, then the object may act as if the
corresponding user interface element was absent (i.e. its visiblep473 attribute may return false).

The locationbar attribute must return the location bar BarProp objectp473.

The menubar attribute must return the menu bar BarProp objectp473.

The personalbar attribute must return the personal bar BarProp objectp473.

The scrollbars attribute must return the scrollbar BarProp objectp473.

The statusbar attribute must return the status bar BarProp objectp473.

The toolbar attribute must return the toolbar BarProp objectp473.

As mentioned earlier, each browsing contextp463 has a WindowProxy object. This object is unusual in that all operations
that would be performed on it must be performed on the Windowp467 object of the browsing contextp463 's active
documentp463 instead. It is thus indistinguishable from that Windowp467 object in every way until the browsing
contextp463 is navigated.

6.2.7 The WindowProxyp473 object

473

There is no WindowProxyp473 interface object.

Note: The WindowProxyp473 object allows scripts to act as if each browsing contextp463 had a single
Windowp467 object, while still keeping separate Windowp467 objects for each Documentp33.

In the following example, the variable x is set to the WindowProxyp473 object returned by the windowp469 accessor
on the global object. All of the expressions following the assignment return true, because in every respect, the
WindowProxyp473 object acts like the underlying Windowp467 object.

var x = window;
x instanceof Window; // true
x === this; // true

6.3 Origin

The origin of a resource and the effective script origin of a resource are both either opaque identifiers or tuples
consisting of a scheme component, a host component, a port component, and optionally extra data.

Note: The extra data could include the certificate of the site when using encrypted connections,
to ensure that if the site's secure certificate changes, the origin is considered to change as well.

These characteristics are defined as follows:

For URLs
The originp474 and effective script originp474 of the URLp54 is whatever is returned by the following algorithm:

1. Let url be the URLp54 for which the originp474 is being determined.

2. Parsep54 url.

3. If url identifies a resource that is its own trust domain (e.g. it identifies an e-mail on an IMAP server or a
post on an NNTP server) then return a globally unique identifier specific to the resource identified by
url, so that if this algorithm is invoked again for URLsp54 that identify the same resource, the same
identifier will be returned.

4. If url does not use a server-based naming authority, or if parsing url failed, or if url is not an absolute
URLp55, then return a new globally unique identifier.

5. Let scheme be the <scheme>p54 component of url, converted to ASCII lowercasep36.

6. If the UA doesn't support the protocol given by scheme, then return a new globally unique identifier.

7. If scheme is "file", then the user agent may return a UA-specific value.

8. Let host be the <host>p55 component of url.

9. Apply the IDNA ToASCII algorithm to host, with both the AllowUnassigned and UseSTD3ASCIIRules flags
set. Let host be the result of the ToASCII algorithm.

If ToASCII fails to convert one of the components of the string, e.g. because it is too long or because it
contains invalid characters, then return a new globally unique identifier. [RFC3490]p741

10. Let host be the result of converting host to ASCII lowercasep36.

11. If there is no <port>p55 component, then let port be the default port for the protocol given by scheme.
Otherwise, let port be the <port>p55 component of url.

12. Return the tuple (scheme, host, port).

In addition, if the URLp54 is in fact associated with a Documentp33 object that was created by parsing the resource
obtained from fetching URLp54, and this was done over a secure connection, then the server's secure certificate
may be added to the origin as additional data.

For scripts
The originp474 and effective script originp474 of a script are determined from another resource, called the owner:

↪ If a script is in a scriptp129 element
The owner is the Documentp33 to which the scriptp129 element belongs.

474

↪ If a script is in an event handler content attributep520

The owner is the Documentp33 to which the attribute node belongs.
↪ If a script is a function or other code reference created by another script

The owner is the script that created it.
↪ If a script is a javascript: URLp518 that was returned as the location of an HTTP redirect (or

equivalentp60 in other protocols)
The owner is the URLp54 that redirected to the javascript: URLp518.

↪ If a script is a javascript: URLp518 in an attribute
The owner is the Documentp33 of the element on which the attribute is found.

↪ If a script is a javascript: URLp518 in a style sheet
The owner is the URLp54 of the style sheet.

↪ If a script is a javascript: URLp518 to which a browsing contextp463 is being navigatedp484, the
URL having been provided by the user (e.g. by using a bookmarklet)

The owner is the Documentp33 of the browsing contextp463 's active documentp463.
↪ If a script is a javascript: URLp518 to which a browsing contextp463 is being navigatedp484, the

URL having been declared in markup
The owner is the Documentp33 of the element (e.g. an ap169 or areap280 element) that declared the URL.

↪ If a script is a javascript: URLp518 to which a browsing contextp463 is being navigatedp484, the
URL having been provided by script

The owner is the script that provided the URL.

The originp474 of the script is then equal to the originp474 of the owner, and the effective script originp474 of the
script is equal to the effective script originp474 of the owner.

For Documentp33 objects and images
↪ If a Documentp33 is in a browsing contextp463 whose sandboxed origin browsing context flagp214 was

set when the Documentp33 was created
↪ If a Documentp33 was generated from a resource labeled as text/html-sandboxedp716

The originp474 is a globally unique identifier assigned when the Documentp33 is created.
↪ If a Documentp33 or image was returned by the XMLHttpRequest API

The originp474 is equal to the XMLHttpRequest origin of the XMLHttpRequest object. [XHR]p743

↪ If a Documentp33 or image was generated from a javascript: URLp518

The originp474 is equal to the originp474 of the script of that javascript: URLp518.
↪ If a Documentp33 or image was served over the network and has an address that uses a URL

scheme with a server-based naming authority
The originp474 is the originp474 of the addressp75 of the Documentp33 or the URLp54 of the image, as
appropriate.

↪ If a Documentp33 or image was generated from a data: URL that was returned as the location of an
HTTP redirect (or equivalentp60 in other protocols)

The originp474 is the originp474 of the URLp54 that redirected to the data: URL.
↪ If a Documentp33 or image was generated from a data: URL found in another Documentp33 or in a

script
The originp474 is the originp474 of the Documentp33 or script that initiated the navigationp484 to that
URLp54.

↪ If a Documentp33 has the addressp75 "about:blankp59"
The originp474 of the Documentp33 is the origin it was assigned when its browsing context was
createdp463.

↪ If a Documentp33 is an iframe srcdoc documentp211

The originp474 of the Documentp33 is the originp474 of the Documentp33 's browsing contextp463 's browsing
context containerp463 's Documentp33.

↪ If a Documentp33 or image was obtained in some other manner (e.g. a data: URL typed in by the
user, a Documentp33 created using the createDocument()p33 API, etc)

The originp474 is a globally unique identifier assigned when the Documentp33 or image is created.

When a Documentp33 is created, its effective script originp474 is initialized to the originp474 of the Documentp33.
However, the document.domainp477 attribute can be used to change it.

For audiop228 and videop225 elements
If value of the media elementp231 's currentSrcp233 attribute is the empty string, the originp474 is the same as the
originp474 of the element's Documentp33 's originp474.

475

Otherwise, the originp474 is equal to the originp474 of the absolute URLp55 given by the media elementp231 's
currentSrcp233 attribute.

The Unicode serialization of an origin is the string obtained by applying the following algorithm to the given
originp474:

1. If the originp474 in question is not a scheme/host/port tuple, then return the literal string "null" and abort
these steps.

2. Otherwise, let result be the scheme part of the originp474 tuple.

3. Append the string "://" to result.

4. Apply the IDNA ToUnicode algorithm to each component of the host part of the originp474 tuple, and append
the results — each component, in the same order, separated by U+002E FULL STOP characters (.) — to
result. [RFC3490]p741

5. If the port part of the originp474 tuple gives a port that is different from the default port for the protocol given
by the scheme part of the originp474 tuple, then append a U+003A COLON character (:) and the given port, in
base ten, to result.

6. Return result.

The ASCII serialization of an origin is the string obtained by applying the following algorithm to the given
originp474:

1. If the originp474 in question is not a scheme/host/port tuple, then return the literal string "null" and abort
these steps.

2. Otherwise, let result be the scheme part of the originp474 tuple.

3. Append the string "://" to result.

4. Apply the IDNA ToASCII algorithm the host part of the originp474 tuple, with both the AllowUnassigned and
UseSTD3ASCIIRules flags set, and append the results result.

If ToASCII fails to convert one of the components of the string, e.g. because it is too long or because it
contains invalid characters, then return the empty string and abort these steps. [RFC3490]p741

5. If the port part of the originp474 tuple gives a port that is different from the default port for the protocol given
by the scheme part of the originp474 tuple, then append a U+003A COLON character (:) and the given port, in
base ten, to result.

6. Return result.

Two originsp474 are said to be the same origin if the following algorithm returns true:

1. Let A be the first originp474 being compared, and B be the second originp474 being compared.

2. If A and B are both opaque identifiers, and their value is equal, then return true.

3. Otherwise, if either A or B or both are opaque identifiers, return false.

4. If A and B have scheme components that are not identical, return false.

5. If A and B have host components that are not identical, return false.

6. If A and B have port components that are not identical, return false.

7. If either A or B have additional data, but that data is not identical for both, return false.

8. Return true.

This box is non-normative. Implementation requirements are given below this box.

6.3.1 Relaxing the same-origin restriction

476

document . domainp477 [= domain]
Returns the current domain used for security checks.

Can be set to a value that removes subdomains, to change the effective script originp474 to allow pages on
other subdomains of the same domain (if they do the same thing) to access each other.

The domain attribute on Documentp33 objects must be initialized to the document's domainp477, if it has one, and the
empty string otherwise. If the value is an IPv6 address, then the square brackets from the host portion of the
<host>p55 component must be omitted from the attribute's value.

On getting, the attribute must return its current value, unless the document was created by XMLHttpRequest, in which
case it must throw an INVALID_ACCESS_ERRp74 exception.

On setting, the user agent must run the following algorithm:

1. If the document was created by XMLHttpRequest, throw an INVALID_ACCESS_ERRp74 exception and abort
these steps.

2. If the new value is an IP address, let new value be the new value. Otherwise, apply the IDNA ToASCII
algorithm to the new value, with both the AllowUnassigned and UseSTD3ASCIIRules flags set, and let new
value be the result of the ToASCII algorithm.

If ToASCII fails to convert one of the components of the string, e.g. because it is too long or because it
contains invalid characters, then throw a SECURITY_ERRp74 exception and abort these steps. [RFC3490]p741

3. If new value is not exactly equal to the current value of the document.domainp477 attribute, then run these
substeps:

1. If the current value is an IP address, throw a SECURITY_ERRp74 exception and abort these steps.

2. If new value, prefixed by a U+002E FULL STOP (.), does not exactly match the end of the current
value, throw a SECURITY_ERRp74 exception and abort these steps.

3. If new value matches a suffix in the Public Suffix List, or, if new value, prefixed by a U+002E FULL
STOP (.), matches the end of a suffix in the Public Suffix List, then throw a SECURITY_ERRp74

exception and abort these steps. [PSL]p740

Suffixes must be compared after applying the IDNA ToASCII algorithm to them, with both the
AllowUnassigned and UseSTD3ASCIIRules flags set, in an ASCII case-insensitivep35 manner.
[RFC3490]p741

4. Release the storage mutexp517.

5. Set the attribute's value to new value.

6. Set the host part of the effective script originp474 tuple of the Documentp33 to new value.

7. Set the port part of the effective script originp474 tuple of the Documentp33 to "manual override" (a value that,
for the purposes of comparing originsp476, is identical to "manual override" but not identical to any other
value).

The domain of a Documentp33 is the host part of the document's originp474, if that is a scheme/host/port tuple. If it isn't,
then the document does not have a domain.

Note: The domainp477 attribute is used to enable pages on different hosts of a domain to access
each others' DOMs.

⚠Warning! Do not use the document.domainp477 attribute when using shared hosting. If an untrusted third
party is able to host an HTTP server at the same IP address but on a different port, then the same-origin
protection that normally protects two different sites on the same host will fail, as the ports are ignored
when comparing origins after the document.domainp477 attribute has been used.

477

6.4 Session history and navigation

The sequence of Documentp33s in a browsing contextp463 is its session history.

Historyp478 objects provide a representation of the pages in the session history of browsing contextsp463. Each
browsing contextp463, including nested browsing contextsp463, has a distinct session history.

Each Documentp33 object in a browsing contextp463 's session historyp478 is associated with a unique instance of the
Historyp478 object, although they all must model the same underlying session historyp478.

The history attribute of the Windowp467 interface must return the object implementing the Historyp478 interface for
that Windowp467 object's Documentp33.

Historyp478 objects represent their browsing contextp463 's session history as a flat list of session history entriesp478.
Each session history entry consists of either a URLp54 or a state objectp478, or both, and may in addition have a title,
a Documentp33 object, form data, a scroll position, and other information associated with it.

Note: This does not imply that the user interface need be linear. See the notes belowp484.

Note: Titles associated with session history entriesp478 need not have any relation with the current
titlep113 of the Documentp33. The title of a session history entryp478 is intended to explain the state
of the document at that point, so that the user can navigate the document's history.

URLs without associated state objectsp478 are added to the session history as the user (or script) navigates from page
to page.

A state object is an object representing a user interface state.

Pages can addp480 state objectsp478 between their entry in the session history and the next ("forward") entry. These are
then returned to the scriptp492 when the user (or script) goes back in the history, thus enabling authors to use the
"navigation" metaphor even in one-page applications.

At any point, one of the entries in the session history is the current entry. This is the entry representing the active
documentp463 of the browsing contextp463. The current entryp478 is usually an entry for the locationp483 of the
Documentp33. However, it can also be one of the entries for state objectsp478 added to the history by that document.

Entries that consist of state objectsp478 share the same Documentp33 as the entry for the page that was active when
they were added.

Contiguous entries that differ just by fragment identifier also share the same Documentp33.

Note: All entries that share the same Documentp33 (and that are therefore merely different states of
one particular document) are contiguous by definition.

User agents may discardp472 the Documentp33 objects of entries other than the current entryp478 that are not referenced
from any script, reloading the pages afresh when the user or script navigates back to such pages. This specification
does not specify when user agents should discard Documentp33 objects and when they should cache them.

Entries that have had their Documentp33 objects discarded must, for the purposes of the algorithms given below, act as
if they had not. When the user or script navigates back or forwards to a page which has no in-memory DOM objects,
any other entries that shared the same Documentp33 object with it must share the new object as well.

interface History {
readonly attribute long length;
void go(in optional long delta);
void back();
void forward();
void pushState(in any data, in DOMString title, in optional DOMString url);
void replaceState(in any data, in DOMString title, in optional DOMString url);

};

6.4.1 The session history of browsing contexts

6.4.2 The Historyp478 interface

478

This box is non-normative. Implementation requirements are given below this box.

window . historyp478 . lengthp479

Returns the number of entries in the joint session historyp479.

window . historyp478 . gop479([delta])
Goes back or forward the specified number of steps in the joint session historyp479.
A zero delta will reload the current page.
If the delta is out of range, does nothing.

window . historyp478 . backp479()
Goes back one step in the joint session historyp479.
If there is no previous page, does nothing.

window . historyp478 . forwardp479()
Goes forward one step in the joint session historyp479.
If there is no next page, does nothing.

window . historyp478 . pushStatep480(data, title [, url])
Pushes the given data onto the session history, with the given title, and, if provided, the given URL.

window . historyp478 . replaceStatep480(data, title [, url])
Updates the current entry in the session histor to have the given data, title, and, if provided, URL.

The joint session history of a Historyp478 object is the union of all the session historiesp478 of all browsing
contextsp463 of all the fully activep464 Documentp33 objects that share the Historyp478 object's top-level browsing
contextp464, with all the entries that are current entriesp478 in their respective session historiesp478 removed except for
the current entry of the joint session historyp479.

The current entry of the joint session history is the entry that most recently became a current entryp478 in its
session historyp478.

Entries in the joint session historyp479 are ordered chronologically by the time they were added to their respective
session historiesp478. (Since all these browsing contextsp463 by definition share an event loopp516, there is always a well-
defined sequential order in which their session historiesp478 had their entries added.) Each entry has an index; the
earliest entry has index 0, and the subsequent entries are numbered with consecutively increasing integers (1, 2, 3,
etc).

The length attribute of the Historyp478 interface must return the number of entries in the joint session historyp479.

The actual entries are not accessible from script.

When the go(delta) method is invoked, if the argument to the method was omitted or has the value zero, the user
agent must act as if the location.reload()p483 method was called instead. Otherwise, the user agent must traverse
the history by a deltap479 whose value is the value of the method's argument.

When the back() method is invoked, the user agent must traverse the history by a deltap479 −1.

When the forward()method is invoked, the user agent must traverse the history by a deltap479 +1.

To traverse the history by a delta delta, the user agent must queue a taskp517 to run the following steps. The task
sourcep517 for the queued task is the history traversal task sourcep518.

1. Let delta be the argument to the method.

2. If the index of the current entry of the joint session historyp479 plus delta is less than zero or greater than or
equal to the number of items in the joint session historyp479, then the user agent must do nothing.

3. Let specified entry be the entry in the joint session historyp479 whose index is the sum of delta and the index
of the current entry of the joint session historyp479.

4. Let specified browsing context be the browsing contextp463 of the specified entry.

5. Traverse the historyp491 of the specified browsing context to the specified entry.

479

When the user navigates through a browsing contextp463, e.g. using a browser's back and forward buttons, the user
agent must traverse the history by a deltap479 equivalent to the action specified by the user.

The pushState(data, title, url) method adds a state object entry to the history.

The replaceState(data, title, url) method updates the state object, title, and optionally the URLp54 of the
current entryp478 in the history.

When either of these methods is invoked, the user agent must run the following steps:

1. Let clone data be a structured clonep71 of the specified data. If this throws an exception, then rethrow that
exception and abort these steps.

2. If a third argument is specified, run these substeps:

1. Resolvep55 the value of the third argument, relative to the entry scriptp466 's base URLp515.

2. If that fails, raise a SECURITY_ERRp74 exception and abort these steps.

3. Compare the resulting absolute URLp55 to the document's addressp75. If any part of these two
URLsp54 differ other than the <path>p55, <query>p55, and <fragment>p55 components, then raise
a SECURITY_ERRp74 exception and abort these steps.

4. If the originp474 of the resulting absolute URLp55 is not the same as the originp474 of the entry
scriptp466 's documentp515, and either the <path>p55 or <query>p55 components of the two URLsp54

compared in the previous step differ, raise a SECURITY_ERRp74 exception and abort these steps.
(This prevents sandboxed content from spoofing other pages on the same origin.)

For the purposes of the comparisons in the above substeps, the <path>p55 and <query>p55 components can
only be the same if the URLs are both hierarchical URLsp56.

3. If the method invoked was the pushState()p480 method:

1. Remove all the entries in the browsing contextp463 's session historyp478 after the current entryp478. If
the current entryp478 is the last entry in the session history, then no entries are removed.

Note: This doesn't necessarily have to affectp484 the user agent's user interface.

2. Remove any tasksp517 queued by the history traversal task sourcep518.

3. Add a state object entry to the session history, after the current entryp478, with cloned data as the
state object, the given title as the title, and, if the third argument is present, the absolute URLp55

that was found earlier in this algorithm as the URLp54 of the entry.

4. Update the current entryp478 to be the this newly added entry.

Otherwise, if the method invoked was the replaceState()p480 method:

1. Update the current entryp478 in the session history so that cloned data is the entry's new state
object, the given title is the new title, and, if the third argument is present, the absolute URLp55

that was found earlier in this algorithm is the entry's new URLp54.

4. If the third argument is present, set the document's current addressp75 to the absolute URLp55 that was found
earlier in this algorithm.

Note: Since this is neither a navigationp484 of the browsing contextp463 nor a history
traversalp491, it does not cause a hashchangep493 event to be fired.

Note: The title is purely advisory. User agents might use the title in the user interface.

User agents may limit the number of state objects added to the session history per page. If a page hits the UA-defined
limit, user agents must remove the entry immediately after the first entry for that Documentp33 object in the session
history after having added the new entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer
for navigation.)

Consider a game where the user can navigate along a line, such that the user is always at some coordinate, and
such that the user can bookmark the page corresponding to a particular coordinate, to return to it later.

480

A static page implementing the x=5 position in such a game could look like the following:

<!DOCTYPE HTML>
<!-- this is http://example.com/line?x=5 -->
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
Advance to 6 or
retreat to 4?

</p>

The problem with such a system is that each time the user clicks, the whole page has to be reloaded. Here
instead is another way of doing it, using script:

<!DOCTYPE HTML>
<!-- this starts off as http://example.com/line?x=5 -->
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
Advance to 6 or
retreat to 4?

</p>
<script>
var currentPage = 5; // prefilled by server
function go(d) {

history.pushState(currentPage, 'Line Game - ' + currentPage, '?x=' + currentPage);
setupPage(currentPage + d);

}
onpopstate = function(event) {

setupPage(event.state);
}
function setupPage(page) {

currentPage = page;
document.title = 'Line Game - ' + currentPage;
document.getElementById('coord').textContent = currentPage;
document.links[0].href = '?x=' + (currentPage+1);
document.links[0].textContent = 'Advance to ' + (currentPage+1);
document.links[1].href = '?x=' + (currentPage-1);
document.links[1].textContent = 'retreat to ' + (currentPage-1);

}
</script>

In systems without script, this still works like the previous example. However, users that do have script support
can now navigate much faster, since there is no network access for the same experience. Furthermore, contrary
to the experience the user would have with just a naïve script-based approach, bookmarking and navigating the
session history still work.

In the example above, the data argument to the pushState()p480 method is the same information as would be
sent to the server, but in a more convenient form, so that the script doesn't have to parse the URL each time
the user navigates.

Applications might not use the same title for a session history entryp478 as the value of the document's titlep113

element at that time. For example, here is a simple page that shows a block in the titlep113 element. Clearly,
when navigating backwards to a previous state the user does not go back in time, and therefore it would be
inappropriate to put the time in the session history title.

<!DOCTYPE HTML>
<TITLE>Line</TITLE>
<SCRIPT>
setInterval(function () { document.title = 'Line - ' + new Date(); }, 1000);
var i = 1;
function inc() {

set(i+1);
history.pushState(i, 'Line - ' + i);

}
function set(newI) {

i = newI;
document.forms.F.I.value = newI;

481

}
</SCRIPT>
<BODY ONPOPSTATE="recover(event.state)">
<FORM NAME=F>
State: <OUTPUT NAME=I>1</OUTPUT> <INPUT VALUE="Increment" TYPE=BUTTON ONCLICK="inc()">
</FORM>

Each Documentp33 object in a browsing contextp463 's session history is associated with a unique instance of a
Locationp482 object.

This box is non-normative. Implementation requirements are given below this box.

document . locationp482 [= value]
window . locationp482 [= value]

Returns a Locationp482 object with the current page's location.
Can be set, to navigate to another page.

The location attribute of the HTMLDocumentp75 interface must return the Locationp482 object for that Documentp33

object, if it is in a browsing contextp463, and null otherwise.

The location attribute of the Windowp467 interface must return the Locationp482 object for that Windowp467 object's
Documentp33.

Locationp482 objects provide a representation of their document's current addressp75, and allow the current entryp478 of
the browsing contextp463 's session history to be changed, by adding or replacing entries in the historyp478 object.

interface Location {
stringifier attribute DOMString href;
void assign(in DOMString url);
void replace(in DOMString url);
void reload();

// URL decomposition IDL attributes
attribute DOMString protocol;
attribute DOMString host;
attribute DOMString hostname;
attribute DOMString port;
attribute DOMString pathname;
attribute DOMString search;
attribute DOMString hash;

// resolving relative URLs
DOMString resolveURL(in DOMString url);

};

This box is non-normative. Implementation requirements are given below this box.

location . hrefp483 [= value]
Returns the current page's location.
Can be set, to navigate to another page.

location . assignp483(url)
Navigates to the given page.

location . replacep483(url)
Removes the current page from the session history and navigates to the given page.

6.4.3 The Locationp482 interface

482

location . reloadp483()
Reloads the current page.

url = location . resolveURLp483(url)
Resolves the given relative URL to an absolute URL.

The href attribute must return the current addressp75 of the associated Documentp33 object, as an absolute URLp55.

On setting, the user agent must act as if the assign()p483 method had been called with the new value as its argument.

When the assign(url) method is invoked, the UA must resolvep55 the argument, relative to the entry scriptp466 's base
URLp515, and if that is successful, must navigatep484 the browsing contextp463 to the specified url. If the browsing
contextp463 's session historyp478 contains only one Documentp33, and that was the about:blankp59 Documentp33 created
when the browsing contextp463 was created, then the navigation must be done with replacement enabledp492.

When the replace(url) method is invoked, the UA must resolvep55 the argument, relative to the entry scriptp466 's
base URLp515, and if that is successful, navigatep484 the browsing contextp463 to the specified url with replacement
enabledp492.

Navigation for the assign()p483 and replace()p483 methods must be done with the browsing contextp515 of the script
that invoked the method as the source browsing contextp484.

If the resolvingp55 step of the assign()p483 and replace()p483 methods is not successful, then the user agent must
instead throw a SYNTAX_ERRp74 exception.

When the reload() method is invoked, the user agent must run the appropriate steps from the following list:

↪ If the currently executing taskp517 is the dispatch of a resize event in response to the user resizing
the browsing contextp463

Repaint the browsing contextp463 and abort these steps.

↪ Otherwise
Navigatep484 the browsing contextp463 to the document's current addressp75 with replacement enabledp492.
The source browsing contextp484 must be the browsing contextp463 being navigated.

When a user requests that the current page be reloaded through a user interface element, the user agent should
navigatep484 the browsing contextp463 to the same resource as Documentp33, with replacement enabledp492. In the case
of non-idempotent methods (e.g. HTTP POST), the user agent should prompt the user to confirm the operation first,
since otherwise transactions (e.g. purchases or database modifications) could be repeated. User agents may allow the
user to explicitly override any caches when reloading.

The Locationp482 interface also has the complement of URL decomposition IDL attributesp56, protocol, host, port,
hostname, pathname, search, and hash. These must follow the rules given for URL decomposition IDL attributes, with
the inputp57 being the current addressp75 of the associated Documentp33 object, as an absolute URLp55 (same as the
hrefp483 attribute), and the common setter actionp57 being the same as setting the hrefp483 attribute to the new output
value.

The resolveURL(url) method must resolvep55 its url argument, relative to the entry scriptp466 's base URLp515, and if
that succeeds, return the resulting absolute URLp55. If it fails, it must throw a SYNTAX_ERRp74 exception instead.

6.4.3.1 Security

User agents must raise a SECURITY_ERRp74 exception whenever any of the members of a Locationp482 object are
accessed by scripts whose effective script originp474 is not the samep476 as the Locationp482 object's associated
Documentp33 's effective script originp474, with the following exceptions:

• The hrefp483 setter, if the script is running in a browsing contextp463 that is allowed to navigatep465 the
browsing context with which the Locationp482 object is associated

• The replace()p483 method, if the script is running in a browsing contextp463 that is allowed to navigatep465

the browsing context with which the Locationp482 object is associated

483

This section is non-normative.

The Historyp478 interface is not meant to place restrictions on how implementations represent the session history to
the user.

For example, session history could be implemented in a tree-like manner, with each page having multiple "forward"
pages. This specification doesn't define how the linear list of pages in the historyp478 object are derived from the
actual session history as seen from the user's perspective.

Similarly, a page containing two iframep211s has a historyp478 object distinct from the iframep211s' historyp478

objects, despite the fact that typical Web browsers present the user with just one "Back" button, with a session history
that interleaves the navigation of the two inner frames and the outer page.

Security: It is suggested that to avoid letting a page "hijack" the history navigation facilities of a UA by abusing
pushState()p480, the UA provide the user with a way to jump back to the previous page (rather than just going back to
the previous state). For example, the back button could have a drop down showing just the pages in the session
history, and not showing any of the states. Similarly, an aural browser could have two "back" commands, one that
goes back to the previous state, and one that jumps straight back to the previous page.

In addition, a user agent could ignore calls to pushState()p480 that are invoked on a timer, or from event listeners that
are not triggered in response to a clear user action, or that are invoked in rapid succession.

6.5 Browsing the Web

Certain actions cause the browsing contextp463 to navigatep484 to a new resource. Navigation always involves source
browsing context, which is the browsing context which was responsible for starting the navigation.

For example, following a hyperlinkp405, form submissionp381, and the window.open()p470 and
location.assign()p483 methods can all cause a browsing context to navigate.

A user agent may provide various ways for the user to explicitly cause a browsing context to navigate, in addition to
those defined in this specification.

When a browsing context is navigated to a new resource, the user agent must run the following steps:

1. Release the storage mutexp517.

2. If the source browsing contextp484 is not the same as the browsing contextp463 being navigated, and the
source browsing contextp484 is not one of the ancestor browsing contextsp464 of the browsing contextp463

being navigated, and the browsing contextp463 being navigated is not both a top-level browsing contextp464

and one of the ancestor browsing contextsp464 of the source browsing contextp484, and the source browsing
contextp484 had its sandboxed navigation browsing context flagp214 set when its active documentp463 was
created, then abort these steps.

Otherwise, if the browsing contextp463 being navigated is a top-level browsing contextp464, and is one of the
ancestor browsing contextsp464 of the source browsing contextp484, and the source browsing contextp484 had
its sandboxed top-level navigation browsing context flagp214 set when its active documentp463 was created,
then abort these steps.

In both cases, the user agent may additionally offer to open the new resource in a new top-level browsing
contextp464 or in the top-level browsing contextp464 of the source browsing contextp484, at the user's option, in
which case the user agent must navigatep484 that designated top-level browsing contextp464 to the new
resource as if the user had requested it independently.

3. If the source browsing contextp484 is the same as the browsing contextp463 being navigated, and this
browsing context has its seamless browsing context flagp216 set, then find the nearest ancestor browsing
contextp464 that does not have its seamless browsing context flagp216 set, and continue these steps as if that
browsing contextp463 was the one that was going to be navigatedp484 instead.

4. If there is a preexisting attempt to navigate the browsing contextp463, and the source browsing contextp484 is
the same as the browsing contextp463 being navigated, and that attempt is currently running the unload a
documentp494 algorithm, and the originp474 of the URLp54 of the resource being loaded in that navigation is

6.4.4 Implementation notes for session history

6.5.1 Navigating across documents

484

not the same originp476 as the originp474 of the URLp54 of the resource being loaded in this navigation, then
abort these steps without affecting the preexisting attempt to navigate the browsing contextp463.

5. If there is a preexisting attempt to navigate the browsing contextp463, and either that attempt has not yet
maturedp487 (i.e. it has not passed the point of making its Documentp33 the active documentp463), or that
navigation's resource is not to be fetched using HTTP GET or equivalentp60, or its resource's absolute URLp55

differs from this attempt's by more than the presence, absence, or value of the <fragment>p55 component,
then cancel that preexisting attempt to navigate the browsing contextp463.

6. Fragment identifiers: If the absolute URLp55 of the new resource is the same as the addressp75 of the active
documentp463 of the browsing contextp463 being navigated, ignoring any <fragment>p55 components of those
URLsp54, and the new resource is to be fetched using HTTP GET or equivalentp60, and the absolute URLp55 of
the new resource has a <fragment>p55 component (even if it is empty), then navigate to that fragment
identifierp490 and abort these steps.

7. Cancel any preexisting attempt to navigate the browsing contextp463.

8. If the new resource is to be handled using a mechanism that does not affect the browsing context, e.g.
ignoring the navigation request altogether because the specified scheme is not one of the supported
protocols, then abort these steps and proceed with that mechanism instead.

9. Prompt to unloadp494 the Documentp33 object. If the user refused to allow the document to be unloadedp494,
then these steps must be aborted.

10. If the new resource is to be handled by displaying some sort of inline content, e.g. an error message because
the specified scheme is not one of the supported protocols, or an inline prompt to allow the user to select a
registered handlerp531 for the given scheme, then display the inline contentp490 and abort these steps.

Note: In the case of a registered handler being used, the algorithm will be reinvoked with
a new URL to handle the request.

11. If the new resource is to be fetched using HTTP GET or equivalentp60, then check if there are any relevant
application cachesp498 that are identified by a URL with the same originp476 as the URL in question, and that
have this URL as one of their entries, excluding entries marked as foreignp497. If so, then the user agent must
then get the resource from the most appropriate application cachep498 of those that match.

For example, imagine an HTML page with an associated application cache displaying an image and a
form, where the image is also used by several other application caches. If the user right-clicks on the
image and chooses "View Image", then the user agent could decide to show the image from any of
those caches, but it is likely that the most useful cache for the user would be the one that was used
for the aforementioned HTML page. On the other hand, if the user submits the form, and the form
does a POST submission, then the user agent will not use an application cache at all; the submission
will be made to the network.

Otherwise, unless it has already been obtained, fetchp58 the new resource, with the manual redirect flag set.

If the resource is being fetched using a method other than one equivalent top60 HTTP's GET, or, if the
navigation algorithmp484 was invoked as a result of the form submission algorithmp381, then the fetching
algorithmp58 must be invoked from the originp474 of the active documentp463 of the source browsing
contextp484, if any.

If the browsing contextp463 being navigated is a child browsing contextp463 for an iframep211 or objectp220

element, then the fetching algorithmp58 must be invoked from the iframep211 or objectp220 element's
browsing context scope originp465, if it has one.

12. At this point, unless this step has already been reached once before in the execution of this instance of the
algorithm, the user agents must return to whatever algorithm invoked the navigation steps and must
continue these steps asynchronously.

13. If fetching the resource results in a redirect, and either the URLp54 of the target of the redirect has the same
originp476 as the original resource, or the resource is being obtained using the POST method or a safe method
(in HTTP terms), return to the step labeled "fragment identifiers"p485 with the new resource.

Otherwise, if fetching the resource results in a redirect but the URLp54 of the target of the redirect does not
have the same originp476 as the original resource and the resource is being obtained using a method that is
neither the POST method nor a safe method (in HTTP terms), then abort these steps. The user agent may
indicate to the user that the navigation has been aborted for security reasons.

485

14. Wait for one or more bytes to be available or for the user agent to establish that the resource in question is
empty. During this time, the user agent may allow the user to cancel this navigation attempt or start other
navigation attempts.

15. If the resource was not fetched from an application cachep497, and was to be fetched using HTTP GET or
equivalentp60, and its URL matches the fallback namespacep498 of one or more relevant application
cachesp498, and the user didn't cancel the navigation attempt during the previous step, and the navigation
attempt failed (e.g. the server returned a 4xx or 5xx status code or equivalentp60, or there was a DNS error),
then:

Let candidate be the fallback resourcep497 specified for the fallback namespacep497 in question. If multiple
application caches match, the user agent must use the fallback of the most appropriate application cachep498

of those that match.

If candidate is not marked as foreignp497, then the user agent must discard the failed load and instead
continue along these steps using candidate as the resource. The document's addressp75, if appropriate, will
still be the originally requested URL, not the fallback URL, but the user agent may indicate to the user that
the original page load failed, that the page used was a fallback resource, and what the URL of the fallback
resource actually is.

16. If the document's out-of-band metadata (e.g. HTTP headers), not counting any type informationp61 (such as
the Content-Type HTTP header), requires some sort of processing that will not affect the browsing context,
then perform that processing and abort these steps.

Such processing might be triggered by, amongst other things, the following:

• HTTP status codes (e.g. 204 No Content or 205 Reset Content)
• HTTP Content-Disposition headers
• Network errors

HTTP 401 responses that do not include a challenge recognized by the user agent must be processed as if
they had no challenge, e.g. rendering the entity body as if the response had been 200 OK.

User agents may show the entity body of an HTTP 401 response even when the response do include a
recognized challenge, with the option to login being included in a non-modal fashion, to enable the
information provided by the server to be used by the user before authenticating. Similarly, user agents
should allow the user to authenticate (in a non-modal fashion) against authentication challenges included in
other responses such as HTTP 200 OK responses, effectively allowing resources to present HTTP login forms
without requiring their use.

17. Let type be the sniffed type of the resourcep61.

18. If the user agent has been configured to process resources of the given type using some mechanism other
than rendering the content in a browsing contextp463, then skip this step. Otherwise, if the type is one of the
following types, jump to the appropriate entry in the following list, and process the resource as described
there:

↪ "text/htmlp715"
↪ "text/html-sandboxedp716"

Follow the steps given in the HTML documentp488 section, and abort these steps.

↪ Any type ending in "+xml"
↪ "application/xml"
↪ "text/xml"

Follow the steps given in the XML documentp488 section. If that section determines that the content
is not to be displayed as a generic XML document, then proceed to the next step in this overall set
of steps. Otherwise, abort these steps.

↪ "text/plain"
Follow the steps given in the plain text filep489 section, and abort these steps.

↪ A supported image type
Follow the steps given in the imagep489 section, and abort these steps.

↪ A type that will use an external application to render the content in the browsing contextp463

Follow the steps given in the pluginp489 section, and abort these steps.

486

Setting the document's address: If there is no override URL, then any Documentp33 created by these
steps must have its addressp75 set to the URLp54 that was originally to be fetchedp58, ignoring any other data
that was used to obtain the resource (e.g. the entity body in the case of a POST submission is not part of the
document's addressp75, nor is the URL of the fallback resource in the case of the original load having failed
and that URL having been found to match a fallback namespacep497). However, if there is an override
URLp487, then any Documentp33 created by these steps must have its addressp75 set to that URLp54 instead.

Note: An override URLp487 is set when dereferencing a javascript: URLp518.

Creating a new Document object: When a Documentp33 is created as part of the above steps, a new
Windowp467 object must be created and associated with the Documentp33, with one exception: if the browsing
contextp463 's only entry in its session historyp478 is the about:blankp59 Documentp33 that was added when the
browsing contextp463 was created, and navigation is occurring with replacement enabledp492, and that
Documentp33 has the same originp476 as the new Documentp33, then the Windowp467 object of that Documentp33

must be used instead, and the documentp469 attribute of the Windowp467 object must be changed to point to
the new Documentp33 instead.

19. Non-document content: If, given type, the new resource is to be handled by displaying some sort of inline
content, e.g. a native rendering of the content, an error message because the specified type is not
supported, or an inline prompt to allow the user to select a registered handlerp531 for the given type, then
display the inline contentp490 and abort these steps.

Note: In the case of a registered handler being used, the algorithm will be reinvoked with
a new URL to handle the request.

20. Otherwise, the document's type is such that the resource will not affect the browsing context, e.g. because
the resource is to be handed to an external application. Process the resource appropriately.

Some of the sections below, to which the above algorithm defers in certain cases, require the user agent to update
the session history with the new page. When a user agent is required to do this, it must queue a taskp517 to run
the following steps:

1. Unloadp494 the Documentp33 object of the current entryp478, with the recycle parameter set to false.

2. If the navigation was initiated for entry update of an entry

1. Replace the Documentp33 of the entry being updated, and any other entries that referenced
the same document as that entry, with the new Documentp33.

2. Traverse the historyp491 to the new entry.

Note: This can only happen if the entry being updated is no the current entryp478,
and can never happen with replacement enabledp492. (It happens when the user
tried to traverse to a session history entry that no longer had a Documentp33 object.)

Otherwise

1. Remove all the entries in the browsing contextp463 's session historyp478 after the current
entryp478. If the current entryp478 is the last entry in the session history, then no entries are
removed.

Note: This doesn't necessarily have to affectp484 the user agent's user
interface.

2. Remove any tasksp517 queued by the history traversal task sourcep518.

3. Append a new entry at the end of the Historyp478 object representing the new resource and
its Documentp33 object and related state.

4. Traverse the historyp491 to the new entry. If the navigation was initiated with replacement
enabledp492, then the traversal must itself be initiated with replacement enabledp492.

3. The navigation algorithmp484 has now matured.

487

4. Fragment identifier loop: Spin the event loopp518 for a user-agent-defined amount of time, as desired by the
user agent implementor. (This is intended to allow the user agent to optimize the user experience in the face
of performance concerns.)

5. If the Documentp33 object has no parser, or its parser has stopped parsingp653, or the user agent has reason to
believe the user is no longer interested in scrolling to the fragment identifier, then abort these steps.

6. Scroll to the fragment identifierp490 given in the document's current addressp75. If this fails to find an
indicated part of the documentp490, then return to the fragment identifier loop step.

The task sourcep517 for this taskp517 is the networking task sourcep518.

When an HTML document is to be loaded in a browsing contextp463, the user agent must queue a taskp517 to create a
Document objectp487, mark it as being an HTML documentp75, create an HTML parserp584, and associate it with the
document. Each taskp517 that the networking task sourcep518 places on the task queuep517 while the fetching
algorithmp58 runs must then fill the parser's input streamp586 with the fetched bytes and cause the HTML parserp584 to
perform the appropriate processing of the input stream.

Note: The input streamp586 converts bytes into characters for use in the tokenizerp597. This process
relies, in part, on character encoding information found in the real Content-Type metadatap61 of
the resource; the "sniffed type" is not used for this purpose.

When no more bytes are available, the user agent must queue a taskp517 for the parser to process the implied EOF
character, which eventually causes a load event to be fired.

After creating the Documentp33 object, but before any script execution, certainly before the parser stopsp653, the user
agent must update the session history with the new pagep487.

Note: Application cache selectionp509 happens in the HTML parserp627.

The task sourcep517 for the two tasks mentioned in this section must be the networking task sourcep518.

When faced with displaying an XML file inline, user agents must first create a Document objectp487, following the
requirements of the XML and Namespaces in XML recommendations, RFC 3023, DOM3 Core, and other relevant
specifications. [XML]p743 [XMLNS]p743 [RFC3023]p741 [DOMCORE]p739

The actual HTTP headers and other metadata, not the headers as mutated or implied by the algorithms given in this
specification, are the ones that must be used when determining the character encoding according to the rules given in
the above specifications. Once the character encoding is established, the document's character encodingp79 must be
set to that character encoding.

If the root element, as parsed according to the XML specifications cited above, is found to be an htmlp112 element with
an attribute manifestp112 whose value is not the empty string, then, as soon as the element is inserted into the
documentp29, the user agent must resolvep55 the value of that attribute relative to that element, and if that is
successful, must run the application cache selection algorithmp509 with the resulting absolute URLp55 with any
<fragment>p55 component removed as the manifest URL, and passing in the newly-created Documentp33. Otherwise, if
the attribute is absent, its value is the empty string, or resolving its value fails, then as soon as the root element is
inserted into the documentp29, the user agent must run the application cache selection algorithmp509 with no manifest,
and passing in the Documentp33.

Note: Because the processing of the manifestp112 attribute happens only once the root element is
parsed, any URLs referenced by processing instructions before the root element (such as <?xml-
stylesheet?> and <?xbl?> PIs) will be fetched from the network and cannot be cached.

User agents may examine the namespace of the root Elementp33 node of this Documentp33 object to perform
namespace-based dispatch to alternative processing tools, e.g. determining that the content is actually a syndication
feed and passing it to a feed handler. If such processing is to take place, abort the steps in this section, and jump to
the next stepp487 (labeled "non-document content") in the navigatep484 steps above.

6.5.2 Page load processing model for HTML files

6.5.3 Page load processing model for XML files

488

Otherwise, then, with the newly created Documentp33, the user agents must update the session history with the new
pagep487. User agents may do this before the complete document has been parsed (thus achieving incremental
rendering), and must do this before any scripts are to be executed.

Error messages from the parse process (e.g. XML namespace well-formedness errors) may be reported inline by
mutating the Documentp33.

When a plain text document is to be loaded in a browsing contextp463, the user agent should queue a taskp517 to create
a Document objectp487, mark it as being an HTML documentp75, create an HTML parserp584, associate it with the
document, act as if the tokenizer had emitted a start tag token with the tag name "pre" followed by a single U+000A
LINE FEED (LF) character, and switch the HTML parserp584 's tokenizer to the PLAINTEXT statep598. Each taskp517 that the
networking task sourcep518 places on the task queuep517 while the fetching algorithmp58 runs must then fill the parser's
input streamp586 with the fetched bytes and cause the HTML parserp584 to perform the appropriate processing of the
input stream.

The rules for how to convert the bytes of the plain text document into actual characters are defined in RFC 2046, RFC
2646, and subsequent versions thereof. [RFC2046]p741 [RFC2646]p741

The document's character encodingp79 must be set to the character encoding used to decode the document.

Upon creation of the Documentp33 object, the user agent must run the application cache selection algorithmp509 with no
manifest, and passing in the newly-created Documentp33.

When no more bytes are available, the user agent must queue a taskp517 for the parser to process the implied EOF
character, which eventually causes a load event to be fired.

After creating the Documentp33 object, but potentially before the page has finished parsing, the user agent must update
the session history with the new pagep487.

User agents may add content to the headp112 element of the Documentp33, e.g. linking to a style sheet or an XBL
binding, providing script, giving the document a titlep113, etc.

The task sourcep517 for the two tasks mentioned in this section must be the networking task sourcep518.

When an image resource is to be loaded in a browsing contextp463, the user agent should create a Document objectp487,
mark it as being an HTML documentp75, append an htmlp112 element to the Documentp33, append a headp112 element
and a bodyp138 element to the htmlp112 element, append an imgp196 to the bodyp138 element, and set the srcp197

attribute of the imgp196 element to the address of the image.

Then, the user agent must act as if it had stopped parsingp653.

Upon creation of the Documentp33 object, the user agent must run the application cache selection algorithmp509 with no
manifest, and passing in the newly-created Documentp33.

After creating the Documentp33 object, but potentially before the page has finished fully loading, the user agent must
update the session history with the new pagep487.

User agents may add content to the headp112 element of the Documentp33, or attributes to the imgp196 element, e.g. to
link to a style sheet or an XBL binding, to provide a script, to give the document a titlep113, etc.

When a resource that requires an external resource to be rendered is to be loaded in a browsing contextp463, the user
agent should create a Document objectp487, mark it as being an HTML documentp75, append an htmlp112 element to the
Documentp33, append a headp112 element and a bodyp138 element to the htmlp112 element, append an embedp217 to the
bodyp138 element, and set the srcp218 attribute of the embedp217 element to the address of the resource.

Then, the user agent must act as if it had stopped parsingp653.

Upon creation of the Documentp33 object, the user agent must run the application cache selection algorithmp509 with no
manifest, and passing in the newly-created Documentp33.

6.5.4 Page load processing model for text files

6.5.5 Page load processing model for images

6.5.6 Page load processing model for content that uses plugins

489

After creating the Documentp33 object, but potentially before the page has finished fully loading, the user agent must
update the session history with the new pagep487.

User agents may add content to the headp112 element of the Documentp33, or attributes to the embedp217 element, e.g.
to link to a style sheet or an XBL binding, or to give the document a titlep113.

Note: If the sandboxed plugins browsing context flagp214 was set on the browsing contextp463

when the Documentp33 was created, the synthesized embedp217 element will fail to render the
contentp218.

When the user agent is to display a user agent page inline in a browsing contextp463, the user agent should create a
Document objectp487, mark it as being an HTML documentp75, and then either associate that Documentp33 with a custom
rendering that is not rendered using the normal Documentp33 rendering rules, or mutate that Documentp33 until it
represents the content the user agent wants to render.

Once the page has been set up, the user agent must act as if it had stopped parsingp653.

Upon creation of the Documentp33 object, the user agent must run the application cache selection algorithmp509 with no
manifest, passing in the newly-created Documentp33.

After creating the Documentp33 object, but potentially before the page has been completely set up, the user agent must
update the session history with the new pagep487.

When a user agent is supposed to navigate to a fragment identifier, then the user agent must queue a taskp517 to run
the following steps:

1. Remove all the entries in the browsing contextp463 's session historyp478 after the current entryp478. If the
current entryp478 is the last entry in the session history, then no entries are removed.

Note: This doesn't necessarily have to affectp484 the user agent's user interface.

2. Remove any tasksp517 queued by the history traversal task sourcep518.

3. Append a new entry at the end of the Historyp478 object representing the new resource and its Documentp33

object and related state. Its URLp54 must be set to the address to which the user agent was navigatingp484.
The title must be left unset.

4. Traverse the historyp491 to the new entry. This will scroll to the fragment identifierp490 given in what is now
the document's current addressp75.

Note: If the scrolling fails because the relevant ID has not yet been parsed, then the original
navigationp484 algorithm will take care of the scrolling instead, as the last few steps of its update
the session history with the new pagep487 algorithm.

When the user agent is required to scroll to the fragment identifier, it must change the scrolling position of the
document, or perform some other action, such that the indicated part of the documentp490 is brought to the user's
attention. If there is no indicated part, then the user agent must not scroll anywhere.

The indicated part of the document is the one that the fragment identifier, if any, identifies. The semantics of the
fragment identifier in terms of mapping it to a specific DOM Node is defined by the specification that defines the MIME
typep28 used by the Documentp33 (for example, the processing of fragment identifiers for XML MIME typesp29 is the
responsibility of RFC3023). [RFC3023]p741

For HTML documents (and HTML MIME typesp28), the following processing model must be followed to determine what
the indicated part of the documentp490 is.

1. Parsep54 the URLp54, and let fragid be the <fragment>p55 component of the URL.

2. If fragid is the empty string, then the indicated part of the documentp490 is the top of the document; stop the
algorithm here.

6.5.7 Page load processing model for inline content that doesn't have a DOM

6.5.8 Navigating to a fragment identifier

490

3. Let decoded fragid be the result of expanding any sequences of percent-encoded octets in fragid that are
valid UTF-8 sequences into Unicode characters as defined by UTF-8. If any percent-encoded octets in that
string are not valid UTF-8 sequences, then skip this step and the next one.

4. If this step was not skipped and there is an element in the DOM that has an ID exactly equal to decoded
fragid, then the first such element in tree order is the indicated part of the documentp490; stop the algorithm
here.

5. If there is an ap169 element in the DOM that has a namep698 attribute whose value is exactly equal to fragid
(not decoded fragid), then the first such element in tree order is the indicated part of the documentp490; stop
the algorithm here.

6. If fragid is an ASCII case-insensitivep35 match for the string top, then the indicated part of the documentp490

is the top of the document; stop the algorithm here.

7. Otherwise, there is no indicated part of the documentp490.

For the purposes of the interaction of HTML with Selectors' :target pseudo-class, the target element is the indicated
part of the documentp490, if that is an element; otherwise there is no target elementp491. [SELECTORS]p742

When a user agent is required to traverse the history to a specified entry, optionally with replacement enabledp492,
the user agent must act as follows:

1. If there is no longer a Documentp33 object for the entry in question, the user agent must navigatep484 the
browsing context to the location for that entry to perform an entry updatep487 of that entry, and abort these
steps. The "navigatep484" algorithm reinvokes this "traverse" algorithm to complete the traversal, at which
point there is a Documentp33 object and so this step gets skipped. The navigation must be done using the
same source browsing contextp484 as was used the first time this entry was created. (This can never happen
with replacement enabledp492.)

2. If the current entryp478 's title was not set by the pushState()p480 or replaceState()p480 methods, then set
its title to the value returned by the document.titlep80 IDL attribute.

3. If appropriate, update the current entryp478 in the browsing contextp463 's Documentp33 object's Historyp478

object to reflect any state that the user agent wishes to persist. The entry is then said to be an entry with
persisted user state.

For example, some user agents might want to persist the scroll position, or the values of form
controls.

4. If the specified entry has a different Documentp33 object than the current entryp478 then the user agent must
run the following substeps:

1. If the browsing context is a top-level browsing contextp464, but not an auxiliary browsing
contextp465, and the originp474 of the Documentp33 of the specified entry is not the samep476 as the
originp474 of the Documentp33 of the current entryp478, then the following sub-sub-steps must be run:

1. The current browsing context namep466 must be stored with all the entries in the history
that are associated with Documentp33 objects with the same originp476 as the active
documentp463 and that are contiguous with the current entryp478.

2. The browsing context's browsing context namep466 must be unset.

2. The user agent must make the specified entry's Documentp33 object the active documentp463 of the
browsing contextp463.

3. If the specified entry has a browsing context namep466 stored with it, then the following sub-sub-
steps must be run:

1. The browsing context's browsing context namep466 must be set to the name stored with
the specified entry.

2. Any browsing context namep466 stored with the entries in the history that are associated
with Documentp33 objects with the same originp476 as the new active documentp463, and
that are contiguous with the specified entry, must be cleared.

4. If the specified entry's Documentp33 has any inputp320 elements whose resulting autocompletion
statep342 is off, invoke the reset algorithmp387 of each of those elements.

6.5.9 History traversal

491

5. If the current document readinessp79 of the specified entry's Documentp33 is "complete", queue a
taskp517 to fire a pageshowp493 event at the Windowp467 object of that Documentp33, but with its
targetp33 set to the Documentp33 object (and the currentTarget set to the Windowp467 object),
using the PageTransitionEventp493 interface, with the persistedp493 attribute set to true. This
event must not bubble, must not be cancelable, and has no default action.

5. Set the document's current addressp75 to the URL of the specified entry.

6. If the specified entry has a URL that differs from the current entryp478 's only by its fragment identifier, and
the two share the same Documentp33 object, then let hash changed be true, and let old URL be the URL of the
current entryp478 and new URL be the URL of the specified entry. Otherwise, let hash changed be false.

7. If the traversal was initiated with replacement enabled, remove the entry immediately before the
specified entry in the session history.

8. If the specified entry is not an entry with persisted user statep491, but its URL has a fragment identifier, scroll
to the fragment identifierp490.

9. If the entry is an entry with persisted user statep491, the user agent may update aspects of the document
and its rendering, for instance the scroll position or values of form fields, that it had previously recorded.

10. If the specified entry is a state object or the first entry for a Documentp33, the user agent must run the
following substeps:

1. If the entry is a state objectp478 entry, let state be a structured clonep71 of that state object.
Otherwise, let state be null.

2. Run the appropriate steps according to the conditions described:

↪ If the current document readinessp79 is set to the string "complete"
Queue a taskp517 to fire a popstatep492 event at the Windowp467 object of the Documentp33,
using the PopStateEventp492 interface, with the statep493 attribute set to the value of
state. This event must bubble but not be cancelable and has no default action.

↪ Otherwise
Let the Documentp33 's pending state object be state. (If there was already a pending
state objectp492, the previous one is discarded.)

Note: The event will then be fired just after the load event.

11. If hash changed is true, then queue a taskp517 to fire a hashchangep493 event at the browsing contextp463 's
Windowp467 object, using the HashChangeEventp493 interface, with the oldURLp493 attribute set to old URL and
the newURLp493 attribute set to new URL. This event must bubble but not be cancelable and has no default
action.

12. The current entryp478 is now the specified entry.

The pending state objectp492 must be initially null.

The task sourcep517 for the tasks mentioned above is the DOM manipulation task sourcep518.

6.5.9.1 Event definitions

The popstate event is fired when navigating to a session history entryp478 that represents a state object.

interface PopStateEvent : Event {
readonly attribute any state;
void initPopStateEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean

cancelableArg, in any stateArg);
};

This box is non-normative. Implementation requirements are given below this box.

492

event . statep493

Returns a copy of the information that was provided to pushState()p480 or replaceState()p480.

The initPopStateEvent() method must initialize the event in a manner analogous to the similarly-named method in
the DOM Events interfaces. [DOMEVENTS]p739

The state attribute represents the context information for the event, or null, if the state represented is the initial state
of the Documentp33.

The hashchange event is fired when navigating to a session history entryp478 whose URLp54 differs from that of the
previous one only in the fragment identifier.

interface HashChangeEvent : Event {
readonly attribute any oldURL;
readonly attribute any newURL;
void initHashChangeEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean

cancelableArg, in DOMString oldURLArg, in DOMString newURLArg);
};

This box is non-normative. Implementation requirements are given below this box.

event . oldURLp493

Returns the URLp54 of the session history entryp478 that was previously current.

event . newURLp493

Returns the URLp54 of the session history entryp478 that is now current.

The initHashChangeEvent() method must initialize the event in a manner analogous to the similarly-named method
in the DOM Events interfaces. [DOMEVENTS]p739

The oldURL attribute represents context information for the event, specifically the URL of the session history entryp478

that was traversed from.

The newURL attribute represents context information for the event, specifically the URL of the session history entryp478

that was traversed to.

The pageshow event is fired when traversing to a session history entryp478.

The pagehide event is fired when traversing from a session history entryp478.

interface PageTransitionEvent : Event {
readonly attribute any persisted;
void initPageTransitionEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean

cancelableArg, in any persistedArg);
};

This box is non-normative. Implementation requirements are given below this box.

event . persistedp493

Returns false if the page is newly being loaded (and the load event will fire). Otherwise, returns true.

The initPageTransitionEvent() method must initialize the event in a manner analogous to the similarly-named
method in the DOM Events interfaces. [DOMEVENTS]p739

The persisted attribute represents the context information for the event.

493

A Documentp33 has a salvageable state, which is initially true.

When a user agent is to prompt to unload a document, it must run the following steps.

1. Let event be a new BeforeUnloadEventp495 event object with the name beforeunload, which does not
bubble but is cancelable.

2. Dispatch: Dispatch event at the Documentp33 's Windowp467 object.

3. Release the storage mutexp517.

4. If any event listeners were triggered by the earlier dispatch step, then set the Documentp33 's salvageable
state to false.

5. If the returnValuep495 attribute of the event object is not the empty string, or if the event was canceled,
then the user agent should ask the user to confirm that they wish to unload the document.

The prompt shown by the user agent may include the string of the returnValuep495 attribute, or some
leading subset thereof. (A user agent may want to truncate the string to 1024 characters for display, for
instance.)

The user agent must pausep518 while waiting for the user's response.

If the user did not confirm the page navigation, then the user agent refused to allow the document to be
unloaded.

6. If this algorithm was invoked by another instance of the "prompt to unload a document" algorithm (i.e.
through the steps below that invoke this algorithm for all descendant browsing contexts), then abort these
steps here.

7. Let descendants be the list of the descendant browsing contextsp464 of the Documentp33.

8. If descendants is not an empty list, then for each browsing contextp463 b in descendants run the following
substeps:

1. Prompt to unloadp494 the active documentp463 of the browsing contextp463 b. If the user refused to
allow the document to be unloadedp494, then the user implicitly also refused to allow this document
to be unloadedp494; abort these steps.

2. If salvageable state of the active documentp463 of the browsing contextp463 b is false, then set the
salvageable state of this document to false also.

When a user agent is to unload a document, it must run the following steps. These steps are passed an argument,
recycle, which is either true or false, indicating whether the Documentp33 object is going to be re-used. (This is set by
the document.open()p105 method.)

1. Fire a pagehidep493 event at the Windowp467 object of the Documentp33, but with its targetp33 set to the
Documentp33 object (and the currentTarget set to the Windowp467 object), using the
PageTransitionEventp493 interface, with the persistedp493 attribute set to true. This event must not bubble,
must not be cancelable, and has no default action.

2. Unload event: Fire a simple eventp523 named unload at the Documentp33 's Windowp467 object.

3. Release the storage mutexp517.

4. If any event listeners were triggered by the earlier unload event step, then set the Documentp33 object's
salvageable state to false.

5. Run any unloading document cleanup stepsp495 for Documentp33 that are defined by this specification or any
other relevant specifications.

6. If this algorithm was invoked by another instance of the "unload a document" algorithm (i.e. through the
steps below that invoke this algorithm for all descendant browsing contexts), then abort these steps here.

7. Let descendants be the list of the descendant browsing contextsp464 of the Documentp33.

8. If descendants is not an empty list, then for each browsing contextp463 b in descendants run the following
substeps:

6.5.10 Unloading documents

494

1. Unloadp494 the active documentp463 of the browsing contextp463 b with the recycle parameter set to
false.

2. If salvageable state of the active documentp463 of the browsing contextp463 b is false, then set the
salvageable state of this document to false also.

9. If salvageable and recycle are both false, then the Documentp33 's browsing contextp463 must discard the
Documentp472.

This specification defines the following unloading document cleanup steps. Other specifications can define more.

1. If there are any outstanding transactions that have callbacks that involve scriptsp514 whose global objectp515

is the Documentp33 's Windowp467 object, roll them back (without invoking any of the callbacks) and set the
Documentp33 's salvageable state to false. [WEBSQL]p742

2. Close the WebSocket connection of any WebSocket objects that were created by the WebSocket()
constructor visible on the Documentp33 's Windowp467 object. If this affected any WebSocket objects, the set
Documentp33 's salvageable state to false. [WEBSOCKET]p742

3. If the Documentp33 's salvageable state is false, empty the Documentp33 's Windowp467 's list of active
timeoutsp525 and its list of active intervalsp525.

6.5.10.1 Event definition

interface BeforeUnloadEvent : Event {
attribute DOMString returnValue;

};

This box is non-normative. Implementation requirements are given below this box.

event . returnValuep495 [= value]
Returns the current return value of the event (the message to show the user).
Can be set, to update the message.

Note: There are no BeforeUnloadEventp495-specific initialization methods.

The returnValue attribute represents the message to show the user. When the event is created, the attribute must be
set to the empty string. On getting, it must return the last value it was set to. On setting, the attribute must be set to
the new value.

If the user cancels any instance of the fetching algorithmp58 in the context of a Documentp33 in a browsing contextp463,
then, if that Documentp33 is an active documentp463, the user agent must queue a taskp517 to fire a simple eventp523

named abort at that Documentp33 's Windowp467 object.

6.6 Offline Web applications

This section is non-normative.

In order to enable users to continue interacting with Web applications and documents even when their network
connection is unavailable — for instance, because they are traveling outside of their ISP's coverage area — authors
can provide a manifest which lists the files that are needed for the Web application to work offline and which causes
the user's browser to keep a copy of the files for use offline.

To illustrate this, consider a simple clock applet consisting of an HTML page "clock.html", a CSS style sheet
"clock.css", and a JavaScript script "clock.js".

Before adding the manifest, these three files might look like this:

6.5.11 Aborting a document load

6.6.1 Introduction

495

<!-- clock.html -->
<!DOCTYPE HTML>
<html>
<head>
<title>Clock</title>
<script src="clock.js"></script>
<link rel="stylesheet" href="clock.css">

</head>
<body>
<p>The time is: <output id="clock"></output></p>

</body>
</html>
/* clock.css */
output { font: 2em sans-serif; }
/* clock.js */
setTimeout(function () {

document.getElementById('clock').value = new Date();
}, 1000);

If the user tries to open the "clock.html" page while offline, though, the user agent (unless it happens to have it still
in the local cache) will fail with an error.

The author can instead provide a manifest of the three files:

CACHE MANIFEST
clock.html
clock.css
clock.js

With a small change to the HTML file, the manifest (served as text/cache-manifestp718) is linked to the application:

<!-- clock.html -->
<!DOCTYPE HTML>
<html manifest="clock.manifest">
<head>
<title>Clock</title>
<script src="clock.js"></script>
<link rel="stylesheet" href="clock.css">

</head>
<body>
<p>The time is: <output id="clock"></output></p>

</body>
</html>

Now, if the user goes to the page, the browser will cache the files and make them available even when the user is
offline.

Note: Authors are encouraged to include the main page in the manifest also, but in practice the
page that referenced the manifest is automatically cached even if it isn't explicitly mentioned.

Note: HTTP cache headers and restrictions on caching pages served over TLS (encrypted, using
https:) are overridden by manifests. Thus, pages will not expire from an application cache before
the user agent has updated it, and even applications served over TLS can be made to work offline.

6.6.1.1 Event summary

This section is non-normative.

When the user visits a page that declares a manifest, the browser will try to update the cache. It does this by fetching
a copy of the manifest and, if the manifest has changed since the user agent last saw it, redownloading all the
resources it mentions and caching them anew.

As this is going on, a number of events get fired on the ApplicationCachep510 object to keep the script updated as to
the state of the cache update, so that the user can be notified appropriately. The events are as follows:

496

Event
name

Interface Dispatched when... Next events

checking Eventp33 The user agent is checking for an update, or attempting to download the
manifest for the first time. This is always the first event in the sequence.

noupdatep497,
downloadingp497,
obsoletep497, errorp497

noupdate Eventp33 The manifest hadn't changed. Last event in sequence.
downloading Eventp33 The user agent has found an update and is fetching it, or is downloading the

resources listed by the manifest for the first time.
progressp497, errorp497,
cachedp497, updatereadyp497

progress ProgressEvent The user agent is downloading resources listed by the manifest. progressp497, errorp497,
cachedp497, updatereadyp497

cached Eventp33 The resources listed in the manifest have been downloaded, and the
application is now cached.

Last event in sequence.

updateready Eventp33 The resources listed in the manifest have been newly redownloaded, and the
script can use swapCache()p512 to switch to the new cache.

Last event in sequence.

obsolete Eventp33 The manifest was found to have become a 404 or 410 page, so the application
cache is being deleted.

Last event in sequence.

The manifest was a 404 or 410 page, so the attempt to cache the application
has been aborted.
The manifest hadn't changed, but the page referencing the manifest failed to
download properly.
A fatal error occurred while fetching the resources listed in the manifest.

Last event in sequence.error Eventp33

The manifest changed while the update was being run. The user agent will try
fetching the files again
momentarily.

An application cache is a set of cached resources consisting of:

• One or more resources (including their out-of-band metadata, such as HTTP headers, if any), identified by
URLs, each falling into one (or more) of the following categories:

Master entries
Documents that were added to the cache because a browsing contextp463 was navigatedp484 to that
document and the document indicated that this was its cache, using the manifestp112 attribute.

The manifest
The resource corresponding to the URL that was given in a master entry's htmlp112 element's
manifestp112 attribute. The manifest is fetched and processed during the application cache download
processp503. All the master entriesp497 have the same originp476 as the manifest.

Explicit entries
Resources that were listed in the cache's manifestp497 in an explicit sectionp500. Explicit entries can also
be marked as foreign, which means that they have a manifestp112 attribute but that it doesn't point at
this cache's manifestp497.

Fallback entries
Resources that were listed in the cache's manifestp497 in a fallback sectionp500.

Note: A URL in the list can be flagged with multiple different types, and thus an entry can
end up being categorized as multiple entries. For example, an entry can be a manifest
entry and an explicit entry at the same time, if the manifest is listed within the manifest.

• Zero or more fallback namespaces: URLs, used as prefix match patternsp498, each of which is mapped to a
fallback entryp497. Each namespace URL has the same originp476 as the manifestp497.

• Zero or more URLs that form the online whitelist namespaces.

• An online whitelist wildcard flag, which is either open or blocking.

Each application cachep497 has a completeness flag, which is either complete or incomplete.

An application cache group is a group of application cachesp497, identified by the absolute URLp55 of a resource
manifestp497 which is used to populate the caches in the group.

6.6.2 Application caches

497

An application cachep497 is newer than another if it was created after the other (in other words, application cachesp497

in an application cache groupp497 have a chronological order).

Only the newest application cachep497 in an application cache groupp497 can have its completeness flagp497 set to
incomplete; the others are always all complete.

Each application cache groupp497 has an update status, which is one of the following: idle, checking, downloading.

A relevant application cache is an application cachep497 that is the newestp498 in its groupp497 to be complete.

Each application cache groupp497 has a list of pending master entries. Each entry in this list consists of a resource
and a corresponding Documentp33 object. It is used during the application cache download processp503 to ensure that
new master entries are cached even if the application cache download processp503 was already running for their
application cache groupp497 when they were loaded.

An application cache groupp497 can be marked as obsolete, meaning that it must be ignored when looking at what
application cache groupsp497 exist.

A cache host is a Documentp33 or a SharedWorkerGlobalScope object. A cache hostp498 can be associated with an
application cachep497. [WEBWORKERS]p743

A Documentp33 initially is not associated with an application cachep497, but can become associated with one early
during the page load process, when steps in the parserp627 and in the navigationp484 sections cause cache selectionp509

to occur.

A SharedWorkerGlobalScope can be associated with an application cachep497 when it is created. [WEBWORKERS]p743

Each cache hostp498 has an associated ApplicationCachep510 object.

Multiple application cachesp497 in different application cache groupsp497 can contain the same resource, e.g. if the
manifests all reference that resource. If the user agent is to select an application cache from a list of relevant
application cachesp498 that contain a resource, the user agent must use the application cache that the user most likely
wants to see the resource from, taking into account the following:

• which application cache was most recently updated,

• which application cache was being used to display the resource from which the user decided to look at the
new resource, and

• which application cache the user prefers.

A URL matches a fallback namespace if there exists a relevant application cachep498 whose manifestp497 's URL has
the same originp476 as the URL in question, and that has a fallback namespacep497 that is a prefix matchp36 for the URL
being examined. If multiple fallback namespaces match the same URL, the longest one is the one that matches. A URL
looking for a fallback namespace can match more than one application cache at a time, but only matches one
namespace in each cache.

If a manifest http://example.com/app1/manifest declares that http://example.com/resources/images is a
fallback namespace, and the user navigates to HTTP://EXAMPLE.COM:80/resources/images/cat.png, then the
user agent will decide that the application cache identified by http://example.com/app1/manifest contains a
namespace with a match for that URL.

6.6.3.1 A sample manifest

This section is non-normative.

This example manifest requires two images and a style sheet to be cached and whitelists a CGI script.

CACHE MANIFEST
the above line is required

this is a comment
there can be as many of these anywhere in the file
they are all ignored

comments can have spaces before them

6.6.3 The cache manifest syntax

498

but must be alone on the line

blank lines are ignored too

these are files that need to be cached they can either be listed
first, or a "CACHE:" header could be put before them, as is done
lower down.
images/sound-icon.png
images/background.png
note that each file has to be put on its own line

here is a file for the online whitelist -- it isn't cached, and
references to this file will bypass the cache, always hitting the
network (or trying to, if the user is offline).
NETWORK:
comm.cgi

here is another set of files to cache, this time just the CSS file.
CACHE:
style/default.css

It could equally well be written as follows:

CACHE MANIFEST
NETWORK:
comm.cgi
CACHE:
style/default.css
images/sound-icon.png
images/background.png

The following manifest defines a catch-all error page that is displayed for any page on the site while the user is offline.
It also specifies that the online whitelist wildcard flagp497 is open, meaning that accesses to resources on other sites
will not be blocked. (Resources on the same site are already not blocked because of the catch-all fallback namespace.)

So long as all pages on the site reference this manifest, they will get cached locally as they are fetched, so that
subsequent hits to the same page will load the page immediately from the cache. Until the manifest is changed, those
pages will not be fetched from the server again. When the manifest changes, then all the files will be redownloaded.

Subresources, such as style sheets, images, etc, would only be cached using the regular HTTP caching semantics,
however.

CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*

6.6.3.2 Writing cache manifests

Manifests must be served using the text/cache-manifestp718 MIME typep28. All resources served using the text/
cache-manifestp718 MIME typep28 must follow the syntax of application cache manifests, as described in this section.

An application cache manifest is a text file, whose text is encoded using UTF-8. Data in application cache manifests is
line-based. Newlines must be represented by U+000A LINE FEED (LF) characters, U+000D CARRIAGE RETURN (CR)
characters, or U+000D CARRIAGE RETURN (CR) U+000A LINE FEED (LF) pairs.

Note: This is a willful violationp18 of two aspects of RFC 2046, which requires all text/* types to
support an open-ended set of character encodings and only allows CRLF line breaks. These
requirements, however, are outdated; UTF-8 is now widely used, such that supporting other
encodings is no longer necessary, and use of CR, LF, and CRLF line breaks is commonly supported
and indeed sometimes CRLF is not supported by text editors. [RFC2046]p741

The first line of an application cache manifest must consist of the string "CACHE", a single U+0020 SPACE character,
the string "MANIFEST", and either a U+0020 SPACE character, a U+0009 CHARACTER TABULATION (tab) character, a

499

U+000A LINE FEED (LF) character, or a U+000D CARRIAGE RETURN (CR) character. The first line may optionally be
preceded by a U+FEFF BYTE ORDER MARK (BOM) character. If any other text is found on the first line, it is ignored.

Subsequent lines, if any, must all be one of the following:

A blank line
Blank lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters
only.

A comment
Comment lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab)
characters, followed by a single U+0023 NUMBER SIGN character (#), followed by zero or more characters other
than U+000A LINE FEED (LF) and U+000D CARRIAGE RETURN (CR) characters.

Note: Comments must be on a line on their own. If they were to be included on a line with a
URL, the "#" would be mistaken for part of a fragment identifier.

A section header
Section headers change the current section. There are three possible section headers:

CACHE:
Switches to the explicit section.

FALLBACK:
Switches to the fallback section.

NETWORK:
Switches to the online whitelist section.

Section header lines must consist of zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab)
characters, followed by one of the names above (including the U+003A COLON character (:)) followed by zero or
more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters.

Ironically, by default, the current section is the explicit sectionp500.

Data for the current section
The format that data lines must take depends on the current section.

When the current section is the explicit sectionp500, data lines must consist of zero or more U+0020 SPACE and
U+0009 CHARACTER TABULATION (tab) characters, a valid URLp54 identifying a resource other than the manifest
itself, and then zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters.

When the current section is the fallback sectionp500, data lines must consist of zero or more U+0020 SPACE and
U+0009 CHARACTER TABULATION (tab) characters, a valid URLp54 identifying a resource other than the manifest
itself, one or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, another valid URLp54

identifying a resource other than the manifest itself, and then zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters.

When the current section is the online whitelist sectionp500, data lines must consist of zero or more U+0020
SPACE and U+0009 CHARACTER TABULATION (tab) characters, either a single U+002A ASTERISK character (*) or
a valid URLp54 identifying a resource other than the manifest itself, and then zero or more U+0020 SPACE and
U+0009 CHARACTER TABULATION (tab) characters.

Manifests may contain sections more than once. Sections may be empty.

If the manifest's <scheme>p54 is https: or another scheme intended for encrypted data transfer, then all URLs in
explicit sectionsp500 must have the same originp476 as the manifest itself.

URLs that are to be fallback pages associated with fallback namespacesp497, and those namespaces themselves, must
be given in fallback sectionsp500, with the namespace being the first URL of the data line, and the corresponding
fallback page being the second URL. All the other pages to be cached must be listed in explicit sectionsp500.

Fallback namespacesp497 and fallback entriesp497 must have the same originp476 as the manifest itself.

A fallback namespacep497 must not be listed more than once.

Namespaces that the user agent is to put into the online whitelistp497 must all be specified in online whitelist
sectionsp500. (This is needed for any URL that the page is intending to use to communicate back to the server.) To

500

specify that all URLs are automatically whitelisted in this way, a U+002A ASTERISK character character (*) may be
specified as one of the URLs.

Authors should not include namespaces in the online whitelistp497 for which another namespace in the online
whitelistp497 is a prefix matchp36.

Relative URLs must be given relative to the manifest's own URL. All URLs in the manifest must have the same
<scheme>p54 as the manifest itself (either explicitly or implicitly, through the use of relative URLs).

URLs in manifests must not have fragment identifiers (i.e. the U+0023 NUMBER SIGN character isn't allowed in URLs in
manifests).

Fallback namespacesp497 and namespaces in the online whitelistp497 are matched by prefix matchp36.

6.6.3.3 Parsing cache manifests

When a user agent is to parse a manifest, it means that the user agent must run the following steps:

1. The user agent must decode the byte stream corresponding with the manifest to be parsed, treating it as
UTF-8. Bytes or sequences of bytes that are not valid UTF-8 sequences must be interpreted as a U+FFFD
REPLACEMENT CHARACTER.

2. Let base URL be the absolute URLp55 representing the manifest.

3. Let explicit URLs be an initially empty list of absolute URLsp55 for explicit entriesp497.

4. Let fallback URLs be an initially empty mapping of fallback namespacesp497 to absolute URLsp55 for fallback
entriesp497.

5. Let online whitelist namespaces be an initially empty list of absolute URLsp55 for an online whitelistp497.

6. Let online whitelist wildcard flag be blocking.

7. Let input be the decoded text of the manifest's byte stream.

8. Let position be a pointer into input, initially pointing at the first character.

9. If position is pointing at a U+FEFF BYTE ORDER MARK (BOM) character, then advance position to the next
character.

10. If the characters starting from position are "CACHE", followed by a U+0020 SPACE character, followed by
"MANIFEST", then advance position to the next character after those. Otherwise, this isn't a cache manifest;
abort this algorithm with a failure while checking for the magic signature.

11. If the character at position is neither a U+0020 SPACE character, a U+0009 CHARACTER TABULATION (tab)
character, U+000A LINE FEED (LF) character, nor a U+000D CARRIAGE RETURN (CR) character, then this
isn't a cache manifest; abort this algorithm with a failure while checking for the magic signature.

12. This is a cache manifest. The algorithm cannot fail beyond this point (though bogus lines can get ignored).

13. Collect a sequence of charactersp36 that are not U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters, and ignore those characters. (Extra text on the first line, after the signature, is ignored.)

14. Let mode be "explicit".

15. Start of line: If position is past the end of input, then jump to the last step. Otherwise, collect a sequence of
charactersp36 that are U+000A LINE FEED (LF), U+000D CARRIAGE RETURN (CR), U+0020 SPACE, or U+0009
CHARACTER TABULATION (tab) characters.

16. Now, collect a sequence of charactersp36 that are not U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN
(CR) characters, and let the result be line.

17. Drop any trailing U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters at the end of line.

18. If line is the empty string, then jump back to the step labeled "start of line".

19. If the first character in line is a U+0023 NUMBER SIGN character (#), then jump back to the step labeled
"start of line".

20. If line equals "CACHE:" (the word "CACHE" followed by a U+003A COLON character (:)), then set mode to
"explicit" and jump back to the step labeled "start of line".

501

21. If line equals "FALLBACK:" (the word "FALLBACK" followed by a U+003A COLON character (:)), then set mode
to "fallback" and jump back to the step labeled "start of line".

22. If line equals "NETWORK:" (the word "NETWORK" followed by a U+003A COLON character (:)), then set mode
to "online whitelist" and jump back to the step labeled "start of line".

23. If line ends with a U+003A COLON character (:), then set mode to "unknown" and jump back to the step
labeled "start of line".

24. This is either a data line or it is syntactically incorrect.

25. Let position be a pointer into line, initially pointing at the start of the string.

26. Let tokens be a list of strings, initially empty.

27. While position doesn't point past the end of line:

1. Let current token be an empty string.

2. While position doesn't point past the end of line and the character at position is neither a U+0020
SPACE nor a U+0009 CHARACTER TABULATION (tab) character, add the character at position to
current token and advance position to the next character in input.

3. Add current token to the tokens list.

4. While position doesn't point past the end of line and the character at position is either a U+0020
SPACE or a U+0009 CHARACTER TABULATION (tab) character, advance position to the next
character in input.

28. Process tokens as follows:

↪ If mode is "explicit"
Resolvep55 the first item in tokens, relative to base URL; ignore the rest.

If this fails, then jump back to the step labeled "start of line".

If the resulting absolute URLp55 has a different <scheme>p54 component than the manifest's URL
(compared in an ASCII case-insensitivep35 manner), then jump back to the step labeled "start of
line". If the manifest's <scheme>p54 is https: or another scheme intended for encrypted data
transfer, and the resulting absolute URLp55 does not have the same originp476 as the manifest's
URL, then jump back to the step labeled "start of line".

Drop the <fragment>p55 component of the resulting absolute URLp55, if it has one.

Add the resulting absolute URLp55 to the explicit URLs.

↪ If mode is "fallback"
Let part one be the first token in tokens, and let part two be the second token in tokens.

Resolvep55 part one and part two, relative to base URL.

If either fails, then jump back to the step labeled "start of line".

If the absolute URLp55 corresponding to either part one or part two does not have the same
originp476 as the manifest's URL, then jump back to the step labeled "start of line".

Drop any the <fragment>p55 components of the resulting absolute URLsp55.

If the absolute URLp55 corresponding to part one is already in the fallback URLs mapping as a
fallback namespacep497, then jump back to the step labeled "start of line".

Otherwise, add the absolute URLp55 corresponding to part one to the fallback URLs mapping as a
fallback namespacep497, mapped to the absolute URLp55 corresponding to part two as the fallback
entryp497.

↪ If mode is "online whitelist"
If the first item in tokens is a U+002A ASTERISK character (*), then set online whitelist wildcard
flag to open and jump back to the step labeled "start of line".

Otherwise, resolvep55 the first item in tokens, relative to base URL; ignore the rest.

502

If this fails, then jump back to the step labeled "start of line".

If the resulting absolute URLp55 has a different <scheme>p54 component than the manifest's URL
(compared in an ASCII case-insensitivep35 manner), then jump back to the step labeled "start of
line".

Drop the <fragment>p55 component of the resulting absolute URLp55, if it has one.

Add the resulting absolute URLp55 to the online whitelist namespaces.

↪ If mode is "unknown"
Do nothing. The line is ignored.

29. Jump back to the step labeled "start of line". (That step jumps to the next, and last, step when the end of the
file is reached.)

30. Return the explicit URLs list, the fallback URLs mapping, the online whitelist namespaces, and the online
whitelist wildcard flag.

If a resource is listed in the explicit sectionp500 or as a fallback entryp497 in the fallback sectionp500,
the resource will always be taken from the cache, regardless of any other matching entries in the
fallback namespacesp497 or online whitelist namespacesp497.

When a fallback namespacep497 and an online whitelist namespacep497 overlap, the online whitelist
namespacep497 has priority.

The online whitelist wildcard flagp497 is applied last, only for URLs that match neither the online
whitelist namespacep497 nor the fallback namespacep497 and that are not listed in the explicit
sectionp500.

When the user agent is required (by other parts of this specification) to start the application cache download
process for an absolute URLp55 purported to identify a manifestp497, or for an application cache groupp497, potentially
given a particular cache hostp498, and potentially given a masterp497 resource, the user agent must run the steps
below. These steps are always run asynchronously, in parallel with the event loopp516 tasksp517.

Some of these steps have requirements that only apply if the user agent shows caching progress. Support for this is
optional. Caching progress UI could consist of a progress bar or message panel in the user agent's interface, or an
overlay, or something else. Certain events fired during the application cache download processp503 allow the script to
override the display of such an interface. The goal of this is to allow Web applications to provide more seamless
update mechanisms, hiding from the user the mechanics of the application cache mechanism. User agents may
display user interfaces independent of this, but are encouraged to not show prominent update progress notifications
for applications that cancel the relevant events.

Note: These events are delayed until after the load event has fired.

The application cache download processp503 steps are as follows:

1. Optionally, wait until the permission to start the application cache download processp503 has been obtained
from the user and until the user agent is confident that the network is available. This could include doing
nothing until the user explicitly opts-in to caching the site, or could involve prompting the user for
permission. The algorithm might never get past this point. (This step is particularly intended to be used by
user agents running on severely space-constrained devices or in highly privacy-sensitive environments).

2. Atomically, so as to avoid race conditions, perform the following substeps:

1. Pick the appropriate substeps:

↪ If these steps were invoked with an absolute URLp55 purported to identify a
manifestp497

Let manifest URL be that absolute URLp55.

If there is no application cache groupp497 identified by manifest URL, then create a new
application cache groupp497 identified by manifest URL. Initially, it has no application
cachesp497. One will be created later in this algorithm.

6.6.4 Downloading or updating an application cache

503

↪ If these steps were invoked with an application cache groupp497

Let manifest URL be the absolute URLp55 of the manifestp497 used to identify the
application cache groupp497 to be updated.

2. Let cache group be the application cache groupp497 identified by manifest URL.

3. If these steps were invoked with a masterp497 resource, then add the resource, along with the
resource's Documentp33, to cache group's list of pending master entriesp498.

4. If these steps were invoked with a cache hostp498, and the statusp498 of cache group is checking or
downloading, then queue a post-load taskp509 to fire a simple eventp523 named checkingp497 that is
cancelable at the ApplicationCachep510 singleton of that cache hostp498. The default action of this
event must be, if the user agent shows caching progressp503, the display of some sort of user
interface indicating to the user that the user agent is checking to see if it can download the
application.

5. If these steps were invoked with a cache hostp498, and the statusp498 of cache group is
downloading, then also queue a post-load taskp509 to fire a simple eventp523 named
downloadingp497 that is cancelable at the ApplicationCachep510 singleton of that cache hostp498.
The default action of this event must be, if the user agent shows caching progressp503, the display
of some sort of user interface indicating to the user the application is being downloaded.

6. If the statusp498 of the cache group is either checking or downloading, then abort this instance of
the application cache download processp503, as an update is already in progress.

7. Set the statusp498 of cache group to checking.

8. For each cache hostp498 associated with an application cachep497 in cache group, queue a post-load
taskp509 to fire a simple eventp523 that is cancelable named checkingp497 at the
ApplicationCachep510 singleton of the cache hostp498. The default action of these events must be,
if the user agent shows caching progressp503, the display of some sort of user interface indicating
to the user that the user agent is checking for the availability of updates.

Note: The remainder of the steps run asynchronously.

If cache group already has an application cachep497 in it, then this is an upgrade attempt. Otherwise, this is
a cache attempt.

3. If this is a cache attemptp504, then this algorithm was invoked with a cache hostp498; queue a post-load
taskp509 to fire a simple eventp523 named checkingp497 that is cancelable at the ApplicationCachep510

singleton of that cache hostp498. The default action of this event must be, if the user agent shows caching
progressp503, the display of some sort of user interface indicating to the user that the user agent is checking
for the availability of updates.

4. Fetching the manifest: Fetchp58 the resource from manifest URL, and let manifest be that resource.

If the resource is labeled with the MIME typep28 text/cache-manifestp718, parse manifest according to the
rules for parsing manifestsp501, obtaining a list of explicit entriesp497, fallback entriesp497 and the fallback
namespacesp497 that map to them, entries for the online whitelistp497, and a value for the online whitelist
wildcard flagp497.

5. If fetching the manifest fails due to a 404 or 410 response or equivalentp60, then run these substeps:

1. Mark cache group as obsoletep498. This cache group no longer exists for any purpose other than
the processing of Documentp33 objects already associated with an application cachep497 in the
cache group.

2. Let task list be an empty list of tasksp517.

3. For each cache hostp498 associated with an application cachep497 in cache group, create a taskp517

to fire a simple eventp523 named obsoletep497 that is cancelable at the ApplicationCachep510

singleton of the cache hostp498, and add it to task list. The default action of these events must be,
if the user agent shows caching progressp503, the display of some sort of user interface indicating
to the user that the application is no longer available for offline use.

4. For each entry in cache group's list of pending master entriesp498, create a taskp517 to fire a simple
eventp523 that is cancelable named errorp497 (not obsoletep497!) at the ApplicationCachep510

504

singleton of the cache hostp498 the Documentp33 for this entry, if there still is one, and add it to task
list. The default action of this event must be, if the user agent shows caching progressp503, the
display of some sort of user interface indicating to the user that the user agent failed to save the
application for offline use.

5. If cache group has an application cachep497 whose completeness flagp497 is incomplete, then
discard that application cachep497.

6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

7. Let the statusp498 of cache group be idle.

8. For each taskp517 in task list, queue that task as a post-load taskp509.

9. Abort the application cache download processp503.

6. Otherwise, if fetching the manifest fails in some other way (e.g. the server returns another 4xx or 5xx
response or equivalentp60, or there is a DNS error, or the connection times out, or the user cancels the
download, or the parser for manifests fails when checking the magic signature), or if the server returned a
redirect, or if the resource is labeled with a MIME typep28 other than text/cache-manifestp718, then run the
cache failure stepsp508.

7. If this is an upgrade attemptp504 and the newly downloaded manifest is byte-for-byte identical to the
manifest found in the newestp498 application cachep497 in cache group, or the server reported it as "304 Not
Modified" or equivalentp60, then run these substeps:

1. Let cache be the newestp498 application cachep497 in cache group.

2. Let task list be an empty list of tasksp517.

3. For each entry in cache group's list of pending master entriesp498, wait for the resource for this
entry to have either completely downloaded or failed.

If the download failed (e.g. the connection times out, or the user cancels the download), then
create a taskp517 to fire a simple eventp523 that is cancelable named errorp497 at the
ApplicationCachep510 singleton of the cache hostp498 the Documentp33 for this entry, if there still is
one, and add it to task list. The default action of this event must be, if the user agent shows
caching progressp503, the display of some sort of user interface indicating to the user that the user
agent failed to save the application for offline use.

Otherwise, associate the Documentp33 for this entry with cache; store the resource for this entry in
cache, if it isn't already there, and categorize its entry as a master entryp497. If the resource's
URLp54 has a <fragment>p55 component, it must be removed from the entry in cache (application
caches never include fragment identifiers).

Note: HTTP caching rules, such as Cache-Control: no-store, are ignored for the
purposes of the application cache download processp503.

4. For each cache hostp498 associated with an application cachep497 in cache group, create a taskp517

to fire a simple eventp523 that is cancelable named noupdatep497 at the ApplicationCachep510

singleton of the cache hostp498, and add it to task list. The default action of these events must be,
if the user agent shows caching progressp503, the display of some sort of user interface indicating
to the user that the application is up to date.

5. Empty cache group's list of pending master entriesp498.

6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

7. Let the statusp498 of cache group be idle.

8. For each taskp517 in task list, queue that task as a post-load taskp509.

9. Abort the application cache download processp503.

8. Let new cache be a newly created application cachep497 in cache group. Set its completeness flagp497 to
incomplete.

9. For each entry in cache group's list of pending master entriesp498, associate the Documentp33 for this entry
with new cache.

505

10. Set the statusp498 of cache group to downloading.

11. For each cache hostp498 associated with an application cachep497 in cache group, queue a post-load taskp509

to fire a simple eventp523 that is cancelable named downloadingp497 at the ApplicationCachep510 singleton
of the cache hostp498. The default action of these events must be, if the user agent shows caching
progressp503, the display of some sort of user interface indicating to the user that a new version is being
downloaded.

12. Let file list be an empty list of URLs with flags.

13. Add all the URLs in the list of explicit entriesp497 obtained by parsing manifest to file list, each flagged with
"explicit entry".

14. Add all the URLs in the list of fallback entriesp497 obtained by parsing manifest to file list, each flagged with
"fallback entry".

15. If this is an upgrade attemptp504, then add all the URLs of master entriesp497 in the newestp498 application
cachep497 in cache group whose completeness flagp497 is complete to file list, each flagged with "master
entry".

16. If any URL is in file list more than once, then merge the entries into one entry for that URL, that entry having
all the flags that the original entries had.

17. For each URL in file list, run the following steps. These steps may be run in parallel for two or more of the
URLs at a time.

1. If the resource URL being processed was flagged as neither an "explicit entry" nor or a "fallback
entry", then the user agent may skip this URL.

Note: This is intended to allow user agents to expire resources not listed in the
manifest from the cache. Generally, implementors are urged to use an approach
that expires lesser-used resources first.

2. For each cache hostp498 associated with an application cachep497 in cache group, queue a post-load
taskp509 to fire an event with the name progressp497, which does not bubble, which is cancelable,
and which uses the ProgressEvent interface, at the ApplicationCachep510 singleton of the cache
hostp498. The lengthComputable attribute must be set to true, the total attribute must be set to
the number of files in file list, and the loaded attribute must be set to the number of number of
files in file list that have been either downloaded or skipped so far. The default action of these
events must be, if the user agent shows caching progressp503, the display of some sort of user
interface indicating to the user that a file is being downloaded in preparation for updating the
application. [PROGRESS]p740

3. Fetchp58 the resource, from the originp474 of the URLp54 manifest URL. If this is an upgrade
attemptp504, then use the newestp498 application cachep497 in cache group as an HTTP cache, and
honor HTTP caching semantics (such as expiration, ETags, and so forth) with respect to that cache.
User agents may also have other caches in place that are also honored.

Note: If the resource in question is already being downloaded for other reasons
then the existing download process can sometimes be used for the purposes of
this step, as defined by the fetchingp58 algorithm.

An example of a resource that might already be being downloaded is a large image on a
Web page that is being seen for the first time. The image would get downloaded to satisfy
the imgp196 element on the page, as well as being listed in the cache manifest. According to
the rules for fetchingp58 that image only need be downloaded once, and it can be used both
for the cache and for the rendered Web page.

4. If the previous step fails (e.g. the server returns a 4xx or 5xx response or equivalentp60, or there is
a DNS error, or the connection times out, or the user cancels the download), or if the server
returned a redirect, then run the first appropriate step from the following list:

↪ If the URL being processed was flagged as an "explicit entry" or a "fallback entry"
Run the cache failure stepsp508.

506

Note: Redirects are fatal because they are either indicative of a network
problem (e.g. a captive portal); or would allow resources to be added to
the cache under URLs that differ from any URL that the networking
model will allow access to, leaving orphan entries; or would allow
resources to be stored under URLs different than their true URLs. All of
these situations are bad.

↪ If the error was a 404 or 410 HTTP response or equivalentp60

Skip this resource. It is dropped from the cache.

↪ Otherwise
Copy the resource and its metadata from the newestp498 application cachep497 in cache
group whose completeness flagp497 is complete, and act as if that was the fetched
resource, ignoring the resource obtained from the network.

User agents may warn the user of these errors as an aid to development.

Note: These rules make errors for resources listed in the manifest fatal, while
making it possible for other resources to be removed from caches when they are
removed from the server, without errors, and making non-manifest resources
survive server-side errors.

5. Otherwise, the fetching succeeded. Store the resource in the new cache.

6. If the URL being processed was flagged as an "explicit entry" in file list, then categorize the entry
as an explicit entryp497.

7. If the URL being processed was flagged as a "fallback entry" in file list, then categorize the entry
as a fallback entryp497.

8. If the URL being processed was flagged as an "master entry" in file list, then categorize the entry
as a master entryp497.

9. As an optimization, if the resource is an HTML or XML file whose root element is an htmlp112

element with a manifestp112 attribute whose value doesn't match the manifest URL of the
application cache being processed, then the user agent should mark the entry as being foreignp497.

18. For each cache hostp498 associated with an application cachep497 in cache group, queue a post-load taskp509

to fire an event with the name progressp497, which does not bubble, which is cancelable, and which uses the
ProgressEvent interface, at the ApplicationCachep510 singleton of the cache hostp498. The
lengthComputable attribute must be set to true, the total and the loaded attributes must be set to the
number of number of files in file list. The default action of these events must be, if the user agent shows
caching progressp503, the display of some sort of user interface indicating to the user that all the files have
been downloaded. [PROGRESS]p740

19. Store the list of fallback namespacesp497, and the URLs of the fallback entriesp497 that they map to, in new
cache.

20. Store the URLs that form the new online whitelistp497 in new cache.

21. Store the value of the new online whitelist wildcard flagp497 in new cache.

22. For each entry in cache group's list of pending master entriesp498, wait for the resource for this entry to have
either completely downloaded or failed.

If the download failed (e.g. the connection times out, or the user cancels the download), then run these
substeps:

1. Unassociate the Documentp33 for this entry from new cache.

2. Queue a post-load taskp509 to fire a simple eventp523 that is cancelable named errorp497 at the
ApplicationCachep510 singleton of the Documentp33 for this entry, if there still is one. The default
action of this event must be, if the user agent shows caching progressp503, the display of some sort
of user interface indicating to the user that the user agent failed to save the application for offline
use.

507

3. If this is a cache attemptp504 and this entry is the last entry in cache group's list of pending master
entriesp498, then run these further substeps:

1. Discard cache group and its only application cachep497, new cache.

2. If appropriate, remove any user interface indicating that an update for this cache is in
progress.

3. Abort the application cache download processp503.

4. Otherwise, remove this entry from cache group's list of pending master entriesp498.

Otherwise, store the resource for this entry in new cache, if it isn't already there, and categorize its entry as
a master entryp497.

23. Fetchp58 the resource from manifest URL again, and let second manifest be that resource.

24. If the previous step failed for any reason, or if the fetching attempt involved a redirect, or if second manifest
and manifest are not byte-for-byte identical, then schedule a rerun of the entire algorithm with the same
parameters after a short delay, and run the cache failure stepsp508.

25. Otherwise, store manifest in new cache, if it's not there already, and categorize its entry as the manifestp497.

26. Set the completeness flagp497 of new cache to complete.

27. Let task list be an empty list of tasksp517.

28. If this is a cache attemptp504, then for each cache hostp498 associated with an application cachep497 in cache
group, create a taskp517 to fire a simple eventp523 that is cancelable named cachedp497 at the
ApplicationCachep510 singleton of the cache hostp498, and add it to task list. The default action of these
events must be, if the user agent shows caching progressp503, the display of some sort of user interface
indicating to the user that the application has been cached and that they can now use it offline.

Otherwise, it is an upgrade attemptp504. For each cache hostp498 associated with an application cachep497 in
cache group, create a taskp517 to fire a simple eventp523 that is cancelable named updatereadyp497 at the
ApplicationCachep510 singleton of the cache hostp498, and add it to task list. The default action of these
events must be, if the user agent shows caching progressp503, the display of some sort of user interface
indicating to the user that a new version is available and that they can activate it by reloading the page.

29. If appropriate, remove any user interface indicating that an update for this cache is in progress.

30. Set the update statusp498 of cache group to idle.

31. For each taskp517 in task list, queue that task as a post-oad taskp509.

The cache failure steps are as follows:

1. Let task list be an empty list of tasksp517.

2. For each entry in cache group's list of pending master entriesp498, run the following further substeps. These
steps may be run in parallel for two or more entries at a time.

1. Wait for the resource for this entry to have either completely downloaded or failed.

2. Unassociate the Documentp33 for this entry from its application cachep497, if it has one.

3. Create a taskp517 to fire a simple eventp523 that is cancelable named errorp497 at the
ApplicationCachep510 singleton of the Documentp33 for this entry, if there still is one, and add it to
task list. The default action of these events must be, if the user agent shows caching progressp503,
the display of some sort of user interface indicating to the user that the user agent failed to save
the application for offline use.

3. For each cache hostp498 still associated with an application cachep497 in cache group, create a taskp517 to fire
a simple eventp523 that is cancelable named errorp497 at the ApplicationCachep510 singleton of the cache
hostp498, and add it to task list. The default action of these events must be, if the user agent shows caching
progressp503, the display of some sort of user interface indicating to the user that the user agent failed to
save the application for offline use.

4. Empty cache group's list of pending master entriesp498.

508

5. If cache group has an application cachep497 whose completeness flagp497 is incomplete, then discard that
application cachep497.

6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

7. Let the statusp498 of cache group be idle.

8. If this was a cache attemptp504, discard cache group altogether.

9. For each taskp517 in task list, queue that task as a post-load taskp509.

10. Abort the application cache download processp503.

Attempts to fetchp58 resources as part of the application cache download processp503 may be done with cache-
defeating semantics, to avoid problems with stale or inconsistent intermediary caches.

User agents may invoke the application cache download processp503, in the background, for any application cachep497,
at any time (with no cache hostp498). This allows user agents to keep caches primed and to update caches even before
the user visits a site.

Each Documentp33 has a list of pending application cache download process tasks that is used to delay events
fired by the algorithm above until the document's load event has fired. When the Documentp33 is created, the list must
be empty.

When the steps above say to queue a post-load task task, where task is a taskp517 that dispatches an event on a
target ApplicationCachep510 object target, the user agent must run the appropriate steps from the following list:

If target's Documentp33 has completely loadedp654

Queuep517 the task task.

Otherwise
Add task to target's Documentp33 's list of pending application cache download process tasksp509.

The task sourcep517 for these tasksp517 is the networking task sourcep518.

When the application cache selection algorithm algorithm is invoked with a Documentp33 document and optionally
a manifest URLp54 manifest URL, the user agent must run the first applicable set of steps from the following list:

↪ If there is a manifest URL, and document was loaded from an application cachep497, and the URL of
the manifestp497 of that cache's application cache groupp497 is not the same as manifest URL

Mark the entry for the resource from which document was taken in the application cachep497 from which it
was loaded as foreignp497.

Restart the current navigation from the top of the navigation algorithmp484, undoing any changes that were
made as part of the initial load (changes can be avoided by ensuring that the step to update the session
history with the new pagep487 is only ever completed after this application cache selection algorithmp509 is
run, though this is not required).

Note: The navigation will not result in the same resource being loaded, because "foreign"
entries are never picked during navigation.

User agents may notify the user of the inconsistency between the cache manifest and the document's own
metadata, to aid in application development.

↪ If document was loaded from an application cachep497

Associate document with the application cachep497 from which it was loaded. Invoke, in the background, the
application cache download processp503 for that application cachep497 's application cache groupp497, with
document as the cache hostp498.

↪ If document was loaded using HTTP GET or equivalentp60, and, there is a manifest URL, and manifest
URL has the same originp476 as document

Invoke, in the background, the application cache download processp503 for manifest URL, with document as
the cache hostp498 and with the resource from which document was parsed as the masterp497 resource.

6.6.5 The application cache selection algorithm

509

↪ Otherwise
The Documentp33 is not associated with any application cachep497.

If there was a manifest URL, the user agent may report to the user that it was ignored, to aid in application
development.

When a cache hostp498 is associated with an application cachep497 whose completeness flagp497 is complete, any and all
loads for resources related to that cache hostp498 other than those for child browsing contextsp463 must go through the
following steps instead of immediately invoking the mechanisms appropriate to that resource's scheme:

1. If the resource is not to be fetched using the HTTP GET mechanism or equivalentp60, or if its URLp54 has a
different <scheme>p54 component than the application cachep497 's manifestp497, then fetchp58 the resource
normally and abort these steps.

2. If the resource's URL is a master entryp497, the manifestp497, an explicit entryp497, or a fallback entryp497 in the
application cachep497, then get the resource from the cache (instead of fetching it), and abort these steps.

3. If there is an entry in the application cachep497 's online whitelistp497 that has the same originp476 as the
resource's URL and that is a prefix matchp36 for the resource's URL, then fetchp58 the resource normally and
abort these steps.

4. If the resource's URL has the same originp476 as the manifest's URL, and there is a fallback namespacep497 f
in the application cachep497 that is a prefix matchp36 for the resource's URL, then:

Fetchp58 the resource normally. If this results in a redirect to a resource with another originp474 (indicative of
a captive portal), or a 4xx or 5xx status code or equivalentp60, or if there were network errors (but not if the
user canceled the download), then instead get, from the cache, the resource of the fallback entryp497

corresponding to the fallback namespacep497 f. Abort these steps.

5. If the application cachep497 's online whitelist wildcard flagp497 is open, then fetchp58 the resource normally
and abort these steps.

6. Fail the resource load as if there had been a generic network error.

Note: The above algorithm ensures that so long as the online whitelist wildcard flagp497 is
blocking, resources that are not present in the manifestp497 will always fail to load (at least, after
the application cachep497 has been primed the first time), making the testing of offline
applications simpler.

As a general rule, user agents should not expire application caches, except on request from the user, or after having
been left unused for an extended period of time.

Application caches and cookies have similar implications with respect to privacy (e.g. if the site can identify the user
when providing the cache, it can store data in the cache that can be used for cookie resurrection). Implementors are
therefore encouraged to expose application caches in a manner related to HTTP cookies, allowing caches to be
expunged together with cookies and other origin-specific data.

For example, a user agent could have a "delete site-specific data" feature that clears all cookies, application
caches, local storage, databases, etc, from an origin all at once.

interface ApplicationCache {

// update status
const unsigned short UNCACHED = 0;
const unsigned short IDLE = 1;
const unsigned short CHECKING = 2;
const unsigned short DOWNLOADING = 3;
const unsigned short UPDATEREADY = 4;

6.6.6 Changes to the networking model

6.6.7 Expiring application caches

6.6.8 Application cache API

510

const unsigned short OBSOLETE = 5;
readonly attribute unsigned short status;

// updates
void update();
void swapCache();

// events
attribute Function onchecking;
attribute Function onerror;
attribute Function onnoupdate;
attribute Function ondownloading;
attribute Function onprogress;
attribute Function onupdateready;
attribute Function oncached;
attribute Function onobsolete;

};
ApplicationCache implements EventTarget;

This box is non-normative. Implementation requirements are given below this box.

cache = window . applicationCachep511

(In a window.) Returns the ApplicationCachep510 object that applies to the active documentp463 of that
Windowp467.

cache = self . applicationCachep511

(In a shared worker.) Returns the ApplicationCachep510 object that applies to the current shared worker.
[WEBWORKERS]p743

cache . statusp511

Returns the current status of the application cache, as given by the constants defined below.

cache . updatep512()
Invokes the application cache download processp503.

Throws an INVALID_STATE_ERRp74 exception if there is no application cache to update.

cache . swapCachep512()
Switches to the most recent application cache, if there is a newer one. If there isn't, throws an
INVALID_STATE_ERRp74 exception.
This does not cause previously-loaded resources to be reloaded; for example, images do not suddenly get
reloaded and style sheets and scripts do not get reparsed or reevaluated. The only change is that
subsequent requests for cached resources will obtain the newer copies.

There is a one-to-one mapping from cache hostsp498 to ApplicationCachep510 objects. The applicationCache
attribute on Windowp467 objects must return the ApplicationCachep510 object associated with the Windowp467 object's
active documentp463. The applicationCache attribute on SharedWorkerGlobalScope objects must return the
ApplicationCachep510 object associated with the worker. [WEBWORKERS]p743

Note: A Windowp467 or SharedWorkerGlobalScope object has an associated ApplicationCachep510 object
even if that cache hostp498 has no actual application cachep497.

The status attribute, on getting, must return the current state of the application cachep497 that the
ApplicationCachep510 object's cache hostp498 is associated with, if any. This must be the appropriate value from the
following list:

UNCACHED (numeric value 0)
The ApplicationCachep510 object's cache hostp498 is not associated with an application cachep497 at this time.

511

IDLE (numeric value 1)
The ApplicationCachep510 object's cache hostp498 is associated with an application cachep497 whose application
cache groupp497 's update statusp498 is idle, and that application cachep497 is the newestp498 cache in its application
cache groupp497, and the application cache groupp497 is not marked as obsoletep498.

CHECKING (numeric value 2)
The ApplicationCachep510 object's cache hostp498 is associated with an application cachep497 whose application
cache groupp497 's update statusp498 is checking.

DOWNLOADING (numeric value 3)
The ApplicationCachep510 object's cache hostp498 is associated with an application cachep497 whose application
cache groupp497 's update statusp498 is downloading.

UPDATEREADY (numeric value 4)
The ApplicationCachep510 object's cache hostp498 is associated with an application cachep497 whose application
cache groupp497 's update statusp498 is idle, and whose application cache groupp497 is not marked as obsoletep498,
but that application cachep497 is not the newestp498 cache in its group.

OBSOLETE (numeric value 5)
The ApplicationCachep510 object's cache hostp498 is associated with an application cachep497 whose application
cache groupp497 is marked as obsoletep498.

If the update() method is invoked, the user agent must invoke the application cache download processp503, in the
background, for the application cachep497 with which the ApplicationCachep510 object's cache hostp498 is associated,
but without giving that cache hostp498 to the algorithm. If there is no such application cachep497, or if it is marked as
obsoletep498, then the method must raise an INVALID_STATE_ERRp74 exception instead.

If the swapCache() method is invoked, the user agent must run the following steps:

1. Check that ApplicationCachep510 object's cache hostp498 is associated with an application cachep497. If it is
not, then raise an INVALID_STATE_ERRp74 exception and abort these steps.

2. Let cache be the application cachep497 with which the ApplicationCachep510 object's cache hostp498 is
associated. (By definition, this is the same as the one that was found in the previous step.)

3. If cache's application cache groupp497 is marked as obsoletep498, then unassociate the ApplicationCachep510

object's cache hostp498 from cache and abort these steps. (Resources will now load from the network instead
of the cache.)

4. Check that there is an application cache in the same application cache groupp497 as cache whose
completeness flagp497 is complete and that is newerp498 than cache. If there is not, then raise an
INVALID_STATE_ERRp74 exception and abort these steps.

5. Let new cache be the newestp498 application cachep497 in the same application cache groupp497 as cache
whose completeness flagp497 is complete.

6. Unassociate the ApplicationCachep510 object's cache hostp498 from cache and instead associate it with new
cache.

The following are the event handlersp519 (and their corresponding event handler event typesp521) that must be
supported, as IDL attributes, by all objects implementing the ApplicationCachep510 interface:

Event handlerp519 Event handler event typep521

onchecking checkingp497

onerror errorp497

onnoupdate noupdatep497

ondownloading downloadingp497

onprogress progressp497

onupdateready updatereadyp497

oncached cachedp497

onobsolete obsoletep497

512

This box is non-normative. Implementation requirements are given below this box.

window . navigatorp529 . onLinep513

Returns false if the user agent is definitely offline (disconnected from the network). Returns true if the user
agent might be online.

The navigator.onLine attribute must return false if the user agent will not contact the network when the user follows
links or when a script requests a remote page (or knows that such an attempt would fail), and must return true
otherwise.

When the value that would be returned by the navigator.onLinep513 attribute of the Windowp467 changes from true to
false, the user agent must queue a taskp517 to fire a simple eventp523 named offline at the Windowp467 object.

On the other hand, when the value that would be returned by the navigator.onLinep513 attribute of the Windowp467

changes from false to true, the user agent must queue a taskp517 to fire a simple eventp523 named online at the
Windowp467 object.

The task sourcep517 for these tasksp517 is the networking task sourcep518.

Note: This attribute is inherently unreliable. A computer can be connected to a network without
having Internet access.

6.6.9 Browser state

513

7 Web application APIs

7.1 Scripting

Various mechanisms can cause author-provided executable code to run in the context of a document. These
mechanisms include, but are probably not limited to:

• Processing of scriptp129 elements.

• Processing of inline javascript:p518 URLs (e.g. the srcp197 attribute of imgp196 elements, or an @import rule
in a CSS stylep126 element block).

• Event handlers, whether registered through the DOM using addEventListener(), by explicit event handler
content attributesp520, by event handler IDL attributesp520, or otherwise.

• Processing of technologies like XBL or SVG that have their own scripting features.

Scripting is enabled in a browsing contextp463 when all of the following conditions are true:

• The user agent supports scripting.

• The user has not disabled scripting for this browsing contextp463 at this time. (User agents may provide users
with the option to disable scripting globally, or in a finer-grained manner, e.g. on a per-origin basis.)

• The browsing contextp463 did not have the sandboxed scripts browsing context flagp214 set when the browsing
contextp463 's active documentp463 was created.

Scripting is disabled in a browsing contextp463 when any of the above conditions are false (i.e. when scripting is not
enabledp514).

Scripting is enabled for a node if the Documentp33 object of the node (the node itself, if it is itself a Documentp33

object) has an associated browsing contextp463, and scripting is enabledp514 in that browsing contextp463.

Scripting is disabled for a node if there is no such browsing contextp463, or if scripting is disabledp514 in that browsing
contextp463.

7.1.3.1 Definitions

A script has:

A script execution environment
The characteristics of the script execution environment depend on the language, and are not defined by this
specification.

In JavaScript, the script execution environment consists of the interpreter, the stack of execution contexts,
the global code and function code and the Function objects resulting, and so forth.

A list of code entry-points
Each code entry-point represents a block of executable code that the script exposes to other scripts and to the
user agent.

Each Function object in a JavaScript script execution environmentp514 has a corresponding code entry-
point, for instance.

The main program code of the script, if any, is the initial code entry-point. Typically, the code corresponding
to this entry-point is executed immediately after the script is parsed.

In JavaScript, this corresponds to the execution context of the global code.

7.1.1 Introduction

7.1.2 Enabling and disabling scripting

7.1.3 Processing model

514

A relationship with the script's global object
An object that provides the APIs that the code can use.

This is typically a Windowp467 object. In JavaScript, this corresponds to the global object.

Note: When a script's global objectp515 is an empty object, it can't do anything that interacts
with the environment.

If the script's global objectp515 is a Windowp467 object, then in JavaScript, the ThisBinding of the global execution
context for this script must be the Windowp467 object's WindowProxyp473 object, rather than the global object.
[ECMA262]p739

Note: This is a willful violationp18 of the JavaScript specification current at the time of writing
(ECMAScript edition 5, as defined in section 10.4.1.1 Initial Global Execution Context, step 3).
The JavaScript specification requires that the this keyword in the global scope return the
global object, but this is not compatible with the security design prevalent in
implementations as specified herein. [ECMA262]p739

A relationship with the script's browsing context
A browsing contextp463 that is assigned responsibility for actions taken by the script.

When a script creates and navigatesp484 a new top-level browsing contextp464, the openerp465 attribute of
the new browsing contextp463 's Windowp467 object will be set to the script's browsing contextp515 's
WindowProxyp473 object.

A relationship with the script's document
A Documentp33 that is assigned responsibility for actions taken by the script.

When a script fetchesp58 a resource, the current addressp75 of the script's documentp515 will be used to set
the Referer (sic) header.

A URL character encoding
A character encoding, set when the script is created, used to encode URLs. If the character encoding is set from
another source, e.g. a document's character encodingp79, then the script's URL character encodingp515 must
follow the source, so that if the source's changes, so does the script's.

A base URL
A URLp54, set when the script is created, used to resolve relative URLs. If the base URL is set from another source,
e.g. a document base URLp55, then the script's base URLp515 must follow the source, so that if the source's
changes, so does the script's.

7.1.3.2 Calling scripts

When a user agent is to jump to a code entry-point for a scriptp514, for example to invoke an event listener defined
in that scriptp514, the user agent must run the following steps:

1. If the script's global objectp515 is a Windowp467 object whose Documentp33 object is not fully activep464, then
abort these steps without doing anything. The callback is not fired.

2. Set the entry scriptp466 to be the scriptp514 being invoked.

3. Make the script execution environmentp514 for the scriptp514 execute the code for the given code entry-point.

4. Set the entry scriptp466 back to whatever it was when this algorithm started.

This algorithm is not invoked by one script calling another.

7.1.3.3 Creating scripts

When the specification says that a scriptp514 is to be created, given some script source, its scripting language, a
global object, a browsing context, a URL character encoding, and a base URL, the user agent must run the following
steps:

1. If scripting is disabledp514 for browsing contextp463 passed to this algorithm, then abort these steps, as if the
script did nothing but return void.

515

2. Set up a script execution environmentp514 as appropriate for the scripting language.

3. Parse/compile/initialize the source of the script using the script execution environmentp514, as appropriate for
the scripting language, and thus obtain the list of code entry-pointsp514 for the script. If the semantics of the
scripting language and the given source code are such that there is executable code to be immediately run,
then the initial code entry-pointp514 is the entry-point for that code.

4. Set up the script's global objectp515, the script's browsing contextp515, the script's documentp515, the script's
URL character encodingp515, and the script's base URLp515 from the settings passed to this algorithm.

5. Jumpp515 to the scriptp514 's initial code entry-pointp514.

When the user agent is to create an impotent script, given some script source, its scripting language, and a
browsing context, the user agent must create a scriptp515, using the given script source and scripting language, using a
new empty object as the global object, and using the given browsing context as the browsing context. The URL
character encoding and base URL for the resulting scriptp514 are not important as no APIs are exposed to the script.

When the specification says that a scriptp514 is to be created from a node node, given some script source and its
scripting language, the user agent must create a scriptp515, using the given script source and scripting language, and
using the script settings determined from the nodep516 node.

The script settings determined from the node node are computed as follows:

1. Let document be the Documentp33 of node (or node itself if it is a Documentp33).

2. The browsing context is the browsing contextp463 of document.

3. The global object is the Windowp467 object of document.

4. The URL character encoding is the character encodingp79 of document. (This is a reference, not a copyp515.)

5. The base URL is the base URLp55 of document. (This is a reference, not a copyp515.)

7.1.3.4 Killing scripts

User agents may impose resource limitations on scripts, for example CPU quotas, memory limits, total execution time
limits, or bandwidth limitations. When a script exceeds a limit, the user agent may either throw a
QUOTA_EXCEEDED_ERRp74 exception, abort the script without an exception, prompt the user, or throttle script execution.

For example, the following script never terminates. A user agent could, after waiting for a few seconds, prompt
the user to either terminate the script or let it continue.

<script>
while (true) { /* loop */ }

</script>

User agents are encouraged to allow users to disable scripting whenever the user is prompted either by a script (e.g.
using the window.alert()p527 API) or because of a script's actions (e.g. because it has exceeded a time limit).

If scripting is disabled while a script is executing, the script should be terminated immediately.

7.1.4.1 Definitions

To coordinate events, user interaction, scripts, rendering, networking, and so forth, user agents must use event loops
as described in this section.

There must be at least one event loopp516 per user agent, and at most one event loopp516 per unit of related similar-
origin browsing contextsp465.

An event loopp516 always has at least one browsing contextp463. If an event loopp516 's browsing contextsp463 all go away,
then the event loopp516 goes away as well. A browsing contextp463 always has an event loopp516 coordinating its
activities.

7.1.4 Event loops

516

Note: Other specifications can define new kinds of event loops that aren't associated with
browsing contexts; in particular, the Web Workers specification does so.

An event loopp516 has one or more task queues. A task queuep517 is an ordered list of tasks, which can be:

Events
Asynchronously dispatching an Eventp33 object at a particular EventTargetp33 object is a task.

Note: Not all events are dispatched using the task queuep517, many are dispatched
synchronously during other tasks.

Parsing
The HTML parserp584 tokenizing a single byte, and then processing any resulting tokens, is a task.

Callbacks
Calling a callback asynchronously is a task.

Using a resource
When an algorithm fetchesp58 a resource, if the fetching occurs asynchronously then the processing of the
resource once some or all of the resource is available is a task.

Reacting to DOM manipulation
Some elements have tasks that trigger in response to DOM manipulation, e.g. when that element is inserted into
the documentp29.

When a user agent is to queue a task, it must add the given task to one of the task queuesp517 of the relevant event
loopp516. All the tasks from one particular task source (e.g. the callbacks generated by timers, the events dispatched
for mouse movements, the tasks queued for the parser) must always be added to the same task queuep517, but tasks
from different task sourcesp517 may be placed in different task queuesp517.

For example, a user agent could have one task queuep517 for mouse and key events (the user interaction task
sourcep518), and another for everything else. The user agent could then give keyboard and mouse events
preference over other tasks three quarters of the time, keeping the interface responsive but not starving other
task queues, and never processing events from any one task sourcep517 out of order.

Each taskp517 that is queuedp517 onto a task queuep517 of an event loopp516 defined by this specification is associated
with a Documentp33; if the task was queued in the context of an element, then it is the element's Documentp33; if the
task was queued in the context of a browsing contextp463, then it is the browsing contextp463 's active documentp463 at
the time the task was queued; if the task was queued by or for a scriptp514 then the document is the script's
documentp515.

A user agent is required to have one storage mutex. This mutex is used to control access to shared state like
cookies. At any one point, the storage mutexp517 is either free, or owned by a particular event loopp516 or instance of
the fetchingp58 algorithm.

Whenever a scriptp514 calls into a pluginp29, and whenever a pluginp29 calls into a scriptp514, the user agent must
release the storage mutexp517.

7.1.4.2 Processing model

An event loopp516 must continually run through the following steps for as long as it exists:

1. Run the oldest taskp517 on one of the event loopp516 's task queuesp517, ignoring tasks whose associated
Documentp33s are not fully activep464. The user agent may pick any task queuep517.

2. If the storage mutexp517 is now owned by the event loopp516, release it so that it is once again free.

3. Remove that task from its task queuep517.

4. If any asynchronously-running algorithms are awaiting a stable state, then run their synchronous
section and then resume running their asynchronous algorithm.

Note: A synchronous sectionp517 never mutates the DOM, runs any script, or has any
other side-effects.

517

Note: Steps in synchronous sectionsp517 are marked with ?.

5. If necessary, update the rendering or user interface of any Documentp33 or browsing contextp463 to reflect the
current state.

6. Return to the first step of the event loopp516.

When an algorithm says to spin the event loop until a condition goal is met, the user agent must run the following
steps:

1. Let task source be the task sourcep517 of the currently running taskp517.

2. Stop the currently running taskp517, allowing the event loopp516 to resume, but continue these steps
asynchronously.

3. Wait until the condition goal is met.

4. Queue a taskp517 to continue running these steps, using the task sourcep517 task source. Wait until this task
runs before continuing these steps.

5. Return to the caller.

Some of the algorithms in this specification, for historical reasons, require the user agent to pause while running a
taskp517 until some condition has been met. While a user agent has a paused taskp517, the corresponding event loopp516

must not run further tasksp517, and any script in the currently running taskp517 must block. User agents should remain
responsive to user input while paused, however, albeit in a reduced capacity since the event loopp516 will not be doing
anything.

When a user agent is to obtain the storage mutex as part of running a taskp517, it must run through the following
steps:

1. If the storage mutexp517 is already owned by this taskp517 's event loopp516, then abort these steps.

2. Otherwise, pausep518 until the storage mutexp517 can be taken by the event loopp516.

3. Take ownership of the storage mutexp517.

7.1.4.3 Generic task sources

The following task sourcesp517 are used by a number of mostly unrelated features in this and other specifications.

The DOM manipulation task source
This task sourcep517 is used for features that react to DOM manipulations, such as things that happen
asynchronously when an element is inserted into the documentp29.

The user interaction task source
This task sourcep517 is used for features that react to user interaction, for example keyboard or mouse input.

Asynchronous events sent in response to user input (e.g. clickp33 events) must be dispatched using tasksp517

queuedp517 with the user interaction task sourcep518. [DOMEVENTS]p739

The networking task source
This task sourcep517 is used for features that trigger in response to network activity.

The history traversal task source
This task sourcep517 is used to queue calls to history.back()p479 and similar APIs.

When a URLp54 using the javascript: protocol is dereferenced, the user agent must run the following steps:

1. Let the script source be the string obtained using the content retrieval operation defined for javascript:
URLs. [JSURL]p740

2. Use the appropriate step from the following list:

7.1.5 The javascript: protocol

518

If a browsing contextp463 is being navigatedp484 to a javascript: URL, and the active
documentp463 of that browsing context has the same originp476 as the script given by that URL

Let address be the addressp75 of the active documentp463 of the browsing contextp463 being navigated.

If address is about:blankp59, and the browsing contextp463 being navigated has a creator browsing
contextp463, then let address be the addressp75 of the creator Documentp463 instead.

Create a scriptp516 from the Documentp33 node of the active documentp463, using the aforementioned
script source, and assuming the scripting language is JavaScript.

Let result be the return value of the initial code entry-pointp514 of this scriptp514. If an exception was
raised, let result be void instead. (The result will be void also if scripting is disabledp514.)

When it comes time to set the document's addressp487 in the navigation algorithmp484, use address as
the override URLp487.

If the Documentp33 object of the element, attribute, or style sheet from which the javascript: URL
was reached has an associated browsing contextp463

Create an impotent scriptp516 using the aforementioned script source, with the scripting language set to
JavaScript, and with the Documentp33 's object's browsing contextp463 as the browsing context.

Let result be the return value of the initial code entry-pointp514 of this scriptp514. If an exception was
raised, let result be void instead. (The result will be void also if scripting is disabledp514.)

Otherwise
Let result be void.

3. If the result of executing the script is void (there is no return value), then the URL must be treated in a
manner equivalent to an HTTP resource with an HTTP 204 No Content response.

Otherwise, the URL must be treated in a manner equivalent to an HTTP resource with a 200 OK response
whose Content-Type metadatap61 is text/htmlp715 and whose response body is the return value converted to
a string value.

Note: Certain contexts, in particular imgp196 elements, ignore the Content-Type
metadatap61.

So for example a javascript: URL for a srcp197 attribute of an imgp196 element would be evaluated in the
context of an empty object as soon as the attribute is set; it would then be sniffed to determine the image type
and decoded as an image.

A javascript: URL in an hrefp404 attribute of an ap169 element would only be evaluated when the link was
followedp405.

The srcp211 attribute of an iframep211 element would be evaluated in the context of the iframep211 's own
browsing contextp463; once evaluated, its return value (if it was not void) would replace that browsing
contextp463 's document, thus changing the variables visible in that browsing contextp463.

7.1.6.1 Event handlers

Many objects can have event handlers specified. These act as bubbling event listeners for the object on which they
are specified.

An event handlerp519 can either have the value null or be set to a Functionp521 object. Initially, event handlers must be
set to null.

Event handlers are exposed in one or two ways.

The first way, common to all event handlers, is as an event handler IDL attributep520.

The second way is as an event handler content attributep520. Event handlers on HTML elementsp28 and some of the
event handlers on Windowp467 objects are exposed in this way.

7.1.6 Events

519

Event handler IDL attributes, on setting, must set the corresponding event handler to their new value, and on
getting, must return whatever the current value of the corresponding event handler is (possibly null).

If an event handler IDL attributep520 exposes an event handlerp519 of an object that doesn't exist, it must always return
null on getting and must do nothing on setting.

Note: This can happen in particular for event handler IDL attributep520 on bodyp138 elements that do
not have corresponding Windowp467 objects.

Note: Certain event handler IDL attributes have additional requirements, in particular the
onmessagep576 attribute of MessagePortp574 objects.

Event handler content attributes, when specified, must contain valid JavaScript code matching the FunctionBody
production. [ECMA262]p739

When an event handler content attributep520 is set, if the element is owned by a Documentp33 that is in a browsing
contextp463, and scripting is enabledp514 for that browsing contextp463, the user agent must run the following steps to
create a scriptp514 after setting the content attribute to its new value:

1. Set up a script execution environmentp514 for JavaScript.

2. Using this script execution environment, create a function object (as defined in ECMAScript edition 5 section
13.2 Creating Function Objects), with:

Parameter list FormalParameterList
↪ If the attribute is the onerrorp523 attribute of the Windowp467 object

Let the function have three arguments, named event, source, and fileno.
↪ Otherwise

Let the function have a single argument called event.

Function body FunctionBody
The event handler content attributep520 's new value.

Lexical Environment Scope

1. Let Scope be the result of NewObjectEnvironment(the element's Documentp33, the global
environment).

2. If the element has a form ownerp373, let Scope be the result of NewObjectEnvironment(the
element's form ownerp373, Scope).

3. Let Scope be the result of NewObjectEnvironment(the element's object, Scope).

Note: NewObjectEnvironment() is defined in ECMAScript edition 5 section 10.2.2.3
NewObjectEnvironment (O, E). [ECMA262]p739

Boolean flag Strict
False.

Let this new function be the only entry in the script's list of code entry-pointsp514.

3. If the previous steps failed to compile the script, then set the corresponding event handlerp519 to null and
abort these steps.

4. Set up the script's global objectp515, the script's browsing contextp515, the script's documentp515, the script's
URL character encodingp515, and the script's base URLp515 from the script settings determined from the
nodep516 on which the attribute is being set.

5. Set the corresponding event handlerp519 to the aforementioned function.

When an event handler content attribute is removed, the user agent must set the corresponding event handlerp519 to
null.

Note: When an event handler content attributep520 is set on an element owned by a Documentp33

that is not in a browsing contextp463, the corresponding event handler is not changed.

520

All event handlersp519 on an object, whether an element or some other object, and whether set to null or to a
Functionp521 object, must be registered as event listeners on the object when it is created, as if the
addEventListener() method on the object's EventTargetp33 interface had been invoked, with the event type (type
argument) equal to the type corresponding to the event handler (the event handler event type), the listener set to
be a target and bubbling phase listener (useCapture argument set to false), and the event listener itself (listener
argument) set to do nothing while the event handler's value is not a Functionp521 object, and set to invoke the
call()p521 callback of the Functionp521 object associated with the event handler otherwise.

Note: Event handlersp519 therefore always fire before event listeners attached using
addEventListener().

Note: The listener argument is emphatically not the event handlerp519 itself.

Note: The interfaces implemented by the event object do not influence whether an event
handlerp519 is triggered or not.

When an event handlerp519 's Functionp521 object is invoked, its call()p521 callback must be invoked with one
argument, set to the Eventp33 object of the event in question.

The handler's return value must then be processed as follows:

↪ If the event type is mouseover
If the return value is a boolean with the value true, then the event must be canceled.

↪ If the event object is a BeforeUnloadEventp495 object
If the return value is a string, and the event object's returnValuep495 attribute's value is the empty string,
then set the returnValuep495 attribute's value to the return value.

↪ Otherwise
If the return value is a boolean with the value false, then the event must be canceled.

The Functionp521 interface represents a function in the scripting language being used. It is represented in IDL as
follows:

[Callback=FunctionOnly, NoInterfaceObject]
interface Function {

any call(in any... arguments);
};

The call(...) method is the object's callback.

Note: In JavaScript, any Function object implements this interface.

If the Functionp521 object is a JavaScript Function, then when it is invoked by the user agent, the user agent must set
the thisArg (as defined by ECMAScript edition 5 section 10.4.3 Entering Function Code) to the event handlerp519 's
object. [ECMA262]p739

For example, the following document fragment:

<body onload="alert(this)" onclick="alert(this)">

...leads to an alert saying "[object Window]" when the document is loaded, and an alert saying
"[object HTMLBodyElement]" whenever the user clicks something in the page.

The return value of the function is affects whether the event is canceled or not: as described above, if the return value
is false, the event is canceled (except for mouseover events, where the return value has to be true to cancel the
event). With beforeunload events, the value is instead used to determine the message to show the user.

7.1.6.2 Event handlers on elements, Documentp33 objects, and Windowp467 objects

The following are the event handlersp519 (and their corresponding event handler event typesp521) that must be
supported by all HTML elementsp28, as both content attributes and IDL attributes, and on Documentp33 and Windowp467

objects, as IDL attributes.

521

Event handlerp519 Event handler event typep521

onabort abort

oncanplay canplayp250

oncanplaythrough canplaythroughp250

onchange change

onclick clickp33

oncontextmenu contextmenu

ondblclick dblclick

ondrag dragp555

ondragend dragendp555

ondragenter dragenterp555

ondragleave dragleavep555

ondragover dragoverp555

ondragstart dragstartp555

ondrop dropp555

ondurationchange durationchangep251

onemptied emptiedp250

onended endedp250

onformchange formchange

onforminput forminput

oninput input

oninvalid invalid

onkeydown keydown

onkeypress keypress

onkeyup keyup

onloadeddata loadeddatap250

onloadedmetadata loadedmetadatap250

onloadstart loadstartp250

onmousedown mousedown

onmousemove mousemove

onmouseout mouseout

onmouseover mouseover

onmouseup mouseup

onmousewheel mousewheel

onpause pausep250

onplay playp250

onplaying playingp250

onprogress progressp250

onratechange ratechangep251

onreadystatechange readystatechange

onscroll scroll

onseeked seekedp250

onseeking seekingp250

onselect select

onshow show

onstalled stalledp250

onsubmit submit

onsuspend suspendp250

ontimeupdate timeupdatep250

onvolumechange volumechangep251

onwaiting waitingp250

The following are the event handlersp519 (and their corresponding event handler event typesp521) that must be
supported by all HTML elementsp28 other than bodyp138, as both content attributes and IDL attributes, and on
Documentp33 objects, as IDL attributes:

Event handlerp519 Event handler event typep521

onblur blur

522

Event handlerp519 Event handler event typep521

onerror error

onfocus focus

onload load

The following are the event handlersp519 (and their corresponding event handler event typesp521) that must be
supported by Windowp467 objects, as IDL attributes on the Windowp467 object, and with corresponding content attributes
and IDL attributes exposed on the bodyp138 and framesetp704 elements:

Event handlerp519 Event handler event typep521

onafterprint afterprint

onbeforeprint beforeprint

onbeforeunload beforeunload

onblur blur

onerror error

onfocus focus

onhashchange hashchangep493

onload load

onmessage messagep570

onoffline offlinep513

ononline onlinep513

onpagehide pagehidep493

onpageshow pageshowp493

onpopstate popstatep492

onredo redop564

onresize resize

onstorage storage

onundo undop564

onunload unload

Note: The onerrorp523 handler is also used for reporting script errorsp524.

7.1.6.3 Event firing

Certain operations and methods are defined as firing events on elements. For example, the click()p537 method on the
HTMLElementp85 interface is defined as firing a clickp33 event on the element. [DOMEVENTS]p739

Firing a click event means that a clickp33 event, which bubbles and is cancelable, and which uses the MouseEvent
interface, must be dispatched at the given target. The event object must have its screenX, screenY, clientX,
clientY, and button attributes set to 0, its ctrlKey, shiftKey, altKey, and metaKey attributes set according to the
current state of the key input device, if any (false for any keys that are not available), its detail attribute set to 1, and
its relatedTarget attribute set to null. The getModifierState() method on the object must return values
appropriately describing the state of the key input device at the time the event is created.

Firing a simple event named e means that an event with the name e, which does not bubble (except where
otherwise stated) and is not cancelable (except where otherwise stated), and which uses the Eventp33 interface, must
be dispatched at the given target.

The default action of these event is to do nothing except where otherwise stated.

7.1.6.4 Events and the Windowp467 object

When an event is dispatched at a DOM node in a Documentp33 in a browsing contextp463, if the event is not a load
event, the user agent must also dispatch the event to the Windowp467, as follows:

1. In the capture phase, the event must propagate to the Windowp467 object before propagating to any of the
nodes, as if the Windowp467 object was the parent of the Documentp33 in the dispatch chain.

2. In the bubble phase, the event must propagate up to the Windowp467 object at the end of the phase, unless
bubbling has been prevented, again as if the Windowp467 object was the parent of the Documentp33 in the
dispatch chain.

523

7.1.6.5 Runtime script errors

This section only applies to user agents that support scripting in general and JavaScript in particular.

Whenever an uncaught runtime script error occurs in one of the scripts associated with a Documentp33, the user agent
must report the errorp524 using the onerrorp523 event handlerp519 of the script's global objectp515. If the error is still not
handledp524 after this, then the error may be reported to the user.

When the user agent is required to report an error error using the event handlerp519 onerror, it must run these steps,
after which the error is either handled or not handled:

↪ If the value of onerror is a Functionp521

The function must be invoked with three arguments. The three arguments passed to the function are all
DOMStrings; the first must give the message that the UA is considering reporting, the second must give the
absolute URLp55 of the resource in which the error occurred, and the third must give the line number in that
resource on which the error occurred.

If the function returns false, then the error is handledp524. Otherwise, the error is not handledp524.

Any uncaught exceptions thrown or errors caused by this function may be reported to the user immediately
after the error that the function was called for; the report an errorp524 algorithm must not be used to handle
exceptions thrown or errors caused by this function.

↪ Otherwise
The error is not handledp524.

7.2 Timers

The setTimeout()p525 and setInterval()p525 methods allow authors to schedule timer-based callbacks.

[Supplemental, NoInterfaceObject]
interface WindowTimers {

long setTimeout(in any handler, in optional any timeout, in any... args);
void clearTimeout(in long handle);
long setInterval(in any handler, in optional any timeout, in any... args);
void clearInterval(in long handle);

};
Window implements WindowTimers;

This box is non-normative. Implementation requirements are given below this box.

handle = window . setTimeoutp525(handler [, timeout [, arguments]])
Schedules a timeout to run handler after timeout milliseconds. Any arguments are passed straight through
to the handler.

handle = window . setTimeoutp525(code [, timeout])
Schedules a timeout to compile and run code after timeout milliseconds.

window . clearTimeoutp525(handle)
Cancels the timeout set with setTimeout()p525 identified by handle.

handle = window . setIntervalp525(handler [, timeout [, arguments]])
Schedules a timeout to run handler every timeout milliseconds. Any arguments are passed straight
through to the handler.

handle = window . setIntervalp525(code [, timeout])
Schedules a timeout to compile and run code every timeout milliseconds.

window . clearIntervalp526(handle)
Cancels the timeout set with setInterval()p525 identified by handle.

524

Note: This API does not guarantee that timers will fire exactly on schedule. Delays due to CPU
load, other tasks, etc, are to be expected.

Note: The WindowTimersp524 interface adds to the Windowp467 interface and the WorkerUtils interface
(part of Web Workers).

Each object that implements the WindowTimersp524 interface has a list of active timeouts and a list of active
intervals. Each entry in these lists is identified by a number, which must be unique within its list for the lifetime of the
object that implements the WindowTimersp524 interface.

The setTimeout() method must run the following steps:

1. Let handle be a user-agent-defined integer that is greater than zero that will identify the timeout to be set by
this call.

2. Add an entry to the list of active timeoutsp525 for handle.

3. Get the timed taskp526 handle in the list of active timeoutsp525, and let task be the result.

4. Get the timeoutp526, and let timeout be the result.

5. If the currently running taskp517 is a task that was created by the setTimeout()p525 method, and timeout is
less than 4, then increase timeout to 4.

6. Return handle, and then continue running this algorithm asynchronously.

7. If the method contextp526 is a Windowp467 object, wait until the Documentp33 associated with the method
contextp526 has been fully activep464 for a further timeout milliseconds (not necessarily consecutively).

Otherwise, if the method contextp526 is a WorkerUtils object, wait until timeout milliseconds have passed
with the worker not suspended (not necessarily consecutively).

Otherwise, act as described in the specification that defines that the WindowTimersp524 interface is
implemented by some other object.

8. Wait until any invocations of this algorithm started before this one whose timeout is equal to or less than this
one's have completed.

9. Queuep517 the task taskp517.

The clearTimeout() method must clear the entry identified as handle from the list of active timeoutsp525 of the
WindowTimersp524 object on which the method was invoked, where handle is the argument passed to the method.

The setInterval() method must run the following steps:

1. Let handle be a user-agent-defined integer that is greater than zero that will identify the interval to be set by
this call.

2. Add an entry to the list of active intervalsp525 for handle.

3. Get the timed taskp526 handle in the list of active intervalsp525, and let task be the result.

4. Get the timeoutp526, and let timeout be the result.

5. If timeout is less than 10, then increase timeout to 10.

6. Return handle, and then continue running this algorithm asynchronously.

7. Wait: If the method contextp526 is a Windowp467 object, wait until the Documentp33 associated with the method
contextp526 has been fully activep464 for a further interval milliseconds (not necessarily consecutively).

Otherwise, if the method contextp526 is a WorkerUtils object, wait until interval milliseconds have passed
with the worker not suspended (not necessarily consecutively).

Otherwise, act as described in the specification that defines that the WindowTimersp524 interface is
implemented by some other object.

8. Queuep517 the task taskp517.

525

9. Return to the step labeled wait.

The clearInterval() method must clear the entry identified as handle from the list of active intervalsp525 of the
WindowTimersp524 object on which the method was invoked, where handle is the argument passed to the method.

The method context, when referenced by the algorithms in this section, is the object on which the method for which
the algorithm is running is implemented (a Windowp467 or WorkerUtils object).

When the above methods are invoked and try to get the timed task handle in list list, they must run the following
steps:

1. If the first argument to the invoked method is an object that has an internal [[Call]] method, then return a
taskp517 that checks if the entry for handle in list has been cleared, and if it has not, calls the aforementioned
[[Call]] method with as its arguments the third and subsequent arguments to the invoked method (if any),
and abort these steps.

Otherwise, continue with the remaining steps.

2. Apply the ToString() abstract operation to the first argument to the method, and let script source be the
result. [ECMA262]p739

3. Let script language be JavaScript.

4. If the method contextp526 is a Windowp467 object, let global object be the method contextp526, let browsing
context be the browsing contextp463 with which global object is associated, let character encoding be the
character encodingp79 of the Documentp33 associated with global object (this is a reference, not a copyp515),
and let base URL be the base URLp55 of the Documentp33 associated with global object (this is a reference, not
a copyp515).

Otherwise, if the method contextp526 is a WorkerUtils object, let global object, browsing context, document,
character encoding, and base URL be the script's global objectp515, script's browsing contextp515, script's
documentp515, script's URL character encodingp515, and script's base URLp515 (respectively) of the scriptp514

that the run a worker algorithm created when it created the method contextp526.

Otherwise, act as described in the specification that defines that the WindowTimersp524 interface is
implemented by some other object.

5. Return a taskp517 that checks if the entry for handle in list has been cleared, and if it has not, creates a
scriptp515 using script source as the script source, scripting language as the scripting language, global object
as the global object, browsing context as the browsing context, document as the document, character
encoding as the URL character encoding, and base URL as the base URL.

When the above methods are to get the timeout, they must run the following steps:

1. Let timeout be the second argument to the method, or zero if the argument was omitted.

2. Apply the ToString() abstract operation to timeout, and let timeout be the result. [ECMA262]p739

3. Apply the ToNumber() abstract operation to timeout, and let timeout be the result. [ECMA262]p739

4. If timeout is an Infinity value, a Not-a-Number (NaN) value, or negative, let timeout be zero.

5. Round timeout down to the nearest integer, and let timeout be the result.

6. Return timeout.

The task sourcep517 for these tasksp517 is the timer task source.

7.3 User prompts

This box is non-normative. Implementation requirements are given below this box.

7.3.1 Simple dialogs

526

window . alertp527(message)
Displays a modal alert with the given message, and waits for the user to dismiss it.

A call to the navigator.yieldForStorageUpdates()p535 method is implied when this method is invoked.

result = window . confirmp527(message)
Displays a modal OK/Cancel prompt with the given message, waits for the user to dismiss it, and returns
true if the user clicks OK and false if the user clicks Cancel.

A call to the navigator.yieldForStorageUpdates()p535 method is implied when this method is invoked.

result = window . promptp527(message [, default])
Displays a modal text field prompt with the given message, waits for the user to dismiss it, and returns the
value that the user entered. If the user cancels the prompt, then returns null instead. If the second
argument is present, then the given value is used as a default.

A call to the navigator.yieldForStorageUpdates()p535 method is implied when this method is invoked.

The alert(message) method, when invoked, must release the storage mutexp517 and show the given message to the
user. The user agent may make the method wait for the user to acknowledge the message before returning; if so, the
user agent must pausep518 while the method is waiting.

The confirm(message) method, when invoked, must release the storage mutexp517 and show the given message to
the user, and ask the user to respond with a positive or negative response. The user agent must then pausep518 as the
method waits for the user's response. If the user responds positively, the method must return true, and if the user
responds negatively, the method must return false.

The prompt(message, default) method, when invoked, must release the storage mutexp517, show the given message
to the user, and ask the user to either respond with a string value or abort. The user agent must then pausep518 as the
method waits for the user's response. The second argument is optional. If the second argument (default) is present,
then the response must be defaulted to the value given by default. If the user aborts, then the method must return
null; otherwise, the method must return the string that the user responded with.

This box is non-normative. Implementation requirements are given below this box.

window . printp527()
Prompts the user to print the page.

A call to the navigator.yieldForStorageUpdates()p535 method is implied when this method is invoked.

The print() method, when invoked, must run the printing stepsp527.

User agents should also run the printing stepsp527 whenever the user asks for the opportunity to obtain a physical
formp695 (e.g. printed copy), or the representation of a physical form (e.g. PDF copy), of a document.

The printing steps are as follows:

1. The user agent may display a message to the user and/or may abort these steps.

For instance, a kiosk browser could silently ignore any invocations of the print()p527 method.

For instance, a browser on a mobile device could detect that there are no printers in the vicinity and
display a message saying so before continuing to offer a "save to PDF" option.

2. The user agent must fire a simple eventp523 named beforeprint at the Windowp467 object of the Documentp33

that is being printed, as well as any nested browsing contextsp463 in it.

The beforeprint event can be used to annotate the printed copy, for instance adding the time at
which the document was printed.

3. The user agent must release the storage mutexp517.

7.3.2 Printing

527

4. The user agent should offer the user the opportunity to obtain a physical formp695 (or the representation of a
physical form) of the document. The user agent may wait for the user to either accept or decline before
returning; if so, the user agent must pausep518 while the method is waiting. Even if the user agent doesn't
wait at this point, the user agent must use the state of the relevant documents as they are at this point in
the algorithm if and when it eventually creates the alternate form.

5. The user agent must fire a simple eventp523 named afterprint at the Windowp467 object of the Documentp33

that is being printed, as well as any nested browsing contextsp463 in it.

The afterprint event can be used to revert annotations added in the earlier event, as well as
showing post-printing UI. For instance, if a page is walking the user through the steps of applying for a
home loan, the script could automatically advance to the next step after having printed a form or
other.

This box is non-normative. Implementation requirements are given below this box.

result = window . showModalDialogp528(url [, argument])
Prompts the user with the given page, waits for that page to close, and returns the return value.

A call to the navigator.yieldForStorageUpdates()p535 method is implied when this method is invoked.

The showModalDialog(url, argument) method, when invoked, must cause the user agent to run the following steps:

1. Resolvep55 url relative to the entry scriptp466 's base URLp515.

If this fails, then throw a SYNTAX_ERRp74 exception and abort these steps.

2. Release the storage mutexp517.

3. If the user agent is configured such that this invocation of showModalDialog()p528 is somehow disabled, then
return the empty string and abort these steps.

Note: User agents are expected to disable this method in certain cases to avoid user
annoyance (e.g. as part of their popup blocker feature). For instance, a user agent could
require that a site be white-listed before enabling this method, or the user agent could
be configured to only allow one modal dialog at a time.

4. Let the list of background browsing contexts be a list of all the browsing contexts that:

• are part of the same unit of related browsing contextsp465 as the browsing context of the
Windowp467 object on which the showModalDialog()p528 method was called, and that

• have an active documentp463 whose originp474 is the samep476 as the originp474 of the scriptp514 that
called the showModalDialog()p528 method at the time the method was called,

...as well as any browsing contexts that are nested inside any of the browsing contexts matching those
conditions.

5. Disable the user interface for all the browsing contexts in the list of background browsing contexts. This
should prevent the user from navigating those browsing contexts, causing events to be sent to those
browsing context, or editing any content in those browsing contexts. However, it does not prevent those
browsing contexts from receiving events from sources other than the user, from running scripts, from
running animations, and so forth.

6. Create a new auxiliary browsing contextp465, with the opener browsing contextp465 being the browsing
context of the Windowp467 object on which the showModalDialog()p528 method was called. The new auxiliary
browsing context has no name.

Note: This browsing contextp463 's Documentp33s' Windowp467 objects all implement the
WindowModalp529 interface.

7. Let the dialog argumentsp529 of the new browsing context be set to the value of argument, or the 'undefined'
value if the argument was omitted.

7.3.3 Dialogs implemented using separate documents

528

8. Let the dialog arguments' originp529 be the originp474 of the scriptp514 that called the showModalDialog()p528

method.

9. Navigatep484 the new browsing contextp463 to the absolute URLp55 that resulted from resolvingp55 url earlier,
with replacement enabledp492, and with the browsing contextp515 of the scriptp514 that invoked the method as
the source browsing contextp484.

10. Spin the event loopp518 until the new browsing contextp463 is closed. (The user agent must allow the user to
indicate that the browsing contextp463 is to be closed.)

11. Reenable the user interface for all the browsing contexts in the list of background browsing contexts.

12. Return the auxiliary browsing contextp465 's return valuep529.

The Windowp467 objects of Documentp33s hosted by browsing contextsp463 created by the above algorithm must all have
the WindowModalp529 interface added to their Windowp467 interface:

[Supplemental, NoInterfaceObject] interface WindowModal {
readonly attribute any dialogArguments;

attribute DOMString returnValue;
};

This box is non-normative. Implementation requirements are given below this box.

window . dialogArgumentsp529

Returns the argument argument that was passed to the showModalDialog()p528 method.

window . returnValuep529 [= value]
Returns the current return value for the window.

Can be set, to change the value that will be returned by the showModalDialog()p528 method.

Such browsing contexts have associated dialog arguments, which are stored along with the dialog arguments'
origin. These values are set by the showModalDialog()p528 method in the algorithm above, when the browsing
context is created, based on the arguments provided to the method.

The dialogArguments IDL attribute, on getting, must check whether its browsing context's active documentp463 's
originp474 is the samep476 as the dialog arguments' originp529. If it is, then the browsing context's dialog argumentsp529

must be returned unchanged. Otherwise, if the dialog argumentsp529 are an object, then the empty string must be
returned, and if the dialog argumentsp529 are not an object, then the stringification of the dialog argumentsp529 must be
returned.

These browsing contexts also have an associated return value. The return valuep529 of a browsing context must be
initialized to the empty string when the browsing context is created.

The returnValue IDL attribute, on getting, must return the return valuep529 of its browsing context, and on setting,
must set the return valuep529 to the given new value.

Note: The window.close()p470 method can be used to close the browsing context.

7.4 System state and capabilities

The navigator attribute of the Windowp467 interface must return an instance of the Navigatorp529 interface, which
represents the identity and state of the user agent (the client), and allows Web pages to register themselves as
potential protocol and content handlers:

interface Navigator {
// objects implementing this interface also implement the interfaces given below

};
Navigator implements NavigatorID;
Navigator implements NavigatorOnLine;
Navigator implements NavigatorAbilities;

529

[Supplemental, NoInterfaceObject]
interface NavigatorID {

readonly attribute DOMString appName;
readonly attribute DOMString appVersion;
readonly attribute DOMString platform;
readonly attribute DOMString userAgent;

};

[Supplemental, NoInterfaceObject]
interface NavigatorOnLine {

readonly attribute boolean onLine;
};

[Supplemental, NoInterfaceObject]
interface NavigatorAbilities {

// content handler registration
void registerProtocolHandler(in DOMString scheme, in DOMString url, in DOMString title);
void registerContentHandler(in DOMString mimeType, in DOMString url, in DOMString title);
void yieldForStorageUpdates();

};

These interfaces are defined separately so that other specifications can re-use parts of the Navigatorp529 interface.

In certain cases, despite the best efforts of the entire industry, Web browsers have bugs and limitations that Web
authors are forced to work around.

This section defines a collection of attributes that can be used to determine, from script, the kind of user agent in use,
in order to work around these issues.

Client detection should always be limited to detecting known current versions; future versions and unknown versions
should always be assumed to be fully compliant.

This box is non-normative. Implementation requirements are given below this box.

window . navigatorp529 . appNamep530

Returns the name of the browser.

window . navigatorp529 . appVersionp530

Returns the version of the browser.

window . navigatorp529 . platformp530

Returns the name of the platform.

window . navigatorp529 . userAgentp530

Returns the complete User-Agent header.

appName
Must return either the string "Netscape" or the full name of the browser, e.g. "Mellblom Browsernator".

appVersion
Must return either the string "4.0" or a string representing the version of the browser in detail, e.g. "1.0 (VMS;
en-US) Mellblomenator/9000".

platform
Must return either the empty string or a string representing the platform on which the browser is executing, e.g.
"MacIntel", "Win32", "FreeBSD i386", "WebTV OS".

userAgent
Must return the string used for the value of the "User-Agent" header in HTTP requests, or the empty string if no
such header is ever sent.

7.4.1 Client identification

530

The registerProtocolHandler() method allows Web sites to register themselves as possible handlers for particular
schemes. For example, an online telephone messaging service could register itself as a handler of the sms: scheme
([RFC5724]p742), so that if the user clicks on such a link, he is given the opportunity to use that Web site. Analogously,
the registerContentHandler() method allows Web sites to register themselves as possible handlers for content in a
particular MIME typep28. For example, the same online telephone messaging service could register itself as a handler
for text/directory files ([RFC2425]p741), so that if the user has no native application capable of handling vCards
([RFC2426]p741), his Web browser can instead suggest he use that site to view contact information stored on vCards
that he opens.

This box is non-normative. Implementation requirements are given below this box.

window . navigatorp529 . registerProtocolHandlerp531(scheme, url, title)
window . navigatorp529 . registerContentHandlerp531(mimeType, url, title)

Registers a handler for the given scheme or content type, at the given URL, with the given title.
The string "%s" in the URL is used as a placeholder for where to put the URL of the content to be handled.

Throws a SECURITY_ERRp74 exception if the user agent blocks the registration (this might happen if trying
to register as a handler for "http", for instance).

Throws a SYNTAX_ERRp74 if the "%s" string is missing in the URL.

User agents may, within the constraints described in this section, do whatever they like when the methods are called.
A UA could, for instance, prompt the user and offer the user the opportunity to add the site to a shortlist of handlers,
or make the handlers his default, or cancel the request. UAs could provide such a UI through modal UI or through a
non-modal transient notification interface. UAs could also simply silently collect the information, providing it only when
relevant to the user.

User agents should keep track of which sites have registered handlers (even if the user has declined such
registrations) so that the user is not repeatedly prompted with the same request.

The arguments to the methods have the following meanings and corresponding implementation requirements:

protocol (registerProtocolHandler()p531 only)
A scheme, such as ftp or sms. The scheme must be compared in an ASCII case-insensitivep35 manner by user
agents for the purposes of comparing with the scheme part of URLs that they consider against the list of
registered handlers.

The scheme value, if it contains a colon (as in "ftp:"), will never match anything, since schemes don't contain
colons.

Note: This feature is not intended to be used with non-standard protocols.

mimeType (registerContentHandler()p531 only)
A MIME typep28, such as model/vnd.flatland.3dml or application/vnd.google-earth.kml+xml. The MIME
typep28 must be compared in an ASCII case-insensitivep35 manner by user agents for the purposes of comparing
with MIME types of documents that they consider against the list of registered handlers.

User agents must compare the given values only to the MIME type/subtype parts of content types, not to the
complete type including parameters. Thus, if mimeType values passed to this method include characters such as
commas or whitespace, or include MIME parameters, then the handler being registered will never be used.

Note: The type is compared to the MIME typep28 used by the user agent after the sniffing
algorithms have been applied.

url
A string used to build the URLp54 of the page that will handle the requests.

When the user agent uses this URL, it must replace the first occurrence of the exact literal string "%s" with an
escaped version of the absolute URLp55 of the content in question (as defined below), then resolvep55 the
resulting URL, relative to the base URLp515 of the entry scriptp466 at the time the registerContentHandler()p531

or registerProtocolHandler()p531 methods were invoked, and then navigatep484 an appropriate browsing
contextp463 to the resulting URL using the GET method (or equivalentp60 for non-HTTP URLs).

7.4.2 Custom scheme and content handlers

531

To get the escaped version of the absolute URLp55 of the content in question, the user agent must replace every
character in that absolute URLp55 that doesn't match the <query> production defined in RFC 3986 by the
percent-encoded form of that character. [RFC3986]p741

If the user had visited a site at http://example.com/ that made the following call:

navigator.registerContentHandler('application/x-soup', 'soup?url=%s', 'SoupWeb™')
...and then, much later, while visiting http://www.example.net/, clicked on a link such as:

Download our Chicken Kïwi soup!
...then, assuming this chickenkïwi.soup file was served with the MIME typep28 application/x-soup, the
UA might navigate to the following URL:

http://example.com/soup?url=http://www.example.net/chickenk%C3%AFwi.soup
This site could then fetch the chickenkïwi.soup file and do whatever it is that it does with soup
(synthesize it and ship it to the user, or whatever).

title
A descriptive title of the handler, which the UA might use to remind the user what the site in question is.

User agents should raise SECURITY_ERRp74 exceptions if the methods are called with scheme or mimeType values that
the UA deems to be "privileged". For example, a site attempting to register a handler for http URLs or text/htmlp715

content in a Web browser would likely cause an exception to be raised.

User agents must raise a SYNTAX_ERRp74 exception if the url argument passed to one of these methods does not
contain the exact literal string "%s", or if resolvingp55 the url argument with the first occurrence of the string "%s"
removed, relative to the entry scriptp466 's base URLp515, is not successful.

User agents must not raise any other exceptions (other than binding-specific exceptions, such as for an incorrect
number of arguments in an JavaScript implementation).

This section does not define how the pages registered by these methods are used, beyond the requirements on how to
process the url value (see above). To some extent, the processing model for navigating across documentsp484 defines
some cases where these methods are relevant, but in general UAs may use this information wherever they would
otherwise consider handing content to native plugins or helper applications.

UAs must not use registered content handlers to handle content that was returned as part of a non-GET transaction (or
rather, as part of any non-idempotent transaction), as the remote site would not be able to fetch the same data.

7.4.2.1 Security and privacy

These mechanisms can introduce a number of concerns, in particular privacy concerns.

Hijacking all Web usage. User agents should not allow schemes that are key to its normal operation, such as http
or https, to be rerouted through third-party sites. This would allow a user's activities to be trivially tracked, and would
allow user information, even in secure connections, to be collected.

Hijacking defaults. It is strongly recommended that user agents do not automatically change any defaults, as this
could lead the user to send data to remote hosts that the user is not expecting. New handlers registering themselves
should never automatically cause those sites to be used.

Registration spamming. User agents should consider the possibility that a site will attempt to register a large
number of handlers, possibly from multiple domains (e.g. by redirecting through a series of pages each on a different
domain, and each registering a handler for video/mpeg — analogous practices abusing other Web browser features
have been used by pornography Web sites for many years). User agents should gracefully handle such hostile
attempts, protecting the user.

Misleading titles. User agents should not rely wholly on the title argument to the methods when presenting the
registered handlers to the user, since sites could easily lie. For example, a site hostile.example.net could claim that
it was registering the "Cuddly Bear Happy Content Handler". User agents should therefore use the handler's domain in
any UI along with any title.

Hostile handler metadata. User agents should protect against typical attacks against strings embedded in their
interface, for example ensuring that markup or escape characters in such strings are not executed, that null bytes are
properly handled, that over-long strings do not cause crashes or buffer overruns, and so forth.

Leaking Intranet URLs. The mechanism described in this section can result in secret Intranet URLs being leaked, in
the following manner:

532

1. The user registers a third-party content handler as the default handler for a content type.

2. The user then browses his corporate Intranet site and accesses a document that uses that content type.

3. The user agent contacts the third party and hands the third party the URL to the Intranet content.

No actual confidential file data is leaked in this manner, but the URLs themselves could contain confidential
information. For example, the URL could be http://www.corp.example.com/upcoming-aquisitions/the-sample-
company.egf, which might tell the third party that Example Corporation is intending to merge with The Sample
Company. Implementors might wish to consider allowing administrators to disable this feature for certain subdomains,
content types, or schemes.

Leaking secure URLs. User agents should not send HTTPS URLs to third-party sites registered as content handlers, in
the same way that user agents do not send Referer (sic) HTTP headers from secure sites to third-party sites.

Leaking credentials. User agents must never send username or password information in the URLs that are escaped
and included sent to the handler sites. User agents may even avoid attempting to pass to Web-based handlers the
URLs of resources that are known to require authentication to access, as such sites would be unable to access the
resources in question without prompting the user for credentials themselves (a practice that would require the user to
know whether to trust the third-party handler, a decision many users are unable to make or even understand).

7.4.2.2 Sample user interface

This section is non-normative.

A simple implementation of this feature for a desktop Web browser might work as follows.

The registerContentHandler()p531 method could display a modal dialog box:

In this dialog box, "Kittens at work" is the title of the page that invoked the method, "http://kittens.example.org/" is the
URL of that page, "application/x-meowmeow" is the string that was passed to the registerContentHandler()p531

method as its first argument (mimeType), "http://kittens.example.org/?show=%s" was the second argument (url), and
"Kittens-at-work displayer" was the third argument (title).

533

If the user clicks the Cancel button, then nothing further happens. If the user clicks the "Trust" button, then the
handler is remembered.

When the user then attempts to fetch a URL that uses the "application/x-meowmeow" MIME typep28, then it might
display a dialog as follows:

In this dialog, the third option is the one that was primed by the site registering itself earlier.

If the user does select that option, then the browser, in accordance with the requirements described in the previous
two sections, will redirect the user to "http://kittens.example.org/?show=data%3Aapplication/x-
meowmeow;base64,S2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%253D".

The registerProtocolHandler()p531 method would work equivalently, but for schemes instead of unknown content
types.

This box is non-normative. Implementation requirements are given below this box.

window . navigatorp529 . yieldForStorageUpdatesp535()
If a script uses the document.cookiep78 API, or the localStorage API, the browser will block other scripts
from accessing cookies or storage until the first script finishes. [WEBSTORAGE]p743

Calling the navigator.yieldForStorageUpdates()p535 method tells the user agent to unblock any other
scripts that may be blocked, even though the script hasn't returned.
Values of cookies and items in the Storage objects of localStorage attributes can change after calling
this method, whence its name. [WEBSTORAGE]p743

7.4.3 Manually releasing the storage mutex

534

The yieldForStorageUpdates() method, when invoked, must, if the storage mutexp517 is owned by the event loopp516

of the taskp517 that resulted in the method being called, release the storage mutexp517 so that it is once again free.
Otherwise, it must do nothing.

535

8 User interaction

This section describes various features that allow authors to enable users to edit documents and parts of documents
interactively.

8.1 The hidden attribute

All HTML elementsp28 may have the hiddenp536 content attribute set. The hiddenp536 attribute is a boolean attributep37.
When specified on an element, it indicates that the element is not yet, or is no longer, relevant. User agents should
not render elements that have the hiddenp536 attribute specified.

In the following skeletal example, the attribute is used to hide the Web game's main screen until the user logs
in:

<h1>The Example Game</h1>
<section id="login">
<h2>Login</h2>
<form>
...
<!-- calls login() once the user's credentials have been checked -->

</form>
<script>
function login() {

// switch screens
document.getElementById('login').hidden = true;
document.getElementById('game').hidden = false;

}
</script>

</section>
<section id="game" hidden>
...

</section>

The hiddenp536 attribute must not be used to hide content that could legitimately be shown in another presentation.
For example, it is incorrect to use hiddenp536 to hide panels in a tabbed dialog, because the tabbed interface is merely
a kind of overflow presentation — one could equally well just show all the form controls in one big page with a
scrollbar. It is similarly incorrect to use this attribute to hide content just from one presentation — if something is
marked hiddenp536, it is hidden from all presentations, including, for instance, screen readers.

Elements that are not hiddenp536 should not link to or refer to elements that are hiddenp536.

For example, it would be incorrect to use the hrefp404 attribute to link to a section marked with the hiddenp536

attribute. If the content is not applicable or relevant, then there is no reason to link to it.

It would similarly be incorrect to use the ARIA aria-describedby attribute to refer to descriptions that are
themselves hiddenp536. Hiding a section means that it is not applicable or relevant to anyone at the current
time, so clearly it cannot be a valid description of content the user can interact with.

Elements in a section hidden by the hiddenp536 attribute are still active, e.g. scripts and form controls in such sections
still execute and submit respectively. Only their presentation to the user changes.

The hidden IDL attribute must reflectp61 the content attribute of the same name.

8.2 Activation

This box is non-normative. Implementation requirements are given below this box.

element . clickp537()
Acts as if the element was clicked.

Each element has a click in progress flag, initially set to false.

536

The click() method must run these steps:

1. If the element's click in progress flag is set to true, then abort these steps.

2. Set the click in progress flag on the element to true.

3. If the element has a defined activation behaviorp98, run synthetic click activation stepsp97 on the element.
Otherwise, fire a click eventp523 at the element.

4. Set the click in progress flag on the element to false.

8.3 Scrolling elements into view

This box is non-normative. Implementation requirements are given below this box.

element . scrollIntoViewp537([top])
Scrolls the element into view. If the top argument is true, then the element will be scrolled to the top of
the viewport, otherwise it'll be scrolled to the bottom. The default is the top.

The scrollIntoView([top]) method, when called, must cause the element on which the method was called to have
the attention of the user called to it.

Note: In a speech browser, this could happen by having the current playback position move to the
start of the given element.

If the element in question cannot be brought to the user's attention, e.g. because it is hiddenp536, or is not being
renderedp672, then the user agent must do nothing instead.

In visual user agents, if the argument is present and has the value false, the user agent should scroll the element into
view such that both the bottom and the top of the element are in the viewport, with the bottom of the element aligned
with the bottom of the viewport. If it isn't possible to show the entire element in that way, or if the argument is
omitted or is true, then the user agent should instead align the top of the element with the top of the viewport. If the
entire scrollable part of the content is visible all at once (e.g. if a page is shorter than the viewport), then the user
agent should not scroll anything. Visual user agents should further scroll horizontally as necessary to bring the
element to the attention of the user.

Non-visual user agents may ignore the argument, or may treat it in some media-specific manner most useful to the
user.

8.4 Focus

When an element is focused, key events received by the document must be targeted at that element. There may be
no element focused; when no element is focused, key events received by the document must be targeted at the body
elementp81.

User agents may track focus for each browsing contextp463 or Documentp33 individually, or may support only one
focused element per top-level browsing contextp464 — user agents should follow platform conventions in this regard.

Which elements within a top-level browsing contextp464 currently have focus must be independent of whether or not
the top-level browsing contextp464 itself has the system focus.

Note: When an element is focused, the element matches the CSS :focus pseudo-class.

The tabindex content attribute specifies whether the element is focusable, whether it can be reached using
sequential focus navigation, and the relative order of the element for the purposes of sequential focus navigation. The
name "tab index" comes from the common use of the "tab" key to navigate through the focusable elements. The term
"tabbing" refers to moving forward through the focusable elements that can be reached using sequential focus
navigation.

The tabindexp537 attribute, if specified, must have a value that is a valid integerp38.

8.4.1 Sequential focus navigation

537

If the attribute is specified, it must be parsed using the rules for parsing integersp38. The attribute's values have the
following meanings:

If the attribute is omitted or parsing the value returns an error
The user agent should follow platform conventions to determine if the element is to be focusable and, if so,
whether the element can be reached using sequential focus navigation, and if so, what its relative order should
be.

If the value is a negative integer
The user agent must allow the element to be focused, but should not allow the element to be reached using
sequential focus navigation.

If the value is a zero
The user agent must allow the element to be focused, should allow the element to be reached using sequential
focus navigation, and should follow platform conventions to determine the element's relative order.

If the value is greater than zero
The user agent must allow the element to be focused, should allow the element to be reached using sequential
focus navigation, and should place the element in the sequential focus navigation order so that it is:

• before any focusable element whose tabindexp537 attribute has been omitted or whose value, when
parsed, returns an error,

• before any focusable element whose tabindexp537 attribute has a value equal to or less than zero,

• after any element whose tabindexp537 attribute has a value greater than zero but less than the value
of the tabindexp537 attribute on the element,

• after any element whose tabindexp537 attribute has a value equal to the value of the tabindexp537

attribute on the element but that is earlier in the document in tree orderp29 than the element,

• before any element whose tabindexp537 attribute has a value equal to the value of the tabindexp537

attribute on the element but that is later in the document in tree orderp29 than the element, and

• before any element whose tabindexp537 attribute has a value greater than the value of the
tabindexp537 attribute on the element.

An element is specially focusable if the tabindexp537 attribute's definition above defines the element to be
focusable.

An element that is specially focusablep538 but does not otherwise have an activation behaviorp98 defined has an
activation behaviorp98 that does nothing.

Note: This means that an element that is only focusable because of its tabindexp537 attribute will
fire a clickp33 event in response to a non-mouse activation (e.g. hitting the "enter" key while the
element is focused).

The tabIndex IDL attribute must reflectp61 the value of the tabindexp537 content attribute. If the attribute is not
present, or parsing its value returns an error, then the IDL attribute must return 0 for elements that are focusable and
−1 for elements that are not focusable.

An element is focusable if the user agent's default behavior allows it to be focusable or if the element is specially
focusablep538, but only if the element is either being renderedp672 or is a descendant of a canvasp251 element that
representsp672 embedded contentp97.

User agents should make the following elements focusablep538, unless platform conventions dictate otherwise:

• ap169 elements that have an hrefp404 attribute

• linkp115 elements that have an hrefp116 attribute

• buttonp351 elements that are not disabledp374

• inputp320 elements whose typep321 attribute are not in the Hiddenp324 state and that are not disabledp374

8.4.2 Focus management

538

• selectp353 elements that are not disabledp374

• textareap360 elements that are not disabledp374

• commandp391 elements that do not have a disabledp392 attribute

• Elements with a draggablep560 attribute set, if that would enable the user agent to allow the user to begin a
drag operations for those elements without the use of a pointing device

In addition, each shape that is generated for an areap280 element should be focusablep538, unless platform conventions
dictate otherwise. (A single areap280 element can correspond to multiple shapes, since image maps can be reused with
multiple images on a page.)

The focusing steps are as follows:

1. If focusing the element will remove the focus from another element, then run the unfocusing stepsp539 for
that element.

2. Make the element the currently focused element in its top-level browsing contextp464.

Some elements, most notably areap280, can correspond to more than one distinct focusable area. If a
particular area was indicated when the element was focused, then that is the area that must get focus;
otherwise, e.g. when using the focus()p540 method, the first such region in tree order is the one that must
be focused.

3. Fire a simple eventp523 named focus at the element.

User agents must synchronously run the focusing stepsp539 for an element whenever the user moves the focus to a
focusablep538 element.

The unfocusing steps are as follows:

1. If the element is an inputp320 element, and the changep351 event applies to the element, and the element
does not have a defined activation behaviorp98, and the user has changed the element's valuep374 or its list
of selected filesp338 while the control was focused without committing that change, then fire a simple
eventp523 that bubbles named change at the element, then broadcast formchange eventsp387 at the
element's form ownerp373.

2. Unfocus the element.

3. Fire a simple eventp523 named blur at the element.

When an element that is focused stops being a focusablep538 element, or stops being focused without another element
being explicitly focused in its stead, the user agent should synchronously run the focusing stepsp539 for the body
elementp81, if there is one; if there is not, then the user agent should synchronously run the unfocusing stepsp539 for
the affected element only.

For example, this might happen because the element is removed from its Documentp33, or has a hiddenp536

attribute added. It would also happen to an inputp320 element when the element gets disabledp374.

This box is non-normative. Implementation requirements are given below this box.

document . activeElementp540

Returns the currently focused element.

document . hasFocusp540()
Returns true if the document has focus; otherwise, returns false.

window . focusp540()
Focuses the window. Use of this method is discouraged. Allow the user to control window focus instead.

8.4.3 Document-level focus APIs

539

window . blurp540()
Unfocuses the window. Use of this method is discouraged. Allow the user to control window focus instead.

The activeElement attribute on HTMLDocumentp75 objects must return the element in the document that is focused. If
no element in the Documentp33 is focused, this must return the body elementp81.

The hasFocus() method on HTMLDocumentp75 objects must return true if the document's browsing contextp463 is
focused, and all its ancestor browsing contextsp464 are also focused, and the top-level browsing contextp464 has the
system focus.

The focus() method on the Windowp467 object, when invoked, provides a hint to the user agent that the script believes
the user might be interested in the contents of the browsing contextp463 of the Windowp467 object on which the method
was invoked.

User agents are encouraged to have this focus()p540 method trigger some kind of notification.

The blur() method on the Windowp467 object, when invoked, provides a hint to the user agent that the script believes
the user probably is not currently interested in the contents of the browsing contextp463 of the Windowp467 object on
which the method was invoked, but that the contents might become interesting again in the future.

User agents are encouraged to ignore calls to this blur()p540 method entirely.

Note: Historically the focus()p540 and blur()p540 methods actually affected the system focus, but
hostile sites widely abuse this behavior to the user's detriment.

This box is non-normative. Implementation requirements are given below this box.

element . focusp540()
Focuses the element.

element . blurp540()
Unfocuses the element. Use of this method is discouraged. Focus another element instead.
Do not use this method to hide the focus ring if you find the focus ring unsightly. Instead, use a CSS rule to
override the 'outline' property.

For example, to hide the outline from links, you could use:
:link:focus, :visited:focus { outline: none; }

The focus() method, when invoked, must run the following algorithm:

1. If the element is marked as locked for focusp540, then abort these steps.

2. If the element is not focusablep538, then abort these steps.

3. Mark the element as locked for focus.

4. If the element is not already focused, run the focusing stepsp539 for the element.

5. Unmark the element as locked for focusp540.

The blur() method, when invoked, should run the focusing stepsp539 for the body elementp81, if there is one; if there is
not, then it should run the unfocusing stepsp539 for the element on which the method was called instead. User agents
may selectively or uniformly ignore calls to this method for usability reasons.

For example, if the blur()p540 method is unwisely being used to remove the focus ring for aesthetics reasons,
the page would become unusable by keyboard users. Ignoring calls to this method would thus allow keyboard
users to interact with the page.

8.4.4 Element-level focus APIs

540

8.5 The accesskey attribute

All HTML elementsp28 may have the accesskeyp541 content attribute set. The accesskeyp541 attribute's value is used by
the user agent as a guide for creating a keyboard shortcut that activates or focuses the element.

If specified, the value must be an ordered set of unique space-separated tokensp52, each of which must be exactly one
Unicode code point in length.

An element's assigned access key is a key combination derived from the element's accesskeyp541 content attribute
as follows:

1. If the element has no accesskeyp541 attribute, then skip to the fallback step below.

2. Otherwise, the user agent must split the attribute's value on spacesp52, and let keys be the resulting tokens.

3. For each value in keys in turn, in the order the tokens appeared in the attribute's value, run the following
substeps:

1. If the value is not a string exactly one Unicode code point in length, then skip the remainder of
these steps for this value.

2. If the value does not correspond to a key on the system's keyboard, then skip the remainder of
these steps for this value.

3. If the user agent can find a combination of modifier keys that, with the key that corresponds to the
value given in the attribute, can be used as a shortcut key, then the user agent may assign that
combination of keys as the element's assigned access keyp541 and abort these steps.

4. Fallback: Optionally, the user agent may assign a key combination of its choosing as the element's assigned
access keyp541 and then abort these steps.

5. If this step is reached, the element has no assigned access keyp541.

Once a user agent has selected and assigned an access key for an element, the user agent should not change the
element's assigned access keyp541 unless the accesskeyp541 content attribute is changed or the element is moved to
another Documentp33.

When the user presses the key combination corresponding to the assigned access keyp541 for an element, if the
element defines a commandp396, and the command's Hidden Statep396 facet is false (visible), and the command's
Disabled Statep396 facet is also false (enabled), then the user agent must trigger the Actionp397 of the command.

User agents may expose elements that have an accesskeyp541 attribute in other ways as well, e.g. in a menu displayed
in response to a specific key combination.

The accessKey IDL attribute must reflectp61 the accesskeyp541 content attribute.

The accessKeyLabel IDL attribute must return a string that represents the element's assigned access keyp541, if any. If
the element does not have one, then the IDL attribute must return the empty string.

In the following example, a variety of links are given with access keys so that keyboard users familiar with the
site can more quickly navigate to the relevant pages:

<nav>
<p>
<a title="Consortium Activities" accesskey="A" href="/Consortium/

activities">Activities |
Technical

Reports |
Site

Index |
About Consortium |
Contact

</p>
</nav>

In the following example, the search field is given two possible access keys, "s" and "0" (in that order). A user
agent on a device with a full keyboard might pick Ctrl+Alt+S as the shortcut key, while a user agent on a small
device with just a numeric keypad might pick just the plain unadorned key 0:

541

<form action="/search">
<label>Search: <input type="search" name="q" accesskey="s 0"></label>
<input type="submit">

</form>

In the following example, a button has possible access keys described. A script then tries to update the button's
label to advertise the key combination the user agent selected.

<input type=submit accesskey="N @ 1" value="Compose">
...
<script>
function labelButton(button) {

if (button.accessKeyLabel)
button.value += ' (' + button.accessKeyLabel + ')';

}
var inputs = document.getElementsByTagName('input');
for (var i = 0; i < inputs.length; i += 1) {

if (inputs[i].type == "submit")
labelButton(inputs[i]);

}
</script>

On one user agent, the button's label might become "Compose (⌘N)". On another, it might become "Compose
(Alt+⇧+1)". If the user agent doesn't assign a key, it will be just "Compose". The exact string depends on what
the assigned access keyp541 is, and on how the user agent represents that key combination.

8.6 The text selection APIs

Every browsing contextp463 has a selection. The selection can be empty, and the selection can have more than one
range (a disjointed selection). The user agent should allow the user to change the selection. User agents are not
required to let the user select more than one range, and may collapse multiple ranges in the selection to a single
range when the user interacts with the selection. (But, of course, the user agent may let the user create selections
with multiple ranges.)

This one selection must be shared by all the content of the browsing context (though not by nested browsing
contextsp463), including any editing hosts in the document. (Editing hosts that are not inside a document cannot have a
selection.)

If the selection is empty (collapsed, so that it has only one segment and that segment's start and end points are the
same) then the selection's position should equal the caret position. When the selection is not empty, this specification
does not define the caret position; user agents should follow platform conventions in deciding whether the caret is at
the start of the selection, the end of the selection, or somewhere else.

On some platforms (such as those using Wordstar editing conventions), the caret position is totally independent of the
start and end of the selection, even when the selection is empty. On such platforms, user agents may ignore the
requirement that the cursor position be linked to the position of the selection altogether.

Mostly for historical reasons, in addition to the browsing contextp463 's selectionp542, each textareap360 and inputp320

element has an independent selection. These are the text field selections.

User agents may selectively ignore attempts to use the API to adjust the selection made after the user has modified
the selection. For example, if the user has just selected part of a word, the user agent could ignore attempts to use the
API call to immediately unselect the selection altogether, but could allow attempts to change the selection to select
the entire word.

User agents may also allow the user to create selections that are not exposed to the API.

The selectp353 element also has a selection, indicating which items have been picked by the user. This is not
discussed in this section.

Note: This specification does not specify how selections are presented to the user.

542

This box is non-normative. Implementation requirements are given below this box.

window . getSelectionp543()
document . getSelectionp543()

Returns the Selectionp543 object for the window, which stringifies to the text of the current selection.

The getSelection() method on the Windowp467 interface must return the Selectionp543 object representing the
selectionp542 of that Windowp467 object's browsing contextp463.

For historical reasons, the getSelection() method on the HTMLDocumentp75 interface must return the same
Selectionp543 object.

interface Selection {
readonly attribute Node anchorNode;
readonly attribute long anchorOffset;
readonly attribute Node focusNode;
readonly attribute long focusOffset;
readonly attribute boolean isCollapsed;
void collapse(in Node parentNode, in long offset);
void collapseToStart();
void collapseToEnd();
void selectAllChildren(in Node parentNode);
void deleteFromDocument();
readonly attribute long rangeCount;
Range getRangeAt(in long index);
void addRange(in Range range);
void removeRange(in Range range);
void removeAllRanges();
stringifier DOMString ();

};

The Selectionp543 interface represents a list of Range objects. The first item in the list has index 0, and the last item
has index count-1, where count is the number of ranges in the list. [DOMRANGE]p739

All of the members of the Selectionp543 interface are defined in terms of operations on the Range objects represented
by this object. These operations can raise exceptions, as defined for the Range interface; this can therefore result in
the members of the Selectionp543 interface raising exceptions as well, in addition to any explicitly called out below.

This box is non-normative. Implementation requirements are given below this box.

selection . anchorNodep544

Returns the element that contains the start of the selection.
Returns null if there's no selection.

selection . anchorOffsetp544

Returns the offset of the start of the selection relative to the element that contains the start of the
selection.
Returns 0 if there's no selection.

selection . focusNodep544

Returns the element that contains the end of the selection.
Returns null if there's no selection.

selection . focusOffsetp544

Returns the offset of the end of the selection relative to the element that contains the end of the selection.
Returns 0 if there's no selection.

8.6.1 APIs for the browsing context selection

543

collapsed = selection . isCollapsedp544()
Returns true if there's no selection or if the selection is empty. Otherwise, returns false.

selection . collapsed(parentNode, offset)
Replaces the selection with an empty one at the given position.

Throws a WRONG_DOCUMENT_ERRp74 exception if the given node is in a different document.

selection . collapseToStartp545()
Replaces the selection with an empty one at the position of the start of the current selection.

Throws an INVALID_STATE_ERRp74 exception if there is no selection.

selection . collapseToEndp545()
Replaces the selection with an empty one at the position of the end of the current selection.

Throws an INVALID_STATE_ERRp74 exception if there is no selection.

selection . selectAllChildrenp545(parentNode)
Replaces the selection with one that contains all the contents of the given element.

Throws a WRONG_DOCUMENT_ERRp74 exception if the given node is in a different document.

selection . deleteFromDocumentp545()
Deletes the selection.

selection . rangeCountp545

Returns the number of ranges in the selection.

selection . getRangeAtp545(index)
Returns the given range.

Throws an INVALID_STATE_ERRp74 exception if the value is out of range.

selection . addRangep545(range)
Adds the given range to the selection.

selection . removeRangep545(range)
Removes the given range from the selection, if the range was one of the ones in the selection.

selection . removeAllRangesp545()
Removes all the ranges in the selection.

The anchorNode attribute must return the value returned by the startContainer attribute of the last Range object in
the list, or null if the list is empty.

The anchorOffset attribute must return the value returned by the startOffset attribute of the last Range object in
the list, or 0 if the list is empty.

The focusNode attribute must return the value returned by the endContainer attribute of the last Range object in the
list, or null if the list is empty.

The focusOffset attribute must return the value returned by the endOffset attribute of the last Range object in the
list, or 0 if the list is empty.

The isCollapsed attribute must return true if there are zero ranges, or if there is exactly one range and its collapsed
attribute is itself true. Otherwise it must return false.

The collapse(parentNode, offset) method must raise a WRONG_DOCUMENT_ERRp74 DOM exception if parentNode's
Documentp33 is not the HTMLDocumentp75 object with which the Selectionp543 object is associated. Otherwise it is, and
the method must remove all the ranges in the Selectionp543 list, then create a new Range object, add it to the list, and
invoke its setStart() and setEnd() methods with the parentNode and offset values as their arguments.

544

The collapseToStart() method must raise an INVALID_STATE_ERRp74 DOM exception if there are no ranges in the
list. Otherwise, it must invoke the collapse()p544 method with the startContainer and startOffset values of the
first Range object in the list as the arguments.

The collapseToEnd() method must raise an INVALID_STATE_ERRp74 DOM exception if there are no ranges in the list.
Otherwise, it must invoke the collapse()p544 method with the endContainer and endOffset values of the last Range
object in the list as the arguments.

The selectAllChildren(parentNode) method must invoke the collapse()p544 method with the parentNode value as
the first argument and 0 as the second argument, and must then invoke the selectNodeContents() method on the
first (and only) range in the list with the parentNode value as the argument.

The deleteFromDocument() method must invoke the deleteContents() method on each range in the list, if any, from
first to last.

The rangeCount attribute must return the number of ranges in the list.

The getRangeAt(index) method must return the indexth range in the list. If index is less than zero or greater or equal
to the value returned by the rangeCountp545 attribute, then the method must raise an INDEX_SIZE_ERRp74 DOM
exception.

The addRange(range) method must add the given range Range object to the list of selections, at the end (so the
newly added range is the new last range). Duplicates are not prevented; a range may be added more than once in
which case it appears in the list more than once, which (for example) will cause stringificationp545 to return the range's
text twice.

The removeRange(range) method must remove the first occurrence of range in the list of ranges, if it appears at all.

The removeAllRanges() method must remove all the ranges from the list of ranges, such that the rangeCountp545

attribute returns 0 after the removeAllRanges()p545 method is invoked (and until a new range is added to the list,
either through this interface or via user interaction).

Objects implementing this interface must stringify to a concatenation of the results of invoking the toString()
method of the Range object on each of the ranges of the selection, in the order they appear in the list (first to last).

In the following document fragment, the emphasized parts indicate the selection.

<p>The cute girl likes the <cite>Oxford English Dictionary</cite>.</p>

If a script invoked window.getSelection().toString(), the return value would be "the Oxford English".

The inputp320 and textareap360 elements define the following members in their DOM interfaces for handling their text
selection:

void select();
attribute unsigned long selectionStart;
attribute unsigned long selectionEnd;

void setSelectionRange(in unsigned long start, in unsigned long end);

These methods and attributes expose and control the selection of inputp320 and textareap360 text fields.

This box is non-normative. Implementation requirements are given below this box.

element . selectp546()
Selects everything in the text field.

element . selectionStart [= value]
Returns the offset to the start of the selection.
Can be set, to change the start of the selection.

element . selectionEnd [= value]
Returns the offset to the end of the selection.

8.6.2 APIs for the text field selections

545

Can be set, to change the end of the selection.

element . setSelectionRangep546(start, end)
Changes the selection to cover the given substring.

When these methods and attributes are used with inputp320 elements while they don't apply, they must raise an
INVALID_STATE_ERRp74 exception. Otherwise, they must act as described below.

The select() method must cause the contents of the text field to be fully selected.

The selectionStart attribute must, on getting, return the offset (in logical order) to the character that immediately
follows the start of the selection. If there is no selection, then it must return the offset (in logical order) to the
character that immediately follows the text entry cursor.

On setting, it must act as if the setSelectionRange()p546 method had been called, with the new value as the first
argument, and the current value of the selectionEndp546 attribute as the second argument, unless the current value
of the selectionEndp546 is less than the new value, in which case the second argument must also be the new value.

The selectionEnd attribute must, on getting, return the offset (in logical order) to the character that immediately
follows the end of the selection. If there is no selection, then it must return the offset (in logical order) to the character
that immediately follows the text entry cursor.

On setting, it must act as if the setSelectionRange()p546 method had been called, with the current value of the
selectionStartp546 attribute as the first argument, and new value as the second argument.

The setSelectionRange(start, end) method must set the selection of the text field to the sequence of characters
starting with the character at the startth position (in logical order) and ending with the character at the (end-1)th
position. Arguments greater than the length of the value in the text field must be treated as pointing at the end of the
text field. If end is less than or equal to start then the start of the selection and the end of the selection must both be
placed immediately before the character with offset end. In UAs where there is no concept of an empty selection, this
must set the cursor to be just before the character with offset end.

To obtain the currently selected text, the following JavaScript suffices:

var selectionText = control.value.substring(control.selectionStart, control.selectionEnd);

...where control is the inputp320 or textareap360 element.

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count as characters. Thus, for
instance, the selection can include just an invisible character, and the text insertion cursor can be placed to one side
or another of such a character.

8.7 The contenteditablep546 attribute

The contenteditable attribute is an enumerated attributep37 whose keywords are the empty string, true, and false.
The empty string and the true keyword map to the true state. The false keyword maps to the false state. In addition,
there is a third state, the inherit state, which is the missing value default (and the invalid value default).

The true state indicates that the element is editable. The inherit state indicates that the element is editable if its
parent is. The false state indicates that the element is not editable.

Specifically, if an HTML elementp28 has a contenteditablep546 attribute set to the true state, or it has its
contenteditablep546 attribute set to the inherit state and if its nearest ancestor HTML elementp28 with the
contenteditablep546 attribute set to a state other than the inherit state has its attribute set to the true state, or if it
and its ancestors all have their contenteditablep546 attribute set to the inherit state but the Documentp33 has
designModep549 enabled, then the UA must treat the element as editable (as described below).

Otherwise, either the HTML elementp28 has a contenteditablep546 attribute set to the false state, or its
contenteditablep546 attribute is set to the inherit state and its nearest ancestor HTML elementp28 with the
contenteditablep546 attribute set to a state other than the inherit state has its attribute set to the false state, or all its
ancestors have their contenteditablep546 attribute set to the inherit state and the Documentp33 itself has
designModep549 disabled; either way, the element is not editable.

546

This box is non-normative. Implementation requirements are given below this box.

element . contentEditablep547 [= value]
Returns "true", "false", or "inherit", based on the state of the contenteditablep546 attribute.
Can be set, to change that state.

Throws a SYNTAX_ERRp74 exception if the new value isn't one of those strings.

element . isContentEditablep547

Returns true if the element is editable; otherwise, returns false.

The contentEditable IDL attribute, on getting, must return the string "true" if the content attribute is set to the true
state, false" if the content attribute is set to the false state, and "inherit" otherwise. On setting, if the new value is
an ASCII case-insensitivep35 match for the string "inherit" then the content attribute must be removed, if the new
value is an ASCII case-insensitivep35 match for the string "true" then the content attribute must be set to the string
"true", if the new value is an ASCII case-insensitivep35 match for the string "false" then the content attribute must be
set to the string "false", and otherwise the attribute setter must raise a SYNTAX_ERRp74 exception.

The isContentEditable IDL attribute, on getting, must return true if the element is editablep546, and false otherwise.

If an element is editablep546 and its parent element is not, or if an element is editablep546 and it has no parent element,
then the element is an editing host. Editable elements can be nested. User agents must make editing hosts
focusable (which typically means they enter the tab orderp537). An editing host can contain non-editable sections,
these are handled as described below. An editing host can contain non-editable sections that contain further editing
hosts.

When an editing host has focus, it must have a caret position that specifies where the current editing position is. It
may also have a selectionp542.

Note: How the caret and selection are represented depends entirely on the UA.

There are several actions that the user agent should allow the user to perform while the user is interacting with an
editing host. How exactly each action is triggered is not defined for every action, but when it is not defined, suggested
key bindings are provided to guide implementors.

Move the caret
User agents must allow users to move the caret to any position within an editing host, even into nested editable
elements. This could be triggered as the default action of keydown events with various key identifiers and as the
default action of mousedown events.

Change the selection
User agents must allow users to change the selectionp542 within an editing host, even into nested editable
elements. User agents may prevent selections from being made in ways that cross from editable elements into
non-editable elements (e.g. by making each non-editable descendant atomically selectable, but not allowing text
selection within them). This could be triggered as the default action of keydown events with various key
identifiers and as the default action of mousedown events.

Insert text
This action must be triggered as the default action of a textInput event, and may be triggered by other
commands as well. It must cause the user agent to insert the specified text (given by the event object's data
attribute in the case of the textInput event) at the caret.

If the caret is positioned somewhere where phrasing contentp96 is not allowed (e.g. inside an empty olp161

element), then the user agent must not insert the text directly at the caret position. In such cases the behavior is
UA-dependent, but user agents must not, in response to a request to insert text, generate a DOM that is less
conformant than the DOM prior to the request.

User agents should allow users to insert new paragraphs into elements that contains only content other than
paragraphs.

For example, given the markup:

<section>
<dl>

8.7.1 User editing actions

547

<dt> Ben </dt>
<dd> Goat </dd>

</dl>
</section>

...the user agent should allow the user to insert pp157 elements before and after the dlp164 element, as
children of the sectionp140 element.

Break block
UAs should offer a way for the user to request that the current paragraph be broken at the caret, e.g. as the
default action of a keydown event whose identifier is the "Enter" key and that has no modifiers set.

The exact behavior is UA-dependent, but user agents must not, in response to a request to break a paragraph,
generate a DOM that is less conformant than the DOM prior to the request.

Insert a line separator
UAs should offer a way for the user to request an explicit line break at the caret position without breaking the
paragraph, e.g. as the default action of a keydown event whose identifier is the "Enter" key and that has a shift
modifier set. Line separators are typically found within a poem verse or an address. To insert a line break, the
user agent must insert a brp191 element.

If the caret is positioned somewhere where phrasing contentp96 is not allowed (e.g. in an empty olp161 element),
then the user agent must not insert the brp191 element directly at the caret position. In such cases the behavior is
UA-dependent, but user agents must not, in response to a request to insert a line separator, generate a DOM
that is less conformant than the DOM prior to the request.

Delete
UAs should offer a way for the user to delete text and elements, including non-editable descendants, e.g. as the
default action of keydown events whose identifiers are "U+0008" or "U+007F".

Five edge cases in particular need to be considered carefully when implementing this feature: backspacing at the
start of an element, backspacing when the caret is immediately after an element, forward-deleting at the end of
an element, forward-deleting when the caret is immediately before an element, and deleting a selectionp542

whose start and end points do not share a common parent node.

In any case, the exact behavior is UA-dependent, but user agents must not, in response to a request to delete
text or an element, generate a DOM that is less conformant than the DOM prior to the request.

Insert, and wrap text in, semantic elements
UAs should offer the user the ability to mark text and paragraphs with semantics that HTML can express.

UAs should similarly offer a way for the user to insert empty semantic elements to subsequently fill by entering
text manually.

UAs should also offer a way to remove those semantics from marked up text, and to remove empty semantic
element that have been inserted.

In response to a request from a user to mark text up in italics, user agents should use the ip184 element to
represent the semantic. The emp171 element should be used only if the user agent is sure that the user means to
indicate stress emphasis.

In response to a request from a user to mark text up in bold, user agents should use the bp185 element to
represent the semantic. The strongp172 element should be used only if the user agent is sure that the user
means to indicate importance.

The exact behavior is UA-dependent, but user agents must not, in response to a request to wrap semantics
around some text or to insert or remove a semantic element, generate a DOM that is less conformant than the
DOM prior to the request.

Select and move non-editable elements nested inside editing hosts
UAs should offer a way for the user to move images and other non-editable parts around the content within an
editing host. This may be done using the drag and dropp551 mechanism. User agents must not, in response to a
request to move non-editable elements nested inside editing hosts, generate a DOM that is less conformant than
the DOM prior to the request.

Edit form controls nested inside editing hosts
When an editablep546 form control is edited, the changes must be reflected in both its current value and its
default value. For inputp320 elements this means updating the defaultValuep324 IDL attribute as well as the
valuep349 IDL attribute; for selectp353 elements it means updating the optionp358 elements' defaultSelectedp360

548

IDL attribute as well as the selectedp360 IDL attribute; for textareap360 elements this means updating the
defaultValuep363 IDL attribute as well as the valuep363 IDL attribute. (Updating the default* IDL attributes
causes content attributes to be updated as well.)

User agents may perform several commands per user request; for example if the user selects a block of text and hits
Enter, the UA might interpret that as a request to delete the content of the selectionp542 followed by a request to
break the paragraph at that position.

User agents may add DOM changesp561 entries to the undo transaction historyp561 of the editing hostp547 's Documentp33

object each time an action is triggered.

All of the actions defined above, whether triggered by the user or programmatically (e.g. by execCommand()p565

commands), must fire mutation events as appropriate.

Documents have a designMode, which can be either enabled or disabled.

This box is non-normative. Implementation requirements are given below this box.

document . designModep549 [= value]
Returns "on" if the document is editable, and "off" if it isn't.
Can be set, to change the document's current state.

The designModep549 IDL attribute on the Documentp33 object takes two values, "on" and "off". When it is set, the new
value must be compared in an ASCII case-insensitivep35 manner to these two values. If it matches the "on" value, then
designModep549 must be enabled, and if it matches the "off" value, then designModep549 must be disabled. Other
values must be ignored.

When designModep549 is enabled, the IDL attribute must return the value "on", and when it is disabled, it must return
the value "off".

The last state set must persist until the document is destroyed or the state is changed. Initially, documents must have
their designModep549 disabled.

8.8 Spelling and grammar checking

User agents can support the checking of spelling and grammar of editable text, either in form controls (such as the
value of textareap360 elements), or in elements in an editing hostp547 (using contenteditablep546).

For each element, user agents must establish a default behavior, either through defaults or through preferences
expressed by the user. There are three possible default behaviors for each element:

true-by-default
The element will be checked for spelling and grammar if its contents are editable.

false-by-default
The element will never be checked for spelling and grammar.

inherit-by-default
The element's default behavior is the same as its parent element's. Elements that have no parent element
cannot have this as their default behavior.

The spellcheck attribute is an enumerated attributep37 whose keywords are the empty string, true and false. The
empty string and the true keyword map to the true state. The false keyword maps to the false state. In addition,
there is a third state, the default state, which is the missing value default (and the invalid value default).

The true state indicates that the element is to have its spelling and grammar checked. The default state indicates that
the element is to act according to a default behavior, possibly based on the parent element's own spellcheckp549

state. The false state indicates that the element is not to be checked.

8.7.2 Making entire documents editable

549

This box is non-normative. Implementation requirements are given below this box.

element . spellcheckp550 [= value]
Returns "true", "false", or "default", based on the state of the spellcheckp549 attribute.
Can be set, to change that state.

Throws a SYNTAX_ERRp74 exception if the new value isn't one of those strings.

The spellcheck IDL attribute, on getting, must return the string "true" if the content attribute is set to the true state,
false" if the content attribute is set to the false state, and "default" otherwise. On setting, if the new value is an
ASCII case-insensitivep35 match for the string "default" then the content attribute must be removed, if the new value
is an ASCII case-insensitivep35 match for the string "true" then the content attribute must be set to the string "true",
if the new value is an ASCII case-insensitivep35 match for the string "false" then the content attribute must be set to
the string "false", and otherwise the attribute setter must raise a SYNTAX_ERRp74 exception.

Note: The spellcheckp550 IDL attribute is not affected by user preferences that override the
spellcheckp549 content attribute, and therefore might not reflect the actual spellchecking state.

On setting, if the new value is true, then the element's spellcheckp549 content attribute must be set to the literal
string "true", otherwise it must be set to the literal string "false".

User agents must only consider the following pieces of text as checkable for the purposes of this feature:

• The value of inputp320 elements to which the readonlyp344 attribute applies, whose typep321 attributes are
not in the Passwordp327 state, and that are not immutablep324 (i.e. that do not have the readonlyp344 attribute
specified and that are not disabledp374).

• The value of textareap360 elements that do not have a readonlyp361 attribute and that are not disabledp374.

• Text in text nodesp29 that are children of editablep546 elements.

• Text in attributes of editablep546 elements.

For text that is part of a text nodep29, the element with which the text is associated is the element that is the
immediate parent of the first character of the word, sentence, or other piece of text. For text in attributes, it is the
attribute's element. For the values of inputp320 and textareap360 elements, it is the element itself.

To determine if a word, sentence, or other piece of text in an applicable element (as defined above) is to have spelling-
and/or grammar-checking enabled, the UA must use the following algorithm:

1. If the user has disabled the checking for this text, then the checking is disabled.

2. Otherwise, if the user has forced the checking for this text to always be enabled, then the checking is
enabled.

3. Otherwise, if the element with which the text is associated has a spellcheckp549 content attribute, then: if
that attribute is in the true state, then checking is enabled; otherwise, if that attribute is in the false state,
then checking is disabled.

4. Otherwise, if there is an ancestor element with a spellcheckp549 content attribute that is not in the default
state, then: if the nearest such ancestor's spellcheckp549 content attribute is in the true state, then
checking is enabled; otherwise, checking is disabled.

5. Otherwise, if the element's default behaviorp549 is true-by-defaultp549, then checking is enabled.

6. Otherwise, if the element's default behaviorp549 is false-by-defaultp549, then checking is disabled.

7. Otherwise, if the element's parent element has its checking enabled, then checking is enabled.

8. Otherwise, checking is disabled.

If the checking is enabled for a word/sentence/text, the user agent should indicate spelling and/or grammar errors in
that text. User agents should take into account the other semantics given in the document when suggesting spelling
and grammar corrections. User agents may use the language of the element to determine what spelling and grammar
rules to use, or may use the user's preferred language settings. UAs should use inputp320 element attributes such as
patternp346 to ensure that the resulting value is valid, where possible.

550

If checking is disabled, the user agent should not indicate spelling or grammar errors for that text.

The element with ID "a" in the following example would be the one used to determine if the word "Hello" is
checked for spelling errors. In this example, it would not be.

<div contenteditable="true">
Hello!

</div>

The element with ID "b" in the following example would have checking enabled (the leading space character in
the attribute's value on the inputp320 element causes the attribute to be ignored, so the ancestor's value is used
instead, regardless of the default).

<p spellcheck="true">
<label>Name: <input spellcheck=" false" id="b"></label>

</p>

Note: This specification does not define the user interface for spelling and grammar checkers. A
user agent could offer on-demand checking, could perform continuous checking while the
checking is enabled, or could use other interfaces.

8.9 Drag and drop

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action of a mousedown event that is
followed by a series of mousemove events, and the drop could be triggered by the mouse being released.

On media without a pointing device, the user would probably have to explicitly indicate his intention to perform a
drag-and-drop operation, stating what he wishes to drag and what he wishes to drop, respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g. where the mouse was clicked, or
the start of the selectionp542 or element that was selected for the drag), may have any number of intermediate steps
(elements that the mouse moves over during a drag, or elements that the user picks as possible drop points as he
cycles through possibilities), and must either have an end point (the element above which the mouse button was
released, or the element that was finally selected), or be canceled. The end point must be the last element selected as
a possible drop point before the drop occurs (so if the operation is not canceled, there must be at least one element in
the middle step).

This section is non-normative.

To make an element draggable is simple: give the element a draggablep560 attribute, and set an event listener for
dragstartp555 that stores the data being dragged.

The event handler typically needs to check that it's not a text selection that is being dragged, and then needs to store
data into the DataTransferp553 object and set the allowed effects (copy, move, link, or some combination).

For example:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)">
<li draggable data-value="fruit-apple">Apples
<li draggable data-value="fruit-orange">Oranges
<li draggable data-value="fruit-pear">Pears

<script>

var internalDNDType = 'text/x-example'; // set this to something specific to your site
function dragStartHandler(event) {

if (event.target instanceof HTMLLIElement) {
// use the element's data-value="" attribute as the value to be moving:
event.dataTransfer.setData(internalDNDType, event.target.dataset.value);
event.effectAllowed = 'move'; // only allow moves

8.9.1 Introduction

551

} else {
event.preventDefault(); // don't allow selection to be dragged

}
}

</script>

To accept a drop, the drop target has to listen to at least three events. First, the dragenterp555 event, which is used to
determine whether or not the drop target is to accept the drop. If the drop is to be accepted, then this event has to be
canceled. Second, the dragoverp555 event, which is used to determine what feedback is to be shown to the user. If the
event is canceled, then the feedback (typically the cursor) is updated based on the dropEffectp554 attribute's value,
as set by the event handler; otherwise, the default behavior (typically to do nothing) is used instead. Finally, the
dropp555 event, which allows the actual drop to be performed. This event also needs to be canceled, so that the
dropEffectp554 attribute's value can be used by the source (otherwise it's reset).

For example:

<p>Drop your favorite fruits below:</p>
<ol class="dropzone"

ondragenter="dragEnterHandler(event)"
ondragover="dragOverHandler(event)"
ondrop="dropHandler(event)">

<script>

var internalDNDType = 'text/x-example'; // set this to something specific to your site
function dragEnterHandler(event) {

// cancel the event if the drag contains data of our type
if (event.dataTransfer.types.contains(internalDNDType))

event.preventDefault();
}
function dragOverHandler(event) {

event.dataTransfer.dropEffect = 'move';
event.preventDefault();

}
function dropHandler(event) {

// drop the data
var li = document.createElement('li');
var data = event.dataTransfer.getData(internalDNDType);
if (data == 'fruit-apple') {

li.textContent = 'Apples';
} else if (data == 'fruit-orange') {

li.textContent = 'Oranges';
} else if (data == 'fruit-pear') {

li.textContent = 'Pears';
} else {

li.textContent = 'Unknown Fruit';
}
event.target.appendChild(li);

}
</script>

To remove the original element (the one that was dragged) from the display, the dragendp555 event can be used.

For our example here, that means updating the original markup to handle that event:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)" ondragend="dragEndHandler(event)">
...as before...

<script>

function dragStartHandler(event) {
// ...as before...

}
function dragEndHandler(event) {

// remove the dragged element
event.target.parentNode.removeChild(event.target);

552

}
</script>

The drag-and-drop processing model involves several events. They all use the DragEventp553 interface.

interface DragEvent : MouseEvent {
readonly attribute DataTransfer dataTransfer;

void initDragEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean
cancelableArg, in any dummyArg, in long detailArg, in long screenXArg, in long screenYArg,
in long clientXArg, in long clientYArg, in boolean ctrlKeyArg, in boolean altKeyArg, in
boolean shiftKeyArg, in boolean metaKeyArg, in unsigned short buttonArg, in EventTarget
relatedTargetArg, in DataTransfer dataTransferArg);
};

This box is non-normative. Implementation requirements are given below this box.

event . dataTransferp553

Returns the DataTransferp553 object for the event.

The initDragEvent() method must initialize the event in a manner analogous to the similarly-named method in the
DOM Events interfaces, except that the dummyArg argument must be ignored. [DOMEVENTS]p739

The dataTransfer attribute of the DragEventp553 interface represents the context information for the event.

interface DataTransfer {
attribute DOMString dropEffect;
attribute DOMString effectAllowed;

readonly attribute DOMStringList types;
void clearData(in optional DOMString format);
void setData(in DOMString format, in DOMString data);
DOMString getData(in DOMString format);
readonly attribute FileList files;

void setDragImage(in Element image, in long x, in long y);
void addElement(in Element element);

};

DataTransferp553 objects can hold pieces of data, each associated with a unique format. Formats are generally given
by MIME typesp28, with some values special-cased for legacy reasons. However, the API does not enforce this; non-
MIME-type values can be added as well. All formats are identified by strings that are converted to ASCII lowercasep36

by the API.

This box is non-normative. Implementation requirements are given below this box.

dataTransfer . dropEffectp554 [= value]
Returns the kind of operation that is currently selected. If the kind of operation isn't one of those that is
allowed by the effectAllowedp554 attribute, then the operation will fail.
Can be set, to change the selected operation.
The possible values are none, copy, link, and move.

dataTransfer . effectAllowedp554 [= value]
Returns the kinds of operations that are to be allowed.
Can be set, to change the allowed operations.
The possible values are none, copy, copyLink, copyMove, link, linkMove, move, all, and uninitialized,

8.9.2 The DragEventp553 and DataTransferp553 interfaces

553

dataTransfer . typesp554

Returns a DOMStringList listing the formats that were set in the dragstartp555 event. In addition, if any
files are being dragged, then one of the types will be the string "Files".

dataTransfer . clearDatap554([format])
Removes the data of the specified formats. Removes all data if the argument is omitted.

dataTransfer . setDatap554(format, data)
Adds the specified data.

data = dataTransfer . getDatap555(format)
Returns the specified data. If there is no such data, returns the empty string.

dataTransfer . filesp555

Returns a FileList of the files being dragged, if any.

dataTransfer . setDragImagep555(element, x, y)
Uses the given element to update the drag feedback, replacing any previously specified feedback.

dataTransfer . addElementp555(element)
Adds the given element to the list of elements used to render the drag feedback.

When a DataTransferp553 object is created, it must be initialized as follows:

• The DataTransferp553 object must initially contain no data, no elements, and have no associated image.

• The DataTransferp553 object's effectAllowedp554 attribute must be set to "uninitialized".

• The dropEffectp554 attribute must be set to "none".

The dropEffect attribute controls the drag-and-drop feedback that the user is given during a drag-and-drop
operation.

The attribute must ignore any attempts to set it to a value other than none, copy, link, and move. On getting, the
attribute must return the last of those four values that it was set to.

The effectAllowed attribute is used in the drag-and-drop processing model to initialize the dropEffectp554 attribute
during the dragenterp555 and dragoverp555 events.

The attribute must ignore any attempts to set it to a value other than none, copy, copyLink, copyMove, link,
linkMove, move, all, and uninitialized. On getting, the attribute must return the last of those values that it was set
to.

The types attribute must return a livep29 DOMStringList that contains the list of formats that were added to the
DataTransferp553 object in the corresponding dragstartp555 event. The same object must be returned each time. If
any files were included in the drag, then the DOMStringList object must in addition include the string "Files". (This
value can be distinguished from the other values because it is not lowercase.)

The clearData() method, when called with no arguments, must clear the DataTransferp553 object of all data (for all
formats).

Note: The clearData()p554 method does not affect whether any files were included in the drag, so
the typesp554 attribute's list might still not be empty after calling clearData()p554 (it would still
contain the "Files" string if any files were included in the drag).

When called with an argument, the clearData(format)p554 method must clear the DataTransferp553 object of any
data associated with the given format, converted to ASCII lowercasep36. If format (after conversion to lowercase) is the
value "text", then it must be treated as "text/plain". If the format (after conversion to lowercase) is "url", then it
must be treated as "text/uri-list".

The setData(format, data) method must add data to the data stored in the DataTransferp553 object, labeled as
being of the type format, converted to ASCII lowercasep36. This must replace any previous data that had been set for

554

that format. If format (after conversion to lowercase) is the value "text", then it must be treated as "text/plain". If
the format (after conversion to lowercase) is "url", then it must be treated as "text/uri-list".

The getData(format) method must return the data that is associated with the type format converted to ASCII
lowercasep36, if any, and must return the empty string otherwise. If format (after conversion to lowercase) is the value
"text", then it must be treated as "text/plain". If the format (after conversion to lowercase) is "url", then the data
associated with the "text/uri-list" format must be parsed as appropriate for text/uri-list data, and the first URL
from the list must be returned. If there is no data with that format, or if there is but it has no URLs, then the method
must return the empty string. [RFC2483]p741

The files attribute must return the FileList object that contains the files that are stored in the DataTransferp553

object. There is one such object per DataTransferp553 object.

Note: This version of the API does not expose the types of the files during the drag.

The setDragImage(element, x, y) method sets which element to use to generate the drag feedbackp557. The
element argument can be any Elementp33; if it is an imgp196 element, then the user agent should use the element's
image (at its intrinsic size) to generate the feedback, otherwise the user agent should base the feedback on the given
element (but the exact mechanism for doing so is not specified).

The addElement(element) method is an alternative way of specifying how the user agent is to render the drag
feedbackp557. It adds an element to the DataTransferp553 object.

Note: The difference between setDragImage()p555 and addElement()p555 is that the latter
automatically generates the image based on the current rendering of the elements added,
whereas the former uses the exact specified image.

The following events are involved in the drag-and-drop model.

Whenever the processing model described below causes one of these events to be fired, the event fired must use the
DragEventp553 interface defined above, must have the bubbling and cancelable behaviors given in the table below, and
must have the context information set up as described after the table, with the detail attribute set to zero, the
mouse and key attributes set according to the state of the input devices as they would be for user interaction events,
and the relatedTarget attribute set to null.

If there is no relevant pointing device, the object must have its screenX, screenY, clientX, clientY, and button
attributes set to 0.

Event
Name

Target Bubbles? Cancelable? dataTransfer effectAllowedp554 dropEffectp554 Default Action

dragstart Source
nodep556

✓
Bubbles

✓ Cancelable Contains source nodep556 unless a
selection is being dragged, in which
case it is empty; filesp555 returns
any files included in the drag
operation

uninitialized none Initiate the
drag-and-drop
operation

drag Source
nodep556

✓
Bubbles

✓ Cancelable Empty Same as last
eventp556

none Continue the
drag-and-drop
operation

dragenter Immediate
user
selectionp557

or the body
elementp81

✓
Bubbles

✓ Cancelable Empty Same as last
eventp556

Based on
effectAllowed
valuep556

Reject
immediate user
selectionp557 as
potential target
elementp557

dragleave Previous
target
elementp557

✓
Bubbles

— Empty Same as last
eventp556

none None

dragover Current
target
elementp557

✓
Bubbles

✓ Cancelable Empty Same as last
eventp556

Based on
effectAllowed
valuep556

Reset the
current drag
operationp558 to
"none"

drop Current
target
elementp557

✓
Bubbles

✓ Cancelable getData()p555 returns data set in
dragstart event; filesp555 returns
any files included in the drag
operation

Same as last
eventp556

Current drag
operationp558

Varies

dragend Source
nodep556

✓
Bubbles

— Empty Same as last
eventp556

Current drag
operationp558

Varies

8.9.3 Events fired during a drag-and-drop action

555

Note: "Empty" in the table above means that the getData()p555 and filesp555 attributes act as if
there is no data being dragged.

The dataTransferp553 object's contents are empty (the getData()p555 and filesp555 attributes act as if there is no data
being dragged) except for dragstartp555 events and dropp555 events, for which the contents are set as described in the
processing model, below.

The effectAllowedp554 attribute must be set to "uninitialized" for dragstartp555 events, and to whatever value the
field had after the last drag-and-drop event was fired for all other events (only counting events fired by the user agent
for the purposes of the drag-and-drop model described below).

The dropEffectp554 attribute must be set to "none" for dragstartp555, dragp555, and dragleavep555 events (except
when stated otherwise in the algorithms given in the sections below), to the value corresponding to the current drag
operationp558 for dropp555 and dragendp555 events, and to a value based on the effectAllowedp554 attribute's value and
to the drag-and-drop source, as given by the following table, for the remaining events (dragenterp555 and
dragoverp555):

effectAllowedp554 dropEffectp554

none none

copy, copyLink, copyMove, all copy

link, linkMove link

move move

uninitialized when what is being dragged is a selection from a text field move

uninitialized when what is being dragged is a selection copy

uninitialized when what is being dragged is an ap169 element with an href attribute link

Any other case copy

When the user attempts to begin a drag operation, the user agent must first determine what is being dragged. If the
drag operation was invoked on a selection, then it is the selection that is being dragged. Otherwise, it is the first
element, going up the ancestor chain, starting at the node that the user tried to drag, that has the IDL attribute
draggablep561 set to true. If there is no such element, then nothing is being dragged, the drag-and-drop operation is
never started, and the user agent must not continue with this algorithm.

Note: imgp196 elements and ap169 elements with an hrefp404 attribute have their draggablep561

attribute set to true by default.

If the user agent determines that something can be dragged, a dragstartp555 event must then be fired at the source
nodep556.

The source node depends on the kind of drag and how it was initiated. If it is a selection that is being dragged, then
the source nodep556 is the text node that the user started the drag on (typically the text node that the user originally
clicked). If the user did not specify a particular node, for example if the user just told the user agent to begin a drag of
"the selection", then the source nodep556 is the first text node containing a part of the selection. If it is not a selection
that is being dragged, then the source nodep556 is the element that is being dragged.

Multiple events are fired on the source nodep556 during the course of the drag-and-drop operation.

The list of dragged nodes also depends on the kind of drag. If it is a selection that is being dragged, then the list of
dragged nodesp556 contains, in tree orderp29, every node that is partially or completely included in the selection
(including all their ancestors). Otherwise, the list of dragged nodesp556 contains only the source nodep556.

If it is a selection that is being dragged, the dataTransferp553 member of the event must be created with no nodes.
Otherwise, it must be created containing just the source nodep556. Script can use the addElement()p555 method to add
further elements to the list of what is being dragged. (This list is only used for rendering the drag feedback.)

The dataTransferp553 member of the event also has data added to it, as follows:

• If it is a selection that is being dragged, then the user agent must add the text of the selection to the
dataTransferp553 member, associated with the text/plain format.

8.9.4 Drag-and-drop processing model

556

• If files are being dragged, then the user agent must add the files to the dataTransferp553 member's
filesp555 attribute's FileList object. (Dragging files can only happen from outside a browsing contextp463,
for example from a file system manager application, and thus the dragstartp555 event is actually implied in
this case.)

• The user agent must take the list of dragged nodesp556 and extract the microdata from those nodes into a
JSON formp454, and then must add the resulting string to the dataTransferp553 member, associated with the
application/microdata+json format.

• The user agent must run the following steps:

1. Let urls be an empty list of absolute URLsp55.

2. For each node in nodes:

If the node is an ap169 element with an hrefp404

Add to urls the result of resolvingp55 the element's hrefp404 content attribute relative to the
element.

If the node is an imgp196 element with an srcp197

Add to urls the result of resolvingp55 the element's srcp197 content attribute relative to the
element.

3. If urls is still empty, abort these steps.

4. Let url string be the result of concatenating the strings in urls, in the order they were added,
separated by a U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF).

5. Add url string to the dataTransferp553 member, associated with the text/uri-list format.

If the event is canceled, then the drag-and-drop operation must not occur; the user agent must not continue with this
algorithm.

If it is not canceled, then the drag-and-drop operation must be initiated.

Note: Since events with no event listeners registered are, almost by definition, never canceled,
drag-and-drop is always available to the user if the author does not specifically prevent it.

The drag-and-drop feedback must be generated from the first of the following sources that is available:

1. The element specified in the last call to the setDragImage()p555 method of the dataTransferp553 object of
the dragstartp555 event, if the method was called. In visual media, if this is used, the x and y arguments
that were passed to that method should be used as hints for where to put the cursor relative to the resulting
image. The values are expressed as distances in CSS pixels from the left side and from the top side of the
image respectively. [CSS]p738

2. The elements that were added to the dataTransferp553 object, both before the event was fired, and during
the handling of the event using the addElement()p555 method, if any such elements were indeed added.

3. The selection that the user is dragging.

The user agent must take a note of the data that was placedp554 in the dataTransferp553 object. This data will be made
available again when the dropp555 event is fired.

From this point until the end of the drag-and-drop operation, device input events (e.g. mouse and keyboard events)
must be suppressed. In addition, the user agent must track all DOM changes made during the drag-and-drop
operation, and add them to its undo historyp561 as one atomic operation once the drag-and-drop operation has ended.

During the drag operation, the element directly indicated by the user as the drop target is called the immediate user
selection. (Only elements can be selected by the user; other nodes must not be made available as drop targets.)
However, the immediate user selectionp557 is not necessarily the current target element, which is the element
currently selected for the drop part of the drag-and-drop operation. The immediate user selectionp557 changes as the
user selects different elements (either by pointing at them with a pointing device, or by selecting them in some other
way). The current target elementp557 changes when the immediate user selectionp557 changes, based on the results of
event listeners in the document, as described below.

557

Both the current target elementp557 and the immediate user selectionp557 can be null, which means no target element
is selected. They can also both be elements in other (DOM-based) documents, or other (non-Web) programs
altogether. (For example, a user could drag text to a word-processor.) The current target elementp557 is initially null.

In addition, there is also a current drag operation, which can take on the values "none", "copy", "link", and "move".
Initially, it has the value "none". It is updated by the user agent as described in the steps below.

User agents must, as soon as the drag operation is initiated and every 350ms (±200ms) thereafter for as long as the
drag operation is ongoing, queue a taskp517 to perform the following steps in sequence:

1. If the user agent is still performing the previous iteration of the sequence (if any) when the next iteration
becomes due, the user agent must not execute the overdue iteration, effectively "skipping missed frames"
of the drag-and-drop operation.

2. The user agent must fire a dragp555 event at the source nodep556. If this event is canceled, the user agent
must set the current drag operationp558 to none (no drag operation).

3. Next, if the dragp555 event was not canceled and the user has not ended the drag-and-drop operation, the
user agent must check the state of the drag-and-drop operation, as follows:

1. First, if the user is indicating a different immediate user selectionp557 than during the last iteration
(or if this is the first iteration), and if this immediate user selectionp557 is not the same as the
current target elementp557, then the current target elementp557 must be updated, as follows:

↪ If the new immediate user selectionp557 is null, or is in a non-DOM document or
application

The user agent must set the current target elementp557 to the same value.

↪ Otherwise
The user agent must fire a dragenterp555 event at the immediate user selectionp557.

If the event is canceled, then the current target elementp557 must be set to the
immediate user selectionp557.

Otherwise, the user agent must act as follows:

↪ If the current target elementp557 is a text field (e.g. textareap360, or an
inputp320 element whose typep321 attribute is in the Textp325 state) or an
editablep546 element

The current target elementp557 must be set to the immediate user selectionp557

anyway.

↪ If the current target elementp557 is the body elementp81

The current target elementp557 is left unchanged.

↪ Otherwise
The user agent must fire a dragenterp555 event at the body elementp81, and the
current target elementp557 must be set to the body elementp81, regardless of
whether that event was canceled or not. (If the body elementp81 is null, then
the current target elementp557 would be set to null too in this case, it wouldn't
be set to the Documentp33 object.)

2. If the previous step caused the current target elementp557 to change, and if the previous target
element was not null or a part of a non-DOM document, the user agent must fire a dragleavep555

event at the previous target element.

3. If the current target elementp557 is a DOM element, the user agent must fire a dragoverp555 event
at this current target elementp557.

If the dragoverp555 event is not canceled, the user agent must act as follows:

↪ If the current target elementp557 is a text field (e.g. textareap360, or an inputp320

element whose typep321 attribute is in the Textp325 state) or an editablep546 element
The user agent must set the current drag operationp558 to either "copy" or "move", as
appropriate given the platform conventions.

↪ Otherwise
The user agent must reset the current drag operationp558 to "none".

558

Otherwise (if the dragoverp555 event is canceled), the current drag operationp558 must be set based
on the values the effectAllowedp554 and dropEffectp554 attributes of the dataTransferp553 object
had after the event was handled, as per the following table:

effectAllowedp554 dropEffectp554 Drag operation

uninitialized, copy, copyLink, copyMove, or all copy "copy"
uninitialized, link, copyLink, linkMove, or all link "link"
uninitialized, move, copyMove, linkMove, or all move "move"
Any other case "none"

Then, regardless of whether the dragoverp555 event was canceled or not, the drag feedback (e.g.
the mouse cursor) must be updated to match the current drag operationp558, as follows:

Drag operation Feedback

"copy" Data will be copied if dropped here.
"link" Data will be linked if dropped here.
"move" Data will be moved if dropped here.
"none" No operation allowed, dropping here will cancel the drag-and-drop operation.

4. Otherwise, if the current target elementp557 is not a DOM element, the user agent must use
platform-specific mechanisms to determine what drag operation is being performed (none, copy,
link, or move). This sets the current drag operation.

4. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the mouse button in a mouse-
driven drag-and-drop interface), or if the dragp555 event was canceled, then this will be the last iteration. The
user agent must execute the following steps, then stop looping.

1. If the current drag operationp558 is none (no drag operation), or, if the user ended the drag-and-
drop operation by canceling it (e.g. by hitting the Escape key), or if the current target elementp557

is null, then the drag operation failed. If the current target elementp557 is a DOM element, the user
agent must fire a dragleavep555 event at it; otherwise, if it is not null, it must use platform-specific
conventions for drag cancellation.

2. Otherwise, the drag operation was as success. If the current target elementp557 is a DOM element,
the user agent must fire a dropp555 event at it; otherwise, it must use platform-specific conventions
for indicating a drop.

When the target is a DOM element, the dropEffectp554 attribute of the event's dataTransferp553

object must be given the value representing the current drag operationp558 (copy, link, or move),
and the object must be set up so that the getData()p555 method will return the data that was
added during the dragstartp555 event, and the filesp555 attribute will return a FileList object
with any files that were dragged.

If the event is canceled, the current drag operationp558 must be set to the value of the
dropEffectp554 attribute of the event's dataTransferp553 object as it stood after the event was
handled.

Otherwise, the event is not canceled, and the user agent must perform the event's default action,
which depends on the exact target as follows:

↪ If the current target elementp557 is a text field (e.g. textareap360, or an inputp320

element whose typep321 attribute is in the Textp325 state) or an editablep546 element
The user agent must insert the data associated with the text/plain format, if any, into
the text field or editablep546 element in a manner consistent with platform-specific
conventions (e.g. inserting it at the current mouse cursor position, or inserting it at the
end of the field).

↪ Otherwise
Reset the current drag operationp558 to "none".

3. Finally, the user agent must fire a dragendp555 event at the source nodep556, with the
dropEffectp554 attribute of the event's dataTransferp553 object being set to the value
corresponding to the current drag operationp558.

559

Note: The current drag operationp558 can change during the processing of the
dropp555 event, if one was fired.

The event is not cancelable. After the event has been handled, the user agent must act as follows:

↪ If the current target elementp557 is a text field (e.g. textareap360, or an inputp320

element whose typep321 attribute is in the Textp325 state), and a dropp555 event was
fired in the previous step, and the current drag operationp558 is "move", and the
source of the drag-and-drop operation is a selection in the DOM

The user agent should delete the range representing the dragged selection from the
DOM.

↪ If the current target elementp557 is a text field (e.g. textareap360, or an inputp320

element whose typep321 attribute is in the Textp325 state), and a dropp555 event was
fired in the previous step, and the current drag operationp558 is "move", and the
source of the drag-and-drop operation is a selection in a text field

The user agent should delete the dragged selection from the relevant text field.

↪ Otherwise
The event has no default action.

8.9.4.1 When the drag-and-drop operation starts or ends in another document

The model described above is independent of which Documentp33 object the nodes involved are from; the events must
be fired as described above and the rest of the processing model must be followed as described above, irrespective of
how many documents are involved in the operation.

8.9.4.2 When the drag-and-drop operation starts or ends in another application

If the drag is initiated in another application, the source nodep556 is not a DOM node, and the user agent must use
platform-specific conventions instead when the requirements above involve the source node. User agents in this
situation must act as if the dragged data had been added to the DataTransferp553 object when the drag started, even
though no dragstartp555 event was actually fired; user agents must similarly use platform-specific conventions when
deciding on what drag feedback to use.

All the format strings must be converted to ASCII lowercasep36. If the platform conventions do not use MIME typesp28 to
label the dragged data, the user agent must map the types to MIME types first.

If a drag is started in a document but ends in another application, then the user agent must instead replace the parts
of the processing model relating to handling the target according to platform-specific conventions.

In any case, scripts running in the context of the document must not be able to distinguish the case of a drag-and-drop
operation being started or ended in another application from the case of a drag-and-drop operation being started or
ended in another document from another domain.

All HTML elementsp28 may have the draggablep560 content attribute set. The draggablep560 attribute is an enumerated
attributep37. It has three states. The first state is true and it has the keyword true. The second state is false and it has
the keyword false. The third state is auto; it has no keywords but it is the missing value default.

The true state means the element is draggable; the false state means that it is not. The auto state uses the default
behavior of the user agent.

This box is non-normative. Implementation requirements are given below this box.

element . draggablep561 [= value]
Returns true if the element is draggable; otherwise, returns false.

Can be set, to override the default and set the draggablep560 content attribute.

8.9.5 The draggable attribute

560

The draggable IDL attribute, whose value depends on the content attribute's in the way described below, controls
whether or not the element is draggable. Generally, only text selections are draggable, but elements whose
draggablep561 IDL attribute is true become draggable as well.

If an element's draggablep560 content attribute has the state true, the draggablep561 IDL attribute must return true.

Otherwise, if the element's draggablep560 content attribute has the state false, the draggablep561 IDL attribute must
return false.

Otherwise, the element's draggablep560 content attribute has the state auto. If the element is an imgp196 element, or, if
the element is an ap169 element with an hrefp404 content attribute, the draggablep561 IDL attribute must return true.

Otherwise, the draggablep561 DOM must return false.

If the draggablep561 IDL attribute is set to the value false, the draggablep560 content attribute must be set to the literal
value false. If the draggablep561 IDL attribute is set to the value true, the draggablep560 content attribute must be set
to the literal value true.

User agents must not make the data added to the DataTransferp553 object during the dragstartp555 event available to
scripts until the dropp555 event, because otherwise, if a user were to drag sensitive information from one document to
a second document, crossing a hostile third document in the process, the hostile document could intercept the data.

For the same reason, user agents must consider a drop to be successful only if the user specifically ended the drag
operation — if any scripts end the drag operation, it must be considered unsuccessful (canceled) and the dropp555

event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script actions. For example, in a
mouse-and-window environment, if a script moves a window while the user has his mouse button depressed, the UA
would not consider that to start a drag. This is important because otherwise UAs could cause data to be dragged from
sensitive sources and dropped into hostile documents without the user's consent.

8.10 Undo history

The user agent must associate an undo transaction history with each HTMLDocumentp75 object.

The undo transaction historyp561 is a list of entries. The entries are of two types: DOM changesp561 and undo
objectsp561.

Each DOM changes entry in the undo transaction historyp561 consists of batches of one or more of the following:

• Changes to the content attributes of an Elementp33 node.

• Changes to the DOM hierarchy of nodes that are descendants of the HTMLDocumentp75 object (parentNodep33,
childNodesp33).

• Changes to internal state, such as a form control's valuep374 or dirty checkedness flagp323.

Undo object entries consist of objects representing state that scripts running in the document are managing. For
example, a Web mail application could use an undo objectp561 to keep track of the fact that a user has moved an e-
mail to a particular folder, so that the user can undo the action and have the e-mail return to its former location.

Broadly speaking, DOM changesp561 entries are handled by the UA in response to user edits of form controls and
editing hostsp547 on the page, and undo objectp561 entries are handled by script in response to higher-level user actions
(such as interactions with server-side state, or in the implementation of a drawing tool).

To manage undo objectp561 entries in the undo transaction historyp561, the UndoManagerp561 interface can be used:

interface UndoManager {
readonly attribute unsigned long length;
getter any item(in unsigned long index);

8.9.6 Security risks in the drag-and-drop model

8.10.1 Definitions

8.10.2 The UndoManagerp561 interface

561

readonly attribute unsigned long position;
unsigned long add(in any data, in DOMString title);
void remove(in unsigned long index);
void clearUndo();
void clearRedo();

};

This box is non-normative. Implementation requirements are given below this box.

window . undoManagerp562

Returns the UndoManagerp561 object.

undoManager . lengthp562

Returns the number of entries in the undo history.

data = undoManager . itemp562(index)
undoManager[index]

Returns the entry with index index in the undo history.
Returns null if index is out of range.

undoManager . positionp562

Returns the number of the current entry in the undo history. (Entries at and past this point are redo
entries.)

undoManager . addp563(data, title)
Adds the specified entry to the undo history.

undoManager . removep563(index)
Removes the specified entry to the undo history.

Throws an INDEX_SIZE_ERRp74 exception if the given index is out of range.

undoManager . clearUndop563()
Removes all entries before the current position in the undo history.

undoManager . clearRedop563()
Removes all entries at and after the current position in the undo history.

The undoManager attribute of the Windowp467 interface must return the object implementing the UndoManagerp561

interface for that Windowp467 object's associated HTMLDocumentp75 object.

UndoManagerp561 objects represent their document's undo transaction historyp561. Only undo objectp561 entries are
visible with this API, but this does not mean that DOM changesp561 entries are absent from the undo transaction
historyp561.

The length attribute must return the number of undo objectp561 entries in the undo transaction historyp561. This is the
lengthp562.

The object's indices of the supported indexed properties are the numbers in the range zero to lengthp562-1, unless the
lengthp562 is zero, in which case there are no supported indexed properties.

The item(n) method must return the nth undo objectp561 entry in the undo transaction historyp561, if there is one, or
null otherwise.

The undo transaction historyp561 has a current position. This is the position between two entries in the undo
transaction historyp561 's list where the previous entry represents what needs to happen if the user invokes the "undo"
command (the "undo" side, lower numbers), and the next entry represents what needs to happen if the user invokes
the "redo" command (the "redo" side, higher numbers).

The position attribute must return the index of the undo objectp561 entry nearest to the undo positionp562, on the
"redo" side. If there are no undo objectp561 entries on the "redo" side, then the attribute must return the same as the
lengthp562 attribute. If there are no undo objectp561 entries on the "undo" side of the undo positionp562, the
positionp562 attribute returns zero.

562

Note: Since the undo transaction historyp561 contains both undo objectp561 entries and DOM
changesp561 entries, but the positionp562 attribute only returns indices relative to undo objectp561

entries, it is possible for several "undo" or "redo" actions to be performed without the value of
the positionp562 attribute changing.

The add(data, title) method's behavior depends on the current state. Normally, it must insert the data object
passed as an argument into the undo transaction historyp561 immediately before the undo positionp562, optionally
remembering the given title to use in the UI. If the method is called during an undo operationp563, however, the object
must instead be added immediately after the undo positionp562.

If the method is called and there is neither an undo operation in progressp563 nor a redo operation in progressp563 then
any entries in the undo transaction historyp561 after the undo positionp562 must be removed (as if clearRedo()p563 had
been called).

The remove(index) method must remove the undo objectp561 entry with the specified index. If the index is less than
zero or greater than or equal to lengthp562 then the method must raise an INDEX_SIZE_ERRp74 exception. DOM
changesp561 entries are unaffected by this method.

The clearUndo() method must remove all entries in the undo transaction historyp561 before the undo positionp562, be
they DOM changesp561 entries or undo objectp561 entries.

The clearRedo() method must remove all entries in the undo transaction historyp561 after the undo positionp562, be
they DOM changesp561 entries or undo objectp561 entries.

When the user invokes an undo operation, or when the execCommand()p565 method is called with the undop568

command, the user agent must perform an undo operation.

If the undo positionp562 is at the start of the undo transaction historyp561, then the user agent must do nothing.

If the entry immediately before the undo positionp562 is a DOM changesp561 entry, then the user agent must remove
that DOM changesp561 entry, reverse the DOM changes that were listed in that entry, and, if the changes were
reversed with no problems, add a new DOM changesp561 entry (consisting of the opposite of those DOM changes) to
the undo transaction historyp561 on the other side of the undo positionp562.

If the DOM changes cannot be undone (e.g. because the DOM state is no longer consistent with the changes
represented in the entry), then the user agent must simply remove the DOM changesp561 entry, without doing anything
else.

If the entry immediately before the undo positionp562 is an undo objectp561 entry, then the user agent must first remove
that undo objectp561 entry from the undo transaction historyp561, and then must fire an undop564 event at the Windowp467

object, using the undo objectp561 entry's associated undo object as the event's data.

Any calls to add()p563 while the event is being handled will be used to populate the redo history, and will then be used
if the user invokes the "redo" command to undo his undo.

When the user invokes a redo operation, or when the execCommand()p565 method is called with the redop567 command,
the user agent must perform a redo operation.

This is mostly the opposite of an undo operationp563, but the full definition is included here for completeness.

If the undo positionp562 is at the end of the undo transaction historyp561, then the user agent must do nothing.

If the entry immediately after the undo positionp562 is a DOM changesp561 entry, then the user agent must remove that
DOM changesp561 entry, reverse the DOM changes that were listed in that entry, and, if the changes were reversed
with no problems, add a new DOM changesp561 entry (consisting of the opposite of those DOM changes) to the undo
transaction historyp561 on the other side of the undo positionp562.

If the DOM changes cannot be redone (e.g. because the DOM state is no longer consistent with the changes
represented in the entry), then the user agent must simply remove the DOM changesp561 entry, without doing anything
else.

8.10.3 Undo: moving back in the undo transaction history

8.10.4 Redo: moving forward in the undo transaction history

563

If the entry immediately after the undo positionp562 is an undo objectp561 entry, then the user agent must first remove
that undo objectp561 entry from the undo transaction historyp561, and then must fire a redop564 event at the Windowp467

object, using the undo objectp561 entry's associated undo object as the event's data.

interface UndoManagerEvent : Event {
readonly attribute any data;
void initUndoManagerEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean

cancelableArg, in any dataArg);
};

This box is non-normative. Implementation requirements are given below this box.

event . datap564

Returns the data that was passed to the add()p563 method.

The initUndoManagerEvent() method must initialize the event in a manner analogous to the similarly-named method
in the DOM Events interfaces. [DOMEVENTS]p739

The data attribute represents the undo objectp561 for the event.

The undo and redo events do not bubble, cannot be canceled, and have no default action. When the user agent fires
one of these events it must use the UndoManagerEventp564 interface, with the datap564 field containing the relevant
undo objectp561.

How user agents present the above conceptual model to the user is not defined. The undo interface could be a filtered
view of the undo transaction historyp561, it could manipulate the undo transaction historyp561 in ways not described
above, and so forth. For example, it is possible to design a UA that appears to have separate undo transaction
historiesp561 for each form control; similarly, it is possible to design systems where the user has access to more undo
information than is present in the official (as described above) undo transaction historyp561 (such as providing a tree-
based approach to document state). Such UI models should be based upon the single undo transaction historyp561

described in this section, however, such that to a script there is no detectable difference.

8.11 Editing APIs

This box is non-normative. Implementation requirements are given below this box.

document . execCommandp565(commandId [, showUI [, value]])
Runs the action specified by the first argument, as described in the list below. The second and third
arguments sometimes affect the action. (If they don't they are ignored.)

document . queryCommandEnabledp565(commandId)
Returns whether the given command is enabled, as described in the list below.

document . queryCommandIndetermp565(commandId)
Returns whether the given command is indeterminate, as described in the list below.

document . queryCommandStatep565(commandId)
Returns the state of the command, as described in the list below.

document . queryCommandSupportedp565(commandId)
Returns true if the command is supported; otherwise, returns false.

8.10.5 The UndoManagerEventp564 interface and the undop564 and redop564 events

8.10.6 Implementation notes

564

document . queryCommandValuep565(commandId)
Returns the value of the command, as described in the list below.

The execCommand(commandId, showUI, value) method on the HTMLDocumentp75 interface allows scripts to perform
actions on the current selectionp542 or at the current caret position. Generally, these commands would be used to
implement editor UI, for example having a "delete" button on a toolbar.

There are three variants to this method, with one, two, and three arguments respectively. The showUI and value
parameters, even if specified, are ignored except where otherwise stated.

When execCommand()p565 is invoked, the user agent must follow the following steps:

1. If the given commandId maps to an entry in the list below whose "Enabled When" entry has a condition that
is currently false, do nothing; abort these steps.

2. Otherwise, execute the "Action" listed below for the given commandId.

A document is ready for editing host commands if it has a selection that is entirely within an editing hostp547, or if
it has no selection but its caret is inside an editing hostp547.

The queryCommandEnabled(commandId) method, when invoked, must return true if the condition listed below under
"Enabled When" for the given commandId is true, and false otherwise.

The queryCommandIndeterm(commandId) method, when invoked, must return true if the condition listed below under
"Indeterminate When" for the given commandId is true, and false otherwise.

The queryCommandState(commandId) method, when invoked, must return the value expressed below under "State" for
the given commandId.

The queryCommandSupported(commandId) method, when invoked, must return true if the given commandId is in the
list below, and false otherwise.

The queryCommandValue(commandId) method, when invoked, must return the value expressed below under "Value"
for the given commandId.

The possible values for commandId, and their corresponding meanings, are as follows. These values must be
compared to the argument in an ASCII case-insensitivep35 manner.

bold
Summary: Toggles whether the selection is bold.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the bp185 element (or, again, unwrapped, or have that semantic inserted or removed, as defined by the UA).
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained within, a bp185 element. False
otherwise.
Value: The string "true" if the expression given for the "State" above is true, the string "false" otherwise.

createLink
Summary: Toggles whether the selection is a link or not. If the second argument is true, and a link is to be
added, the user agent will ask the user for the address. Otherwise, the third argument will be used as the
address.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the ap169 element (or, again, unwrapped, or have that semantic inserted or removed, as defined by the UA). If
the user agent creates an ap169 element or modifies an existing ap169 element, then if the showUI argument is
present and has the value false, then the value of the value argument must be used as the URLp54 of the link.
Otherwise, the user agent should prompt the user for the URL of the link.
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

delete
Summary: Deletes the selection or the character before the cursor.
Action: The user agent must act as if the user had performed a backspace operationp548.
Enabled When: The document is ready for editing host commandsp565.

565

Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

formatBlock
Summary: Wraps the selection in the element given by the second argument. If the second argument doesn't
specify an element that is a formatBlock candidate, does nothing.
Action: The user agent must run the following steps:

1. If the value argument wasn't specified, abort these steps without doing anything.

2. If the value argument has a leading U+003C LESS-THAN SIGN character (<) and a trailing U+003E
GREATER-THAN SIGN character (>), then remove the first and last characters from value.

3. If value is (now) an ASCII case-insensitivep35 match for the tag name of an element defined by this
specification that is defined to be a formatBlock candidatep566, then, for every position in the
selection, take the nearest formatBlock candidatep566 ancestor element of that position that contains
only phrasing contentp96, and, if that element is editablep546, is not an editing hostp547, and has a parent
element whose content model allows that parent to contain any flow contentp96, replace it with an
element in the HTML namespace whose name is value, and move all the children that were in it to the
new element, and copy all the attributes that were on it to the new element.

If there is no selection, then, where in the description above refers to the selection, the user agent
must act as if the selection was an empty range (with just one position) at the caret position.

Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

forwardDelete
Summary: Deletes the selection or the character after the cursor.
Action: The user agent must act as if the user had performed a forward delete operationp548.
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertImage
Summary: Toggles whether the selection is an image or not. If the second argument is true, and an image is to
be added, the user agent will ask the user for the address. Otherwise, the third argument will be used as the
address.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the imgp196 element (or, again, unwrapped, or have that semantic inserted or removed, as defined by the UA).
If the user agent creates an imgp196 element or modifies an existing imgp196 element, then if the showUI argument
is present and has the value false, then the value of the value argument must be used as the URLp54 of the
image. Otherwise, the user agent should prompt the user for the URL of the image.
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertHTML
Summary: Replaces the selection with the value of the third argument parsed as HTML.
Action: The user agent must run the following steps:

1. If the document is an XML documentp75, then throw an INVALID_ACCESS_ERRp74 exception and abort
these steps.

2. If the value argument wasn't specified, abort these steps without doing anything.

3. If there is a selection, act as if the user had requested that the selection be deletedp548.

4. Invoke the HTML fragment parsing algorithmp661 with an arbitrary orphan bodyp138 element owned by
the same Documentp33 as the contextp253 element and with the value argument as inputp320.

5. Insert the nodes returned by the previous step into the document at the location of the caret, firing any
mutation events as appropriate.

566

Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertLineBreak
Summary: Inserts a line break.
Action: The user agent must act as if the user had requested a line separatorp548.
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertOrderedList
Summary: Toggles whether the selection is an ordered list.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the olp161 element (or unwrapped, or, if there is no selection, have that semantic inserted or removed — the
exact behavior is UA-defined).
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertUnorderedList
Summary: Toggles whether the selection is an unordered list.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the ulp162 element (or unwrapped, or, if there is no selection, have that semantic inserted or removed — the
exact behavior is UA-defined).
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertParagraph
Summary: Inserts a paragraph break.
Action: The user agent must act as if the user had performed a break blockp548 editing action.
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertText
Summary: Inserts the text given in the third parameter.
Action: The user agent must act as if the user had inserted textp547 corresponding to the value parameter.
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

italic
Summary: Toggles whether the selection is italic.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the ip184 element (or, again, unwrapped, or have that semantic inserted or removed, as defined by the UA).
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained within, a ip184 element. False
otherwise.
Value: The string "true" if the expression given for the "State" above is true, the string "false" otherwise.

redo
Summary: Acts as if the user had requested a redo.
Action: The user agent must move forward one stepp563 in its undo transaction historyp561, restoring the
associated state. If the undo positionp562 is at the end of the undo transaction historyp561, the user agent must do
nothing. See the undo historyp561.
Enabled When: The undo positionp562 is not at the end of the undo transaction historyp561.
Indeterminate When: Never.
State: Always false.

567

Value: Always the string "false".

selectAll
Summary: Selects all the editable content.
Action: The user agent must change the selection so that all the content in the currently focused editing hostp547

is selected. If no editing hostp547 is focused, then the content of the entire document must be selected.
Enabled When: Always.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

subscript
Summary: Toggles whether the selection is subscripted.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the subp184 element (or, again, unwrapped, or have that semantic inserted or removed, as defined by the UA).
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained within, a subp184 element.
False otherwise.
Value: The string "true" if the expression given for the "State" above is true, the string "false" otherwise.

superscript
Summary: Toggles whether the selection is superscripted.
Action: The user agent must act as if the user had requested that the selection be wrapped in the semanticsp548

of the supp184 element (or unwrapped, or, if there is no selection, have that semantic inserted or removed — the
exact behavior is UA-defined).
Enabled When: The document is ready for editing host commandsp565.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained within, a supp184 element.
False otherwise.
Value: The string "true" if the expression given for the "State" above is true, the string "false" otherwise.

undo
Summary: Acts as if the user had requested an undo.
Action: The user agent must move back one stepp563 in its undo transaction historyp561, restoring the associated
state. If the undo positionp562 is at the start of the undo transaction historyp561, the user agent must do nothing.
See the undo historyp561.
Enabled When: The undo positionp562 is not at the start of the undo transaction historyp561.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

unlink
Summary: Removes all links from the selection.
Action: The user agent must remove all ap169 elements that have hrefp404 attributes and that are partially or
completely included in the current selection.
Enabled When: The document has a selection that is entirely within an editing hostp547 and that contains (either
partially or completely) at least one ap169 element that has an hrefp404 attribute.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

unselect
Summary: Unselects everything.
Action: The user agent must change the selection so that nothing is selected.
Enabled When: Always.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

vendorID-customCommandID
Action: User agents may implement vendor-specific extensions to this API. Vendor-specific extensions to the list
of commands should use the syntax vendorID-customCommandID so as to prevent clashes between extensions
from different vendors and future additions to this specification.
Enabled When: UA-defined.
Indeterminate When: UA-defined.
State: UA-defined.

568

Value: UA-defined.

Anything else
Action: User agents must do nothing.
Enabled When: Never.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

569

9 Communication

9.1 Event definitions

Messages in server-sent events, Web sockets, cross-document messagingp571, and channel messagingp573 use the
message event. [EVENTSOURCE]p739 [WEBSOCKET]p742

The following interface is defined for this event:

interface MessageEvent : Event {
readonly attribute any data;
readonly attribute DOMString origin;
readonly attribute DOMString lastEventId;
readonly attribute WindowProxy source;
readonly attribute MessagePortArray ports;
void initMessageEvent(in DOMString typeArg, in boolean canBubbleArg, in boolean

cancelableArg, in any dataArg, in DOMString originArg, in DOMString lastEventIdArg, in
WindowProxy sourceArg, in MessagePortArray portsArg);
};

This box is non-normative. Implementation requirements are given below this box.

event . datap570

Returns the data of the message.

event . originp570

Returns the origin of the message, for server-sent events and cross-document messagingp571.

event . lastEventIdp570

Returns the last event ID, for server-sent events.

event . sourcep570

Returns the WindowProxyp473 of the source window, for cross-document messagingp571.

event . portsp570

Returns the MessagePortArrayp574 sent with the message, for cross-document messagingp571 and channel
messagingp573.

The initMessageEvent() method must initialize the event in a manner analogous to the similarly-named method in
the DOM Events interfaces. [DOMEVENTS]p739

The data attribute represents the message being sent.

The origin attribute represents, in server-sent events and cross-document messagingp571, the originp474 of the
document that sent the message (typically the scheme, hostname, and port of the document, but not its path or
fragment identifier).

The lastEventId attribute represents, in server-sent events, the last event ID string of the event source.

The source attribute represents, in cross-document messagingp571, the WindowProxyp473 of the browsing contextp463 of
the Windowp467 object from which the message came.

The ports attribute represents, in cross-document messagingp571 and channel messagingp573 the
MessagePortArrayp574 being sent, if any.

Except where otherwise specified, when the user agent creates and dispatches a messagep570 event in the algorithms
described in the following sections, the lastEventIdp570 attribute must be the empty string, the originp570 attribute
must be the empty string, the sourcep570 attribute must be null, and the portsp570 attribute must be null.

570

9.2 Cross-document messaging

Web browsers, for security and privacy reasons, prevent documents in different domains from affecting each other;
that is, cross-site scripting is disallowed.

While this is an important security feature, it prevents pages from different domains from communicating even when
those pages are not hostile. This section introduces a messaging system that allows documents to communicate with
each other regardless of their source domain, in a way designed to not enable cross-site scripting attacks.

The task sourcep517 for the tasksp517 in cross-document messagingp571 is the posted message task source.

This section is non-normative.

For example, if document A contains an iframep211 element that contains document B, and script in document A
calls postMessage()p572 on the Windowp467 object of document B, then a message event will be fired on that
object, marked as originating from the Windowp467 of document A. The script in document A might look like:

var o = document.getElementsByTagName('iframe')[0];
o.contentWindow.postMessage('Hello world', 'http://b.example.org/');

To register an event handler for incoming events, the script would use addEventListener() (or similar
mechanisms). For example, the script in document B might look like:

window.addEventListener('message', receiver, false);
function receiver(e) {

if (e.origin == 'http://example.com') {
if (e.data == 'Hello world') {

e.source.postMessage('Hello', e.origin);
} else {

alert(e.data);
}

}
}

This script first checks the domain is the expected domain, and then looks at the message, which it either
displays to the user, or responds to by sending a message back to the document which sent the message in the
first place.

9.2.2.1 Authors

⚠Warning! Use of this API requires extra care to protect users from hostile entities abusing a site for
their own purposes.

Authors should check the originp570 attribute to ensure that messages are only accepted from domains that they
expect to receive messages from. Otherwise, bugs in the author's message handling code could be exploited by
hostile sites.

Furthermore, even after checking the originp570 attribute, authors should also check that the data in question is of the
expected format. Otherwise, if the source of the event has been attacked using a cross-site scripting flaw, further
unchecked processing of information sent using the postMessage()p572 method could result in the attack being
propagated into the receiver.

Authors should not use the wildcard keyword (*) in the targetOrigin argument in messages that contain any
confidential information, as otherwise there is no way to guarantee that the message is only delivered to the recipient
to which it was intended.

9.2.2.2 User agents

The integrity of this API is based on the inability for scripts of one originp474 to post arbitrary events (using
dispatchEvent() or otherwise) to objects in other origins (those that are not the samep476).

9.2.1 Introduction

9.2.2 Security

571

Note: Implementors are urged to take extra care in the implementation of this feature. It allows
authors to transmit information from one domain to another domain, which is normally disallowed
for security reasons. It also requires that UAs be careful to allow access to certain properties but
not others.

This box is non-normative. Implementation requirements are given below this box.

window . postMessagep572(message, [ports,] targetOrigin)
Posts a message, optionally with an array of ports, to the given window.
If the origin of the target window doesn't match the given origin, the message is discarded, to avoid
information leakage. To send the message to the target regardless of origin, set the target origin to "*". To
restrict the message to same-origin targets only, without needing to explicitly state the origin, set the
target origin to "/".

Throws an INVALID_STATE_ERRp74 if the ports array is not null and it contains either null entries or
duplicate ports.

When a script invokes the postMessage(message, targetOrigin) method (with only two arguments) on a Windowp467

object, the user agent must follow these steps:

1. If the value of the targetOrigin argument is neither a single U+002A ASTERISK character (*), a single
U+002F SOLIDUS character (/), nor an absolute URLp55 with a <host-specific>p55 component that is either
empty or a single U+002F SOLIDUS character (/), then throw a SYNTAX_ERRp74 exception and abort the
overall set of steps.

2. Let message clone be the result of obtaining a structured clonep71 of the message argument. If this throws
an exception, then throw that exception and abort these steps.

3. Return from the postMessage()p572 method, but asynchronously continue running these steps.

4. If the targetOrigin argument is a single literal U+002F SOLIDUS character (/), and the Documentp33 of the
Windowp467 object on which the method was invoked does not have the same originp476 as the entry
scriptp466 's documentp515, then abort these steps silently.

Otherwise, if the targetOrigin argument is an absolute URLp55, and the Documentp33 of the Windowp467 object
on which the method was invoked does not have the same originp476 as targetOrigin, then abort these steps
silently.

Otherwise, the targetOrigin argument is a single literal U+002A ASTERISK character (*), and no origin check
is made.

5. Create an event that uses the MessageEventp570 interface, with the event name messagep570, which does not
bubble, is not cancelable, and has no default action. The datap570 attribute must be set to the value of
message clone, the originp570 attribute must be set to the Unicode serializationp476 of the originp474 of the
script that invoked the method, and the sourcep570 attribute must be set to the script's global objectp515 's
WindowProxyp473 object.

6. Queue a taskp517 to dispatch the event created in the previous step at the Windowp467 object on which the
method was invoked. The task sourcep517 for this taskp517 is the posted message task sourcep571.

When a script invokes the postMessage(message, targetOrigin, ports) method (with three arguments) on a
Windowp467 object, the user agent must follow these steps:

1. If the value of the targetOrigin argument is neither a single U+002A ASTERISK character (*), a single
U+002F SOLIDUS character (/), nor an absolute URLp55 with a <host-specific>p55 component that is either
empty or a single U+002F SOLIDUS character (/), then throw a SYNTAX_ERRp74 exception and abort the
overall set of steps.

9.2.3 Posting messages

9.2.4 Posting messages with message ports

572

2. Let message clone be the result of obtaining a structured clonep71 of the message argument. If this throws
an exception, then throw that exception and abort these steps.

3. If the ports argument is empty, then act as if the method had just been called with two argumentsp572,
message and targetOrigin.

4. If any of the entries in ports are null, if any MessagePortp574 object is listed in ports more than once, or if any
of the MessagePortp574 objects listed in ports have already been cloned once before, then throw an
INVALID_STATE_ERRp74 exception.

5. Let new ports be an empty array.

For each port in ports in turn, obtain a new port by cloningp575 the port with the Windowp467 object on which
the method was invoked as the owner of the clone, and append the clone to the new ports array.

6. Return from the postMessage()p572 method, but asynchronously continue running these steps.

7. If the targetOrigin argument is a single literal U+002F SOLIDUS character (/), and the Documentp33 of the
Windowp467 object on which the method was invoked does not have the same originp476 as the entry
scriptp466 's documentp515, then abort these steps silently.

Otherwise, if the targetOrigin argument is an absolute URLp55, and the Documentp33 of the Windowp467 object
on which the method was invoked does not have the same originp476 as targetOrigin, then abort these steps
silently.

Otherwise, the targetOrigin argument is a single literal U+002A ASTERISK character (*), and no origin check
is made.

8. Create an event that uses the MessageEventp570 interface, with the event name messagep570, which does not
bubble, is not cancelable, and has no default action. The datap570 attribute must be set to the value of
message clone, the originp570 attribute must be set to the Unicode serializationp476 of the originp474 of the
script that invoked the method, and the sourcep570 attribute must be set to the script's global objectp515 's
WindowProxyp473 object.

9. Let the portsp570 attribute of the event be the new ports array.

10. Queue a taskp517 to dispatch the event created in the previous step at the Windowp467 object on which the
method was invoked. The task sourcep517 for this taskp517 is the posted message task sourcep571.

Note: These steps, with the exception of the third, fourth, and fifth steps and the penultimate
step, are identical to those in the previous section.

9.3 Channel messaging

This section is non-normative.

To enable independent pieces of code (e.g. running in different browsing contextsp463) to communicate directly,
authors can use channel messagingp573.

Communication channels in this mechanisms are implemented as two-ways pipes, with a port at each end. Messages
sent in one port are delivered at the other port, and vice-versa. Messages are asynchronous, and delivered as DOM
events.

To create a connection (two "entangled" ports), the MessageChannel() constructor is called:

var channel = new MessageChannel();

One of the ports is kept as the local port, and the other port is sent to the remote code, e.g. using postMessage()p572:

otherWindow.postMessage('hello', 'http://example.com', [channel.port2]);

To send messages, the postMessage()p575 method on the port is used:

channel.port1.postMessage('hello');

To receive messages, one listens to messagep570 events:

9.3.1 Introduction

573

channel.port1.onmessage = handleMessage;
function handleMessage(event) {

// message is in event.data
// ...

}

[Constructor]
interface MessageChannel {

readonly attribute MessagePort port1;
readonly attribute MessagePort port2;

};

This box is non-normative. Implementation requirements are given below this box.

channel = new MessageChannelp574()
Returns a new MessageChannelp574 object with two new MessagePortp574 objects.

channel . port1
Returns the first MessagePortp574 object.

channel . port2
Returns the second MessagePortp574 object.

When the MessageChannel() constructor is called, it must run the following algorithm:

1. Create a new MessagePort objectp575 owned by the script's global objectp515, and let port1 be that object.

2. Create a new MessagePort objectp575 owned by the script's global objectp515, and let port2 be that object.

3. Entanglep575 the port1 and port2 objects.

4. Instantiate a new MessageChannelp574 object, and let channel be that object.

5. Let the port1p574 attribute of the channel object be port1.

6. Let the port2p574 attribute of the channel object be port2.

7. Return channel.

This constructor must be visible when the script's global objectp515 is either a Windowp467 object or an object
implementing the WorkerUtils interface.

The port1 and port2 attributes must return the values they were assigned when the MessageChannelp574 object was
created.

Each channel has two message ports. Data sent through one port is received by the other port, and vice versa.

typedef sequence<MessagePort> MessagePortArray;

interface MessagePort {
void postMessage(in any message, in optional MessagePortArray ports);
void start();
void close();

// event handlers
attribute Function onmessage;

};
MessagePort implements EventTarget;

9.3.2 Message channels

9.3.3 Message ports

574

This box is non-normative. Implementation requirements are given below this box.

port . postMessage(message [, ports])
Posts a message through the channel, optionally with the given ports.

Throws an INVALID_STATE_ERRp74 if the ports array is not null and it contains either null entries, duplicate
ports, or the source or target port.

port . startp576()
Begins dispatching messages received on the port.

port . closep576()
Disconnects the port, so that it is no longer active.

Each MessagePortp574 object can be entangled with another (a symmetric relationship). Each MessagePortp574 object
also has a task sourcep517 called the port message queue, initial empty. A port message queuep575 can be enabled or
disabled, and is initially disabled. Once enabled, a port can never be disabled again (though messages in the queue
can get moved to another queue or removed altogether, which has much the same effect).

When the user agent is to create a new MessagePort object owned by a script's global objectp515 object owner, it
must instantiate a new MessagePortp574 object, and let its owner be owner.

When the user agent is to entangle two MessagePortp574 objects, it must run the following steps:

1. If one of the ports is already entangled, then disentangle it and the port that it was entangled with.

Note: If those two previously entangled ports were the two ports of a MessageChannelp574

object, then that MessageChannelp574 object no longer represents an actual channel: the
two ports in that object are no longer entangled.

2. Associate the two ports to be entangled, so that they form the two parts of a new channel. (There is no
MessageChannelp574 object that represents this channel.)

When the user agent is to clone a port original port, with the clone being owned by owner, it must run the following
steps, which return a new MessagePortp574 object. These steps must be run atomically.

1. Create a new MessagePort objectp575 owned by owner, and let new port be that object.

2. Move all the events in the port message queuep575 of original port to the port message queuep575 of new
port, if any, leaving the new port's port message queuep575 in its initial disabled state.

3. If the original port is entangled with another port, then run these substeps:

1. Let the remote port be the port with which the original port is entangled.

2. Entanglep575 the remote port and new port objects. The original port object will be disentangled by
this process.

4. Return new port. It is the clone.

The postMessage() method, when called on a port source port, must cause the user agent to run the following steps:

1. Let target port be the port with which source port is entangled, if any.

2. If the method was called with a second argument ports and that argument isn't null, then, if any of the
entries in ports are null, if any MessagePortp574 object is listed in ports more than once, if any of the
MessagePortp574 objects listed in ports have already been cloned once before, or if any of the entries in ports
are either the source port or the target port (if any), then throw an INVALID_STATE_ERRp74 exception.

3. If there is no target port (i.e. if source port is not entangled), then abort these steps.

4. Create an event that uses the MessageEventp570 interface, with the name messagep570, which does not
bubble, is not cancelable, and has no default action.

5. Let message be the method's first argument.

575

6. Let message clone be the result of obtaining a structured clonep71 of message. If this throws an exception,
then throw that exception and abort these steps.

7. Let the datap570 attribute of the event have the value of message clone.

8. If the method was called with a second argument ports and that argument isn't null, then run the following
substeps:

1. Let new ports be an empty array.

For each port in ports in turn, obtain a new port by cloningp575 the port with the owner of the target
port as the owner of the clone, and append the clone to the new ports array.

Note: If the original ports array was empty, then the new ports array will also be
empty.

2. Let the portsp570 attribute of the event be the new ports array.

9. Add the event to the port message queuep575 of target port.

The start() method must enable its port's port message queuep575, if it is not already enabled.

When a port's port message queuep575 is enabled, the event loopp516 must use it as one of its task sourcesp517.

Note: If the Documentp33 of the port's event listeners' global objectp515 is not fully activep464, then
the messages are lost.

The close() method, when called on a port local port that is entangled with another port, must cause the user agents
to disentangle the two ports. If the method is called on a port that is not entangled, then the method must do nothing.

The following are the event handlersp519 (and their corresponding event handler event typesp521) that must be
supported, as IDL attributes, by all objects implementing the MessagePortp574 interface:

Event handlerp519 Event handler event typep521

onmessage messagep570

The first time a MessagePortp574 object's onmessagep576 IDL attribute is set, the port's port message queuep575 must be
enabled, as if the start()p576 method had been called.

9.3.3.1 Ports and garbage collection

When a MessagePortp574 object o is entangled, user agents must either act as if o's entangled MessagePortp574 object
has a strong reference to o, or as if o's owner has a strong reference to o.

Thus, a message port can be received, given an event listener, and then forgotten, and so long as
that event listener could receive a message, the channel will be maintained.

Of course, if this was to occur on both sides of the channel, then both ports could be garbage
collected, since they would not be reachable from live code, despite having a strong reference to
each other.

Furthermore, a MessagePortp574 object must not be garbage collected while there exists a message in a task queuep517

that is to be dispatched on that MessagePortp574 object, or while the MessagePortp574 object's port message queuep575

is open and there exists a messagep570 event in that queue.

Note: Authors are strongly encouraged to explicitly close MessagePortp574 objects to disentangle
them, so that their resources can be recollected. Creating many MessagePortp574 objects and
discarding them without closing them can lead to high memory usage.

576

10 The HTML syntax

Note: This section only describes the rules for resources labeled with an HTML MIME typep28.
Rules for XML resources are discussed in the section below entitled "The XHTML syntaxp669".

10.1 Writing HTML documents

This section only applies to documents, authoring tools, and markup generators. In particular, it does not apply to
conformance checkers; conformance checkers must use the requirements given in the next section ("parsing HTML
documents").

Documents must consist of the following parts, in the given order:

1. Optionally, a single U+FEFF BYTE ORDER MARK (BOM) character.

2. Any number of commentsp584 and space charactersp36.

3. A DOCTYPEp577.

4. Any number of commentsp584 and space charactersp36.

5. The root element, in the form of an htmlp112 elementp578.

6. Any number of commentsp584 and space charactersp36.

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarationsp125 are to be serialized, as discussed in
the section on that topic.

Space characters before the root htmlp112 element, and space characters at the start of the htmlp112

element and before the headp112 element, will be dropped when the document is parsed; space
characters after the root htmlp112 element will be parsed as if they were at the end of the bodyp138

element. Thus, space characters around the root element do not round-trip.

It is suggested that newlines be inserted after the DOCTYPE, after any comments that are before
the root element, after the htmlp112 element's start tag (if it is not omittedp581), and after any
comments that are inside the htmlp112 element but before the headp112 element.

Many strings in the HTML syntax (e.g. the names of elements and their attributes) are case-insensitive, but only for
characters in the ranges U+0041 to U+005A (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and U+0061 to
U+007A (LATIN SMALL LETTER A to LATIN SMALL LETTER Z). For convenience, in this section this is just referred to as
"case-insensitive".

A DOCTYPE is a required preamble.

Note: DOCTYPEs are required for legacy reasons. When omitted, browsers tend to use a different
rendering mode that is incompatible with some specifications. Including the DOCTYPE in a
document ensures that the browser makes a best-effort attempt at following the relevant
specifications.

A DOCTYPE must consist of the following characters, in this order:

1. A string that is an ASCII case-insensitivep35 match for the string "<!DOCTYPE".
2. One or more space charactersp36.
3. A string that is an ASCII case-insensitivep35 match for the string "HTML".
4. Optionally, a DOCTYPE legacy stringp578 or an obsolete permitted DOCTYPE stringp578 (defined below).
5. Zero or more space charactersp36.
6. A U+003E GREATER-THAN SIGN character (>).

Note: In other words, <!DOCTYPE HTML>, case-insensitively.

10.1.1 The DOCTYPE

577

For the purposes of HTML generators that cannot output HTML markup with the short DOCTYPE "<!DOCTYPE HTML>", a
DOCTYPE legacy string may be inserted into the DOCTYPE (in the position defined above). This string must consist
of:

1. One or more space charactersp36.
2. A string that is an ASCII case-insensitivep35 match for the string "SYSTEM".
3. One or more space charactersp36.
4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the quote mark).
5. The literal string "about:legacy-compatp56".
6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the

earlier step labeled quote mark).

Note: In other words, <!DOCTYPE HTML SYSTEM "about:legacy-compat"> or <!DOCTYPE HTML SYSTEM
'about:legacy-compat'>, case-insensitively except for the bit in single or double quotes.

The DOCTYPE legacy stringp578 should not be used unless the document is generated from a system that cannot
output the shorter string.

To help authors transition from HTML4 and XHTML1, an obsolete permitted DOCTYPE string can be inserted into
the DOCTYPE (in the position defined above). This string must consist of:

1. One or more space charactersp36.
2. A string that is an ASCII case-insensitivep35 match for the string "PUBLIC".
3. One or more space charactersp36.
4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the first quote mark).
5. The string from one of the cells in the first column of the table below. The row to which this cell belongs is

the selected row.
6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the

earlier step labeled first quote mark).
7. If the cell in the second column of the selected row is not blank, one or more space charactersp36.
8. If the cell in the second column of the selected row is not blank, a U+0022 QUOTATION MARK or U+0027

APOSTROPHE character (the third quote mark).
9. If the cell in the second column of the selected row is not blank, the string from the cell in the second

column of the selected row.
10. If the cell in the second column of the selected row is not blank, a matching U+0022 QUOTATION MARK or

U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled third quote mark).

Allowed values for public and system identifiers in an obsolete permitted DOCTYPE stringp578.
Public identifier System identifier

-//W3C//DTD HTML 4.0//EN

-//W3C//DTD HTML 4.0//EN http://www.w3.org/TR/REC-html40/strict.dtd

-//W3C//DTD HTML 4.01//EN

-//W3C//DTD HTML 4.01//EN http://www.w3.org/TR/html4/strict.dtd

-//W3C//DTD XHTML 1.0 Strict//EN http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd

-//W3C//DTD XHTML 1.1//EN http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

A DOCTYPEp577 containing an obsolete permitted DOCTYPE stringp578 is an obsolete permitted DOCTYPE. Authors
should not use obsolete permitted DOCTYPEsp578, as they are unnecessarily long.

There are five different kinds of elements: void elementsp578, raw text elementsp578, RCDATA elementsp578, foreign
elementsp578, and normal elementsp578.

Void elements
areap280, basep114, brp191, colp294, commandp391, embedp217, hrp158, imgp196, inputp320, keygenp363, linkp115, metap119,
paramp224, sourcep229, wbrp192

Raw text elements
scriptp129, stylep126

RCDATA elements
textareap360, titlep113

Foreign elements
Elements from the MathML namespacep74 and the SVG namespacep74.

Normal elements
All other allowed HTML elementsp28 are normal elements.

10.1.2 Elements

578

Tags are used to delimit the start and end of elements in the markup. Raw textp578, RCDATAp578, and normalp578

elements have a start tagp579 to indicate where they begin, and an end tagp580 to indicate where they end. The start
and end tags of certain normal elementsp578 can be omittedp581, as described later. Those that cannot be omitted must
not be omitted. Void elementsp578 only have a start tag; end tags must not be specified for void elementsp578. Foreign
elementsp578 must either have a start tag and an end tag, or a start tag that is marked as self-closing, in which case
they must not have an end tag.

The contents of the element must be placed between just after the start tag (which might be implied, in certain
casesp581) and just before the end tag (which again, might be implied in certain casesp581). The exact allowed contents
of each individual element depends on the content model of that element, as described earlier in this specification.
Elements must not contain content that their content model disallows. In addition to the restrictions placed on the
contents by those content models, however, the five types of elements have additional syntactic requirements.

Void elementsp578 can't have any contents (since there's no end tag, no content can be put between the start tag and
the end tag).

Raw text elementsp578 can have textp583, though it has restrictionsp583 described below.

RCDATA elementsp578 can have textp583 and character referencesp583, but the text must not contain an ambiguous
ampersandp584. There are also further restrictionsp583 described below.

Foreign elementsp578 whose start tag is marked as self-closing can't have any contents (since, again, as there's no end
tag, no content can be put between the start tag and the end tag). Foreign elementsp578 whose start tag is not marked
as self-closing can have textp583, character referencesp583, CDATA sectionsp584, other elementsp578, and commentsp584,
but the text must not contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp584.

The HTML syntax does not support namespace declarations, even in foreign elementsp578.

For instance, consider the following HTML fragment:

<p>
<svg>
<metadata>
<!-- this is invalid -->
<cdr:license xmlns:cdr="http://www.example.com/cdr/metadata" name="MIT"/>

</metadata>
</svg>

</p>

The innermost element, cdr:license, is actually in the SVG namespace, as the "xmlns:cdr"
attribute has no effect (unlike in XML). In fact, as the comment in the fragment above says, the
fragment is actually non-conforming. This is because the SVG specification does not define any
elements called "cdr:license" in the SVG namespace.

Normal elementsp578 can have textp583, character referencesp583, other elementsp578, and commentsp584, but the text
must not contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersandp584. Some normal
elementsp578 also have yet more restrictionsp582 on what content they are allowed to hold, beyond the restrictions
imposed by the content model and those described in this paragraph. Those restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names that only use characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), U+0061 LATIN SMALL LETTER A to U+007A LATIN SMALL
LETTER Z, and U+0041 LATIN CAPITAL LETTER A to U+005A LATIN CAPITAL LETTER Z. In the HTML syntax, tag names,
even those for foreign elementsp578, may be written with any mix of lower- and uppercase letters that, when converted
to all-lowercase, matches the element's tag name; tag names are case-insensitive.

10.1.2.1 Start tags

Start tags must have the following format:

1. The first character of a start tag must be a U+003C LESS-THAN SIGN character (<).

2. The next few characters of a start tag must be the element's tag namep579.

3. If there are to be any attributes in the next step, there must first be one or more space charactersp36.

4. Then, the start tag may have a number of attributes, the syntax for whichp580 is described below. Attributes
may be separated from each other by one or more space charactersp36.

579

5. After the attributes, or after the tag namep579 if there are no attributes, there may be one or more space
charactersp36. (Some attributes are required to be followed by a space. See the attributes sectionp580 below.)

6. Then, if the element is one of the void elementsp578, or if the element is a foreign elementp578, then there
may be a single U+002F SOLIDUS character (/). This character has no effect on void elementsp578, but on
foreign elementsp578 it marks the start tag as self-closing.

7. Finally, start tags must be closed by a U+003E GREATER-THAN SIGN character (>).

10.1.2.2 End tags

End tags must have the following format:

1. The first character of an end tag must be a U+003C LESS-THAN SIGN character (<).

2. The second character of an end tag must be a U+002F SOLIDUS character (/).

3. The next few characters of an end tag must be the element's tag namep579.

4. After the tag name, there may be one or more space charactersp36.

5. Finally, end tags must be closed by a U+003E GREATER-THAN SIGN character (>).

10.1.2.3 Attributes

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names must consist of one or more characters other than the space
charactersp36, U+0000 NULL, U+0022 QUOTATION MARK ("), U+0027 APOSTROPHE ('), U+003E GREATER-THAN SIGN
(>), U+002F SOLIDUS (/), and U+003D EQUALS SIGN (=) characters, the control characters, and any characters that
are not defined by Unicode. In the HTML syntax, attribute names, even those for foreign elementsp578, may be written
with any mix of lower- and uppercase letters that are an ASCII case-insensitivep35 match for the attribute's name.

Attribute values are a mixture of textp583 and character referencesp583, except with the additional restriction that the
text cannot contain an ambiguous ampersandp584.

Attributes can be specified in four different ways:

Empty attribute syntax
Just the attribute namep580. The value is implicitly the empty string.

In the following example, the disabledp374 attribute is given with the empty attribute syntax:

<input disabled>
If an attribute using the empty attribute syntax is to be followed by another attribute, then there must be a
space characterp36 separating the two.

Unquoted attribute value syntax
The attribute namep580, followed by zero or more space charactersp36, followed by a single U+003D EQUALS SIGN
character, followed by zero or more space charactersp36, followed by the attribute valuep580, which, in addition to
the requirements given above for attribute values, must not contain any literal space charactersp36, any U+0022
QUOTATION MARK characters ("), U+0027 APOSTROPHE characters ('), U+003D EQUALS SIGN characters (=),
U+003C LESS-THAN SIGN characters (<), U+003E GREATER-THAN SIGN characters (>), or U+0060 GRAVE
ACCENT characters (`), and must not be the empty string.

In the following example, the valuep323 attribute is given with the unquoted attribute value syntax:

<input value=yes>
If an attribute using the unquoted attribute syntax is to be followed by another attribute or by the optional
U+002F SOLIDUS character (/) allowed in step 6 of the start tagp579 syntax above, then there must be a space
characterp36 separating the two.

Single-quoted attribute value syntax
The attribute namep580, followed by zero or more space charactersp36, followed by a single U+003D EQUALS SIGN
character, followed by zero or more space charactersp36, followed by a single U+0027 APOSTROPHE character ('),
followed by the attribute valuep580, which, in addition to the requirements given above for attribute values, must

580

not contain any literal U+0027 APOSTROPHE characters ('), and finally followed by a second single U+0027
APOSTROPHE character (').

In the following example, the typep321 attribute is given with the single-quoted attribute value syntax:

<input type='checkbox'>
If an attribute using the single-quoted attribute syntax is to be followed by another attribute, then there must be
a space characterp36 separating the two.

Double-quoted attribute value syntax
The attribute namep580, followed by zero or more space charactersp36, followed by a single U+003D EQUALS SIGN
character, followed by zero or more space charactersp36, followed by a single U+0022 QUOTATION MARK
character ("), followed by the attribute valuep580, which, in addition to the requirements given above for attribute
values, must not contain any literal U+0022 QUOTATION MARK characters ("), and finally followed by a second
single U+0022 QUOTATION MARK character (").

In the following example, the namep374 attribute is given with the double-quoted attribute value syntax:

<input name="be evil">
If an attribute using the double-quoted attribute syntax is to be followed by another attribute, then there must be
a space characterp36 separating the two.

There must never be two or more attributes on the same start tag whose names are an ASCII case-insensitivep35

match for each other.

When a foreign elementp578 has one of the namespaced attributes given by the local name and namespace of the first
and second cells of a row from the following table, it must be written using the name given by the third cell from the
same row.

Local name Namespace Attribute name

actuate XLink namespacep74 xlink:actuate

arcrole XLink namespacep74 xlink:arcrole

href XLink namespacep74 xlink:href

role XLink namespacep74 xlink:role

show XLink namespacep74 xlink:show

title XLink namespacep74 xlink:title

type XLink namespacep74 xlink:type

base XML namespacep74 xml:base

lang XML namespacep74 xml:lang

space XML namespacep74 xml:space

xmlns XMLNS namespacep74 xmlns

xlink XMLNS namespacep74 xmlns:xlink

No other namespaced attribute can be expressed in the HTML syntaxp577.

10.1.2.4 Optional tags

Certain tags can be omitted.

Note: Omitting an element's start tagp579 does not mean the element is not present; it is implied,
but it is still there. An HTML document always has a root htmlp112 element, even if the string <html>
doesn't appear anywhere in the markup.

An htmlp112 element's start tagp579 may be omitted if the first thing inside the htmlp112 element is not a commentp584.

An htmlp112 element's end tagp580 may be omitted if the htmlp112 element is not immediately followed by a
commentp584.

A headp112 element's start tagp579 may be omitted if the element is empty, or if the first thing inside the headp112

element is an element.

A headp112 element's end tagp580 may be omitted if the headp112 element is not immediately followed by a space
characterp36 or a commentp584.

581

A bodyp138 element's start tagp579 may be omitted if the element is empty, or if the first thing inside the bodyp138

element is not a space characterp36 or a commentp584, except if the first thing inside the bodyp138 element is a
scriptp129 or stylep126 element.

A bodyp138 element's end tagp580 may be omitted if the bodyp138 element is not immediately followed by a commentp584.

A lip163 element's end tagp580 may be omitted if the lip163 element is immediately followed by another lip163 element
or if there is no more content in the parent element.

A dtp166 element's end tagp580 may be omitted if the dtp166 element is immediately followed by another dtp166 element
or a ddp166 element.

A ddp166 element's end tagp580 may be omitted if the ddp166 element is immediately followed by another ddp166 element
or a dtp166 element, or if there is no more content in the parent element.

A pp157 element's end tagp580 may be omitted if the pp157 element is immediately followed by an addressp151,
articlep144, asidep145, blockquotep159, dirp697, divp168, dlp164, fieldsetp317, footerp150, formp314, h1p147, h2p147, h3p147,
h4p147, h5p147, h6p147, headerp148, hgroupp148, hrp158, menup393, navp142, olp161, pp157, prep158, sectionp140, tablep286, or
ulp162, element, or if there is no more content in the parent element and the parent element is not an ap169 element.

An rtp189 element's end tagp580 may be omitted if the rtp189 element is immediately followed by an rtp189 or rpp189

element, or if there is no more content in the parent element.

An rpp189 element's end tagp580 may be omitted if the rpp189 element is immediately followed by an rtp189 or rpp189

element, or if there is no more content in the parent element.

An optgroupp357 element's end tagp580 may be omitted if the optgroupp357 element is immediately followed by another
optgroupp357 element, or if there is no more content in the parent element.

An optionp358 element's end tagp580 may be omitted if the optionp358 element is immediately followed by another
optionp358 element, or if it is immediately followed by an optgroupp357 element, or if there is no more content in the
parent element.

A colgroupp293 element's start tagp579 may be omitted if the first thing inside the colgroupp293 element is a colp294

element, and if the element is not immediately preceded by another colgroupp293 element whose end tagp580 has been
omitted. (It can't be omitted if the element is empty.)

A colgroupp293 element's end tagp580 may be omitted if the colgroupp293 element is not immediately followed by a
space characterp36 or a commentp584.

A theadp295 element's end tagp580 may be omitted if the theadp295 element is immediately followed by a tbodyp294 or
tfootp296 element.

A tbodyp294 element's start tagp579 may be omitted if the first thing inside the tbodyp294 element is a trp296 element,
and if the element is not immediately preceded by a tbodyp294, theadp295, or tfootp296 element whose end tagp580 has
been omitted. (It can't be omitted if the element is empty.)

A tbodyp294 element's end tagp580 may be omitted if the tbodyp294 element is immediately followed by a tbodyp294 or
tfootp296 element, or if there is no more content in the parent element.

A tfootp296 element's end tagp580 may be omitted if the tfootp296 element is immediately followed by a tbodyp294

element, or if there is no more content in the parent element.

A trp296 element's end tagp580 may be omitted if the trp296 element is immediately followed by another trp296 element,
or if there is no more content in the parent element.

A tdp298 element's end tagp580 may be omitted if the tdp298 element is immediately followed by a tdp298 or thp298

element, or if there is no more content in the parent element.

A thp298 element's end tagp580 may be omitted if the thp298 element is immediately followed by a tdp298 or thp298

element, or if there is no more content in the parent element.

However, a start tagp579 must never be omitted if it has any attributes.

10.1.2.5 Restrictions on content models

For historical reasons, certain elements have extra restrictions beyond even the restrictions given by their content
model.

582

A tablep286 element must not contain trp296 elements, even though these elements are technically allowed inside
tablep286 elements according to the content models described in this specification. (If a trp296 element is put inside a
tablep286 in the markup, it will in fact imply a tbodyp294 start tag before it.)

A single newlinep583 may be placed immediately after the start tagp579 of prep158 and textareap360 elements. This does
not affect the processing of the element. The otherwise optional newlinep583 must be included if the element's
contents themselves start with a newlinep583 (because otherwise the leading newline in the contents would be treated
like the optional newline, and ignored).

The following two prep158 blocks are equivalent:

<pre>Hello</pre>
<pre>
Hello</pre>

10.1.2.6 Restrictions on the contents of raw text and RCDATA elements

The text in raw textp578 and RCDATA elementsp578 must not contain any occurrences of the string "</" (U+003C LESS-
THAN SIGN, U+002F SOLIDUS) followed by characters that case-insensitively match the tag name of the element
followed by one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED (FF), U+000D
CARRIAGE RETURN (CR), U+0020 SPACE, U+003E GREATER-THAN SIGN (>), or U+002F SOLIDUS (/).

Text is allowed inside elements, attributes, and comments. Text must consist of Unicode characters. Text must not
contain U+0000 characters. Text must not contain permanently undefined Unicode characters (noncharacters). Text
must not contain control characters other than space charactersp36. Extra constraints are placed on what is and what
is not allowed in text based on where the text is to be put, as described in the other sections.

10.1.3.1 Newlines

Newlines in HTML may be represented either as U+000D CARRIAGE RETURN (CR) characters, U+000A LINE FEED (LF)
characters, or pairs of U+000D CARRIAGE RETURN (CR), U+000A LINE FEED (LF) characters in that order.

Where character referencesp583 are allowed, a character reference of a U+000A LINE FEED (LF) character (but not a
U+000D CARRIAGE RETURN (CR) character) also represents a newlinep583.

In certain cases described in other sections, textp583 may be mixed with character references. These can be used to
escape characters that couldn't otherwise legally be included in textp583.

Character references must start with a U+0026 AMPERSAND character (&). Following this, there are three possible
kinds of character references:

Named character references
The ampersand must be followed by one of the names given in the named character referencesp662 section,
using the same case. The name must be one that is terminated by a U+003B SEMICOLON character (;).

Decimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN character (#), followed by one or more digits in
the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), representing a base-ten integer that corresponds
to a Unicode code point that is allowed according to the definition below. The digits must then be followed by a
U+003B SEMICOLON character (;).

Hexadecimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN character (#), which must be followed by either a
U+0078 LATIN SMALL LETTER X character (x) or a U+0058 LATIN CAPITAL LETTER X character (X), which must
then be followed by one or more digits in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), U+0061
LATIN SMALL LETTER A to U+0066 LATIN SMALL LETTER F, and U+0041 LATIN CAPITAL LETTER A to U+0046
LATIN CAPITAL LETTER F, representing a base-sixteen integer that corresponds to a Unicode code point that is
allowed according to the definition below. The digits must then be followed by a U+003B SEMICOLON character
(;).

10.1.3 Text

10.1.4 Character references

583

The numeric character reference forms described above are allowed to reference any Unicode code point other than
U+0000, U+000D, permanently undefined Unicode characters (noncharacters), and control characters other than
space charactersp36.

An ambiguous ampersand is a U+0026 AMPERSAND character (&) that is followed by one or more characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), U+0061 LATIN SMALL LETTER A to U+007A LATIN SMALL
LETTER Z, and U+0041 LATIN CAPITAL LETTER A to U+005A LATIN CAPITAL LETTER Z, followed by a U+003B
SEMICOLON character (;), where these characters do not match any of the names given in the named character
referencesp662 section.

CDATA sections must start with the character sequence U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK,
U+005B LEFT SQUARE BRACKET, U+0043 LATIN CAPITAL LETTER C, U+0044 LATIN CAPITAL LETTER D, U+0041 LATIN
CAPITAL LETTER A, U+0054 LATIN CAPITAL LETTER T, U+0041 LATIN CAPITAL LETTER A, U+005B LEFT SQUARE
BRACKET (<![CDATA[). Following this sequence, the CDATA section may have textp583, with the additional restriction
that the text must not contain the three character sequence U+005D RIGHT SQUARE BRACKET, U+005D RIGHT
SQUARE BRACKET, U+003E GREATER-THAN SIGN (]]>). Finally, the CDATA section must be ended by the three
character sequence U+005D RIGHT SQUARE BRACKET, U+005D RIGHT SQUARE BRACKET, U+003E GREATER-THAN
SIGN (]]>).

CDATA sections can only be used in foreign content (MathML or SVG). In this example, a CDATA section is used
to escape the contents of an ms element:

<p>You can add a string to a number, but this stringifies the number:</p>
<math>
<ms><![CDATA[x<y]]></ms>
<mo>+</mo>
<mn>3</mn>
<mo>=</mo>
<ms><![CDATA[x<y3]]></ms>

</math>

Comments must start with the four character sequence U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK,
U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS (<!--). Following this sequence, the comment may have textp583,
with the additional restriction that the text must not start with a single U+003E GREATER-THAN SIGN character (>),
nor start with a U+002D HYPHEN-MINUS character (-) followed by a U+003E GREATER-THAN SIGN (>) character, nor
contain two consecutive U+002D HYPHEN-MINUS characters (--), nor end with a U+002D HYPHEN-MINUS character
(-). Finally, the comment must be ended by the three character sequence U+002D HYPHEN-MINUS, U+002D HYPHEN-
MINUS, U+003E GREATER-THAN SIGN (-->).

10.2 Parsing HTML documents

This section only applies to user agents, data mining tools, and conformance checkers.

Note: The rules for parsing XML documents into DOM trees are covered by the next section,
entitled "The XHTML syntaxp669".

For HTML documentsp75, user agents must use the parsing rules described in this section to generate the DOM trees.
Together, these rules define what is referred to as the HTML parser.

While the HTML syntax described in this specification bears a close resemblance to SGML and
XML, it is a separate language with its own parsing rules.

Some earlier versions of HTML (in particular from HTML2 to HTML4) were based on SGML and
used SGML parsing rules. However, few (if any) web browsers ever implemented true SGML
parsing for HTML documents; the only user agents to strictly handle HTML as an SGML application
have historically been validators. The resulting confusion — with validators claiming documents to
have one representation while widely deployed Web browsers interoperably implemented a
different representation — has wasted decades of productivity. This version of HTML thus returns
to a non-SGML basis.

10.1.5 CDATA sections

10.1.6 Comments

584

Authors interested in using SGML tools in their authoring pipeline are encouraged to use XML
tools and the XML serialization of HTML.

This specification defines the parsing rules for HTML documents, whether they are syntactically correct or not. Certain
points in the parsing algorithm are said to be parse errors. The error handling for parse errors is well-defined: user
agents must either act as described below when encountering such problems, or must abort processing at the first
error that they encounter for which they do not wish to apply the rules described below.

Conformance checkers must report at least one parse error condition to the user if one or more parse error conditions
exist in the document and must not report parse error conditions if none exist in the document. Conformance checkers
may report more than one parse error condition if more than one parse error condition exists in the document.
Conformance checkers are not required to recover from parse errors.

Note: Parse errors are only errors with the syntax of HTML. In addition to checking for parse
errors, conformance checkers will also verify that the document obeys all the other conformance
requirements described in this specification.

For the purposes of conformance checkers, if a resource is determined to be in the HTML syntaxp577, then it is an HTML
documentp75.

The input to the HTML parsing process consists of a stream of Unicode characters, which is passed through a
tokenizationp597 stage followed by a tree constructionp621 stage. The output is a Documentp33 object.

Note: Implementations that do not support scriptingp31 do not have to actually create a DOM
Documentp33 object, but the DOM tree in such cases is still used as the model for the rest of the
specification.

In the common case, the data handled by the tokenization stage comes from the network, but it can also come from
scriptp105, e.g. using the document.write()p107 API.

10.2.1 Overview of the parsing model

585

There is only one set of states for the tokenizer stage and the tree construction stage, but the tree construction stage
is reentrant, meaning that while the tree construction stage is handling one token, the tokenizer might be resumed,
causing further tokens to be emitted and processed before the first token's processing is complete.

In the following example, the tree construction stage will be called upon to handle a "p" start tag token while
handling the "script" start tag token:

...
<script>
document.write('<p>');

</script>
...

To handle these cases, parsers have a script nesting level, which must be initially set to zero, and a parser pause
flag, which must be initially set to false.

The stream of Unicode characters that comprises the input to the tokenization stage will be initially seen by the user
agent as a stream of bytes (typically coming over the network or from the local file system). The bytes encode the
actual characters according to a particular character encoding, which the user agent must use to decode the bytes
into characters.

10.2.2 The input stream

586

Note: For XML documents, the algorithm user agents must use to determine the character
encoding is given by the XML specification. This section does not apply to XML documents.
[XML]p743

10.2.2.1 Determining the character encoding

In some cases, it might be impractical to unambiguously determine the encoding before parsing the document.
Because of this, this specification provides for a two-pass mechanism with an optional pre-scan. Implementations are
allowed, as described below, to apply a simplified parsing algorithm to whatever bytes they have available before
beginning to parse the document. Then, the real parser is started, using a tentative encoding derived from this pre-
parse and other out-of-band metadata. If, while the document is being loaded, the user agent discovers an encoding
declaration that conflicts with this information, then the parser can get reinvoked to perform a parse of the document
with the real encoding.

User agents must use the following algorithm (the encoding sniffing algorithm) to determine the character
encoding to use when decoding a document in the first pass. This algorithm takes as input any out-of-band metadata
available to the user agent (e.g. the Content-Type metadatap61 of the document) and all the bytes available so far, and
returns an encoding and a confidence. The confidence is either tentative, certain, or irrelevant. The encoding used,
and whether the confidence in that encoding is tentative or certain, is used during the parsingp629 to determine
whether to change the encodingp592. If no encoding is necessary, e.g. because the parser is operating on a stream of
Unicode characters and doesn't have to use an encoding at all, then the confidencep587 is irrelevant.

1. If the transport layer specifies an encoding, and it is supported, return that encoding with the confidencep587

certain, and abort these steps.

2. The user agent may wait for more bytes of the resource to be available, either in this step or at any later
step in this algorithm. For instance, a user agent might wait 500ms or 512 bytes, whichever came first. In
general preparsing the source to find the encoding improves performance, as it reduces the need to throw
away the data structures used when parsing upon finding the encoding information. However, if the user
agent delays too long to obtain data to determine the encoding, then the cost of the delay could outweigh
any performance improvements from the preparse.

3. For each of the rows in the following table, starting with the first one and going down, if there are as many or
more bytes available than the number of bytes in the first column, and the first bytes of the file match the
bytes given in the first column, then return the encoding given in the cell in the second column of that row,
with the confidencep587 certain, and abort these steps:

Bytes in Hexadecimal Encoding

FE FF UTF-16BE
FF FE UTF-16LE
EF BB BF UTF-8

Note: This step looks for Unicode Byte Order Marks (BOMs).

4. Otherwise, the user agent will have to search for explicit character encoding information in the file itself.
This should proceed as follows:

Let position be a pointer to a byte in the input stream, initially pointing at the first byte. If at any point during
these substeps the user agent either runs out of bytes or decides that scanning further bytes would not be
efficient, then skip to the next step of the overall character encoding detection algorithm. User agents may
decide that scanning any bytes is not efficient, in which case these substeps are entirely skipped.

Now, repeat the following "two" steps until the algorithm aborts (either because user agent aborts, as
described above, or because a character encoding is found):

1. If position points to:

↪ A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (ASCII '<!--')
Advance the position pointer so that it points at the first 0x3E byte which is preceded by
two 0x2D bytes (i.e. at the end of an ASCII '-->' sequence) and comes after the 0x3C
byte that was found. (The two 0x2D bytes can be the same as the those in the '<!--'
sequence.)

587

↪ A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65, 0x54 or 0x74,
0x41 or 0x61, and finally one of 0x09, 0x0A, 0x0C, 0x0D, 0x20, 0x2F (case-
insensitive ASCII '<meta' followed by a space or slash)

1. Advance the position pointer so that it points at the next 0x09, 0x0A, 0x0C,
0x0D, 0x20, or 0x2F byte (the one in sequence of characters matched above).

2. Get an attributep588 and its value. If no attribute was sniffed, then skip this
inner set of steps, and jump to the second step in the overall "two step"
algorithm.

3. If the attribute's name is neither "charset" nor "content", then return to step
2 in these inner steps.

4. If the attribute's name is "charset", let charset be the attribute's value,
interpreted as a character encoding.

5. Otherwise, the attribute's name is "content": apply the algorithm for
extracting an encoding from a Content-Typep61, giving the attribute's value as
the string to parse. If an encoding is returned, let charset be that encoding.
Otherwise, return to step 2 in these inner steps.

6. If charset is a UTF-16 encoding, change the value of charset to UTF-8.

7. If charset is a supported character encoding, then return the given encoding,
with confidencep587 tentative, and abort all these steps.

8. Otherwise, return to step 2 in these inner steps.

↪ A sequence of bytes starting with a 0x3C byte (ASCII <), optionally a 0x2F byte
(ASCII /), and finally a byte in the range 0x41-0x5A or 0x61-0x7A (an ASCII letter)

1. Advance the position pointer so that it points at the next 0x09 (ASCII TAB),
0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x3E
(ASCII >) byte.

2. Repeatedly get an attributep588 until no further attributes can be found, then
jump to the second step in the overall "two step" algorithm.

↪ A sequence of bytes starting with: 0x3C 0x21 (ASCII '<!')
↪ A sequence of bytes starting with: 0x3C 0x2F (ASCII '</')
↪ A sequence of bytes starting with: 0x3C 0x3F (ASCII '<?')

Advance the position pointer so that it points at the first 0x3E byte (ASCII >) that comes
after the 0x3C byte that was found.

↪ Any other byte
Do nothing with that byte.

2. Move position so it points at the next byte in the input stream, and return to the first step of this
"two step" algorithm.

When the above "two step" algorithm says to get an attribute, it means doing this:

1. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR),
0x20 (ASCII space), or 0x2F (ASCII /) then advance position to the next byte and redo this substep.

2. If the byte at position is 0x3E (ASCII >), then abort the "get an attribute" algorithm. There isn't
one.

3. Otherwise, the byte at position is the start of the attribute name. Let attribute name and attribute
value be the empty string.

4. Attribute name: Process the byte at position as follows:

↪ If it is 0x3D (ASCII =), and the attribute name is longer than the empty string
Advance position to the next byte and jump to the step below labeled value.

↪ If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20
(ASCII space)

Jump to the step below labeled spaces.

588

↪ If it is 0x2F (ASCII /) or 0x3E (ASCII >)
Abort the "get an attribute" algorithm. The attribute's name is the value of attribute
name, its value is the empty string.

↪ If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)
Append the Unicode character with code point b+0x20 to attribute name (where b is the
value of the byte at position).

↪ Anything else
Append the Unicode character with the same code point as the value of the byte at
position) to attribute name. (It doesn't actually matter how bytes outside the ASCII range
are handled here, since only ASCII characters can contribute to the detection of a
character encoding.)

5. Advance position to the next byte and return to the previous step.

6. Spaces: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D
(ASCII CR), or 0x20 (ASCII space) then advance position to the next byte, then, repeat this step.

7. If the byte at position is not 0x3D (ASCII =), abort the "get an attribute" algorithm. The attribute's
name is the value of attribute name, its value is the empty string.

8. Advance position past the 0x3D (ASCII =) byte.

9. Value: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D
(ASCII CR), or 0x20 (ASCII space) then advance position to the next byte, then, repeat this step.

10. Process the byte at position as follows:

↪ If it is 0x22 (ASCII ") or 0x27 (ASCII ')

1. Let b be the value of the byte at position.

2. Advance position to the next byte.

3. If the value of the byte at position is the value of b, then advance position to
the next byte and abort the "get an attribute" algorithm. The attribute's name
is the value of attribute name, and its value is the value of attribute value.

4. Otherwise, if the value of the byte at position is in the range 0x41 (ASCII A) to
0x5A (ASCII Z), then append a Unicode character to attribute value whose code
point is 0x20 more than the value of the byte at position.

5. Otherwise, append a Unicode character to attribute value whose code point is
the same as the value of the byte at position.

6. Return to the second step in these substeps.

↪ If it is 0x3E (ASCII >)
Abort the "get an attribute" algorithm. The attribute's name is the value of attribute
name, its value is the empty string.

↪ If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)
Append the Unicode character with code point b+0x20 to attribute value (where b is the
value of the byte at position). Advance position to the next byte.

↪ Anything else
Append the Unicode character with the same code point as the value of the byte at
position) to attribute value. Advance position to the next byte.

11. Process the byte at position as follows:

↪ If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20
(ASCII space), or 0x3E (ASCII >)

Abort the "get an attribute" algorithm. The attribute's name is the value of attribute
name and its value is the value of attribute value.

↪ If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)
Append the Unicode character with code point b+0x20 to attribute value (where b is the
value of the byte at position).

589

↪ Anything else
Append the Unicode character with the same code point as the value of the byte at
position) to attribute value.

12. Advance position to the next byte and return to the previous step.

For the sake of interoperability, user agents should not use a pre-scan algorithm that returns different results
than the one described above. (But, if you do, please at least let us know, so that we can improve this
algorithm and benefit everyone...)

5. If the user agent has information on the likely encoding for this page, e.g. based on the encoding of the page
when it was last visited, then return that encoding, with the confidencep587 tentative, and abort these steps.

6. The user agent may attempt to autodetect the character encoding from applying frequency analysis or other
algorithms to the data stream. Such algorithms may use information about the resource other than the
resource's contents, including the address of the resource. If autodetection succeeds in determining a
character encoding, then return that encoding, with the confidencep587 tentative, and abort these steps.
[UNIVCHARDET]p742

Note: The UTF-8 encoding has a highly detectable bit pattern. Documents that contain
bytes with values greater than 0x7F which match the UTF-8 pattern are very likely to be
UTF-8, while documents with byte sequences that do not match it are very likely not.
User-agents are therefore encouraged to search for this common encoding. [PPUTF8]p740

[UTF8DET]p742

7. Otherwise, return an implementation-defined or user-specified default character encoding, with the
confidencep587 tentative.

In controlled environments or in environments where the encoding of documents can be prescribed (for
example, for user agents intended for dedicated use in new networks), the comprehensive UTF-8 encoding is
suggested.

In other environments, the default encoding is typically dependent on the user's locale (an approximation of
the languages, and thus often encodings, of the pages that the user is likely to frequent). The following table
gives suggested defaults based on the user's locale, for compatibility with legacy content. Locales are
identified by BCP 47 language codes. [BCP47]p738

Locale language Suggested default encoding

ar UTF-8
be ISO-8859-5
bg windows-1251
cs ISO-8859-2
cy UTF-8
fa UTF-8
he windows-1255
hr UTF-8
hu ISO-8859-2
ja Windows-31J
kk UTF-8
ko windows-949
ku windows-1254
lt windows-1257
lv ISO-8859-13
mk UTF-8
or UTF-8
pl ISO-8859-2
ro UTF-8
ru windows-1251
sk windows-1250
sl ISO-8859-2
sr UTF-8
th windows-874
tr windows-1254

590

Locale language Suggested default encoding
uk windows-1251
vi UTF-8
zh-CN GB18030
zh-TW Big5
All other locales windows-1252

The document's character encodingp79 must immediately be set to the value returned from this algorithm, at the same
time as the user agent uses the returned value to select the decoder to use for the input stream.

Note: This algorithm is a willful violationp18 of the HTTP specification, which requires that the
encoding be assumed to be ISO-8859-1 in the absence of a character encoding declarationp125 to
the contrary, and of RFC 2046, which requires that the encoding be assumed to be US-ASCII in the
absence of a character encoding declarationp125 to the contrary. This specification's third
approach is motivated by a desire to be maximally compatible with legacy content. [HTTP]p739

[RFC2046]p741

10.2.2.2 Character encodings

User agents must at a minimum support the UTF-8 and Windows-1252 encodings, but may support more.

Note: It is not unusual for Web browsers to support dozens if not upwards of a hundred distinct
character encodings.

User agents must support the preferred MIME namep30 of every character encoding they support, and should support
all the IANA-registered names and aliases of every character encoding they support. [IANACHARSET]p739

When comparing a string specifying a character encoding with the name or alias of a character encoding to determine
if they are equal, user agents must remove any leading or trailing space charactersp36 in both names, and then
perform the comparison in an ASCII case-insensitivep35 manner.

When a user agent would otherwise use an encoding given in the first column of the following table to either convert
content to Unicode characters or convert Unicode characters to bytes, it must instead use the encoding given in the
cell in the second column of the same row. When a byte or sequence of bytes is treated differently due to this
encoding aliasing, it is said to have been misinterpreted for compatibility.

Character encoding overrides
Input encoding Replacement encoding References

EUC-KR windows-949 [EUCKR]p739 [WIN949]p743

GB2312 GBK [RFC1345]p740 [GBK]p739

GB_2312-80 GBK [RFC1345]p740 [GBK]p739

ISO-8859-1 windows-1252 [RFC1345]p740 [WIN1252]p743

ISO-8859-9 windows-1254 [RFC1345]p740 [WIN1254]p743

ISO-8859-11 windows-874 [ISO885911]p739 [WIN874]p743

KS_C_5601-1987 windows-949 [RFC1345]p740 [WIN949]p743

Shift_JIS Windows-31J [SHIFTJIS]p742 [WIN31J]p743

TIS-620 windows-874 [TIS620]p742 [WIN874]p743

US-ASCII windows-1252 [RFC1345]p740 [WIN1252]p743

Note: The requirement to treat certain encodings as other encodings according to the table above
is a willful violationp18 of the W3C Character Model specification, motivated by a desire for
compatibility with legacy content. [CHARMOD]p738

When a user agent is to use the UTF-16 encoding but no BOM has been found, user agents must default to UTF-16LE.

Note: The requirement to default UTF-16 to LE rather than BE is a willful violationp18 of RFC 2781,
motivated by a desire for compatibility with legacy content. [RFC2781]p741

User agents must not support the CESU-8, UTF-7, BOCU-1 and SCSU encodings. [CESU8]p738 [UTF7]p742 [BOCU1]p738

[SCSU]p742

591

Support for encodings based on EBCDIC is not recommended. This encoding is rarely used for publicly-facing Web
content.

Support for UTF-32 is not recommended. This encoding is rarely used, and frequently implemented incorrectly.

Note: This specification does not make any attempt to support EBCDIC-based encodings and
UTF-32 in its algorithms; support and use of these encodings can thus lead to unexpected
behavior in implementations of this specification.

10.2.2.3 Preprocessing the input stream

Given an encoding, the bytes in the input stream must be converted to Unicode characters for the tokenizer, as
described by the rules for that encoding, except that the leading U+FEFF BYTE ORDER MARK character, if any, must
not be stripped by the encoding layer (it is stripped by the rule below).

Bytes or sequences of bytes in the original byte stream that could not be converted to Unicode code points must be
converted to U+FFFD REPLACEMENT CHARACTERs.

Note: Bytes or sequences of bytes in the original byte stream that did not conform to the
encoding specification (e.g. invalid UTF-8 byte sequences in a UTF-8 input stream) are errors that
conformance checkers are expected to report.

Any byte or sequence of bytes in the original byte stream that is misinterpreted for compatibilityp591 is a parse
errorp585.

One leading U+FEFF BYTE ORDER MARK character must be ignored if any are present.

Note: The requirement to strip a U+FEFF BYTE ORDER MARK character regardless of whether that
character was used to determine the byte order is a willful violationp18 of Unicode, motivated by a
desire to increase the resilience of user agents in the face of naïve transcoders.

All U+0000 NULL characters and code points in the range U+D800 to U+DFFF in the input must be replaced by
U+FFFD REPLACEMENT CHARACTERs. Any occurrences of such characters and code points are parse errorsp585.

Any occurrences of any characters in the ranges U+0001 to U+0008, U+000E to U+001F, U+007F to U+009F,
U+FDD0 to U+FDEF, and characters U+000B, U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, U+2FFFE, U+2FFFF, U+3FFFE,
U+3FFFF, U+4FFFE, U+4FFFF, U+5FFFE, U+5FFFF, U+6FFFE, U+6FFFF, U+7FFFE, U+7FFFF, U+8FFFE, U+8FFFF,
U+9FFFE, U+9FFFF, U+AFFFE, U+AFFFF, U+BFFFE, U+BFFFF, U+CFFFE, U+CFFFF, U+DFFFE, U+DFFFF, U+EFFFE,
U+EFFFF, U+FFFFE, U+FFFFF, U+10FFFE, and U+10FFFF are parse errorsp585. These are all control characters or
permanently undefined Unicode characters (noncharacters).

U+000D CARRIAGE RETURN (CR) characters and U+000A LINE FEED (LF) characters are treated specially. Any CR
characters that are followed by LF characters must be removed, and any CR characters not followed by LF characters
must be converted to LF characters. Thus, newlines in HTML DOMs are represented by LF characters, and there are
never any CR characters in the input to the tokenizationp597 stage.

The next input character is the first character in the input stream that has not yet been consumed. Initially, the
next input characterp592 is the first character in the input. The current input character is the last character to have
been consumedp592.

The insertion point is the position (just before a character or just before the end of the input stream) where content
inserted using document.write()p107 is actually inserted. The insertion point is relative to the position of the character
immediately after it, it is not an absolute offset into the input stream. Initially, the insertion point is undefined.

The "EOF" character in the tables below is a conceptual character representing the end of the input streamp586. If the
parser is a script-created parserp106, then the end of the input streamp586 is reached when an explicit "EOF"
character (inserted by the document.close()p107 method) is consumed. Otherwise, the "EOF" character is not a real
character in the stream, but rather the lack of any further characters.

10.2.2.4 Changing the encoding while parsing

When the parser requires the user agent to change the encoding, it must run the following steps. This might happen
if the encoding sniffing algorithmp587 described above failed to find an encoding, or if it found an encoding that was not
the actual encoding of the file.

592

1. If the new encoding is identical or equivalent to the encoding that is already being used to interpret the
input stream, then set the confidencep587 to certain and abort these steps. This happens when the encoding
information found in the file matches what the encoding sniffing algorithmp587 determined to be the
encoding, and in the second pass through the parser if the first pass found that the encoding sniffing
algorithm described in the earlier section failed to find the right encoding.

2. If the encoding that is already being used to interpret the input stream is a UTF-16 encoding, then set the
confidencep587 to certain and abort these steps. The new encoding is ignored; if it was anything but the same
encoding, then it would be clearly incorrect.

3. If the new encoding is a UTF-16 encoding, change it to UTF-8.

4. If all the bytes up to the last byte converted by the current decoder have the same Unicode interpretations
in both the current encoding and the new encoding, and if the user agent supports changing the converter
on the fly, then the user agent may change to the new converter for the encoding on the fly. Set the
document's character encodingp79 and the encoding used to convert the input stream to the new encoding,
set the confidencep587 to certain, and abort these steps.

5. Otherwise, navigatep484 to the document again, with replacement enabledp492, and using the same source
browsing contextp484, but this time skip the encoding sniffing algorithmp587 and instead just set the encoding
to the new encoding and the confidencep587 to certain. Whenever possible, this should be done without
actually contacting the network layer (the bytes should be re-parsed from memory), even if, e.g., the
document is marked as not being cacheable. If this is not possible and contacting the network layer would
involve repeating a request that uses a method other than HTTP GET (or equivalentp60 for non-HTTP URLs),
then instead set the confidencep587 to certain and ignore the new encoding. The resource will be
misinterpreted. User agents may notify the user of the situation, to aid in application development.

10.2.3.1 The insertion mode

The insertion mode is a state variable that controls the primary operation of the tree construction stage.

Initially, the insertion modep593 is "initialp625". It can change to "before htmlp627", "before headp628", "in headp628", "in
head noscriptp630", "after headp630", "in bodyp631", "textp640", "in tablep641", "in table textp643", "in captionp643", "in
column groupp644", "in table bodyp644", "in rowp645", "in cellp646", "in selectp647", "in select in tablep648", "in foreign
contentp648", "after bodyp651", "in framesetp651", "after framesetp652", "after after bodyp652", and "after after
framesetp653" during the course of the parsing, as described in the tree constructionp621 stage. The insertion mode
affects how tokens are processed and whether CDATA sections are supported.

Seven of these modes, namely "in headp628", "in bodyp631", "in tablep641", "in table bodyp644", "in rowp645", "in cellp646",
and "in selectp647", are special, in that the other modes defer to them at various times. When the algorithm below says
that the user agent is to do something "using the rules for the m insertion mode", where m is one of these modes,
the user agent must use the rules described under the m insertion modep593 's section, but must leave the insertion
modep593 unchanged unless the rules in m themselves switch the insertion modep593 to a new value.

When the insertion mode is switched to "textp640" or "in table textp643", the original insertion mode is also set. This
is the insertion mode to which the tree construction stage will return.

When the insertion mode is switched to "in foreign contentp648", the secondary insertion mode is also set. This
secondary mode is used within the rules for the "in foreign contentp648" mode to handle HTML (i.e. not foreign)
content.

When the steps below require the UA to reset the insertion mode appropriately, it means the UA must follow
these steps:

1. Let last be false.

2. Let foreign be false.

3. Let node be the last node in the stack of open elementsp594.

4. Loop: If node is the first node in the stack of open elements, then set last to true and set node to the context
element. (fragment casep661)

5. If node is a selectp353 element, then switch the insertion modep593 to "in selectp647" and jump to the step
labeled end. (fragment casep661)

10.2.3 Parse state

593

6. If node is a tdp298 or thp298 element and last is false, then switch the insertion modep593 to "in cellp646" and
jump to the step labeled end.

7. If node is a trp296 element, then switch the insertion modep593 to "in rowp645" and jump to the step labeled
end.

8. If node is a tbodyp294, theadp295, or tfootp296 element, then switch the insertion modep593 to "in table
bodyp644" and jump to the step labeled end.

9. If node is a captionp292 element, then switch the insertion modep593 to "in captionp643" and jump to the step
labeled end.

10. If node is a colgroupp293 element, then switch the insertion modep593 to "in column groupp644" and jump to
the step labeled end. (fragment casep661)

11. If node is a tablep286 element, then switch the insertion modep593 to "in tablep641" and jump to the step
labeled end.

12. If node is a headp112 element, then switch the insertion modep593 to "in bodyp631" ("in bodyp631"! not "in
headp628"!) and jump to the step labeled end. (fragment casep661)

13. If node is a bodyp138 element, then switch the insertion modep593 to "in bodyp631" and jump to the step
labeled end.

14. If node is a framesetp704 element, then switch the insertion modep593 to "in framesetp651" and jump to the
step labeled end. (fragment casep661)

15. If node is an htmlp112 element, then switch the insertion modep593 to "before headp628" Then, jump to the step
labeled end. (fragment casep661)

16. If node is an element from the MathML namespacep74 or the SVG namespacep74, then set the foreign flag to
true.

17. If last is true, then switch the insertion modep593 to "in bodyp631" and jump to the step labeled end. (fragment
casep661)

18. Let node now be the node before node in the stack of open elementsp594.

19. Return to the step labeled loop.

20. End: If foreign is true, switch the secondary insertion modep593 to whatever the insertion modep593 is set to,
and switch the insertion modep593 to "in foreign contentp648".

10.2.3.2 The stack of open elements

Initially, the stack of open elements is empty. The stack grows downwards; the topmost node on the stack is the
first one added to the stack, and the bottommost node of the stack is the most recently added node in the stack
(notwithstanding when the stack is manipulated in a random access fashion as part of the handling for misnested
tagsp635).

The "before htmlp627" insertion modep593 creates the htmlp112 root element node, which is then added to the stack.

In the fragment casep661, the stack of open elementsp594 is initialized to contain an htmlp112 element that is created as
part of that algorithmp661. (The fragment casep661 skips the "before htmlp627" insertion modep593.)

The htmlp112 node, however it is created, is the topmost node of the stack. It only gets popped off the stack when the
parser finishesp653.

The current node is the bottommost node in this stack.

The current table is the last tablep286 element in the stack of open elementsp594, if there is one. If there is no
tablep286 element in the stack of open elementsp594 (fragment casep661), then the current tablep594 is the first element
in the stack of open elementsp594 (the htmlp112 element).

Elements in the stack fall into the following categories:

Special
The following HTML elements have varying levels of special parsing rules: addressp151, areap280, articlep144,
asidep145, basep114, basefontp697, bgsoundp697, blockquotep159, bodyp138, brp191, centerp697, colp294, colgroupp293,

594

commandp391, , ddp166, detailsp387, dirp697, divp168, dlp164, dtp166, embedp217, fieldsetp317, figurep167, footerp150,
formp314, framep705, framesetp704, h1p147, h2p147, h3p147, h4p147, h5p147, h6p147, headp112, headerp148, hgroupp148,
hrp158, iframep211, imgp196, inputp320, isindexp697, lip163, linkp115, listingp697, menup393, metap119, navp142,
noembedp697, noframesp697, noscriptp136, olp161, pp157, paramp224, plaintextp697, prep158, scriptp129, sectionp140,
selectp353, stylep126, tbodyp294, textareap360, tfootp296, theadp295, titlep113, trp296, ulp162, wbrp192, and xmpp697.

Scoping
The following HTML elements introduce new scopesp595 for various parts of the parsing: appletp701, buttonp351,
captionp292, htmlp112, marqueep702, objectp220, tablep286, tdp298, thp298, and SVG's foreignObject.

Formatting
The following HTML elements are those that end up in the list of active formatting elementsp595: ap169, bp185,
bigp697, codep181, emp171, fontp697, ip184, nobrp697, sp697, smallp173, strikep697, strongp172, ttp697, and up697.

Phrasing
All other elements found while parsing an HTML document.

The stack of open elementsp594 is said to have an element in a specific scope consisting of a list of element types
list when the following algorithm terminates in a match state:

1. Initialize node to be the current nodep594 (the bottommost node of the stack).

2. If node is the target node, terminate in a match state.

3. Otherwise, if node is one of the element types in list, terminate in a failure state.

4. Otherwise, set node to the previous entry in the stack of open elementsp594 and return to step 2. (This will
never fail, since the loop will always terminate in the previous step if the top of the stack — an htmlp112

element — is reached.)

The stack of open elementsp594 is said to have an element in scope when it has an element in the specific scopep595

consisting of the following element types:

• appletp701 in the HTML namespace
• captionp292 in the HTML namespace
• htmlp112 in the HTML namespace
• tablep286 in the HTML namespace
• tdp298 in the HTML namespace
• thp298 in the HTML namespace
• buttonp351 in the HTML namespace
• marqueep702 in the HTML namespace
• objectp220 in the HTML namespace
• foreignObject in the SVG namespace

The stack of open elementsp594 is said to have an element in list item scope when it has an element in the specific
scopep595 consisting of the following element types:

• All the element types listed above for the has an element in scopep595 algorithm.
• olp161 in the HTML namespace
• ulp162 in the HTML namespace

The stack of open elementsp594 is said to have an element in table scope when it has an element in the specific
scopep595 consisting of the following element types:

• htmlp112 in the HTML namespace
• tablep286 in the HTML namespace

Nothing happens if at any time any of the elements in the stack of open elementsp594 are moved to a new location in,
or removed from, the Documentp33 tree. In particular, the stack is not changed in this situation. This can cause,
amongst other strange effects, content to be appended to nodes that are no longer in the DOM.

Note: In some cases (namely, when closing misnested formatting elementsp635), the stack is
manipulated in a random-access fashion.

10.2.3.3 The list of active formatting elements

Initially, the list of active formatting elements is empty. It is used to handle mis-nested formatting element
tagsp595.

595

The list contains elements in the formattingp595 category, and scope markers. The scope markers are inserted when
entering appletp701 elements, buttons, objectp220 elements, marquees, table cells, and table captions, and are used to
prevent formatting from "leaking" into appletp701 elements, buttons, objectp220 elements, marquees, and tables.

Note: The scope markers are unrelated to the concept of an element being in scopep595.

In addition, each element in the list of active formatting elementsp595 is associated with the token for which it was
created, so that further elements can be created for that token if necessary.

When the steps below require the UA to reconstruct the active formatting elements, the UA must perform the
following steps:

1. If there are no entries in the list of active formatting elementsp595, then there is nothing to reconstruct; stop
this algorithm.

2. If the last (most recently added) entry in the list of active formatting elementsp595 is a marker, or if it is an
element that is in the stack of open elementsp594, then there is nothing to reconstruct; stop this algorithm.

3. Let entry be the last (most recently added) element in the list of active formatting elementsp595.

4. If there are no entries before entry in the list of active formatting elementsp595, then jump to step 8.

5. Let entry be the entry one earlier than entry in the list of active formatting elementsp595.

6. If entry is neither a marker nor an element that is also in the stack of open elementsp594, go to step 4.

7. Let entry be the element one later than entry in the list of active formatting elementsp595.

8. Create an element for the tokenp622 for which the element entry was created, to obtain new element.

9. Append new element to the current nodep594 and push it onto the stack of open elementsp594 so that it is the
new current nodep594.

10. Replace the entry for entry in the list with an entry for new element.

11. If the entry for new element in the list of active formatting elementsp595 is not the last entry in the list, return
to step 7.

This has the effect of reopening all the formatting elements that were opened in the current body, cell, or caption
(whichever is youngest) that haven't been explicitly closed.

Note: The way this specification is written, the list of active formatting elementsp595 always
consists of elements in chronological order with the least recently added element first and the
most recently added element last (except for while steps 8 to 11 of the above algorithm are being
executed, of course).

When the steps below require the UA to clear the list of active formatting elements up to the last marker, the
UA must perform the following steps:

1. Let entry be the last (most recently added) entry in the list of active formatting elementsp595.

2. Remove entry from the list of active formatting elementsp595.

3. If entry was a marker, then stop the algorithm at this point. The list has been cleared up to the last marker.

4. Go to step 1.

10.2.3.4 The element pointers

Initially, the head element pointer and the form element pointer are both null.

Once a headp112 element has been parsed (whether implicitly or explicitly) the head element pointerp596 gets set to
point to this node.

The form element pointerp596 points to the last formp314 element that was opened and whose end tag has not yet been
seen. It is used to make form controls associate with forms in the face of dramatically bad markup, for historical
reasons.

596

10.2.3.5 Other parsing state flags

The scripting flag is set to "enabled" if scripting was enabledp514 for the Documentp33 with which the parser is
associated when the parser was created, and "disabled" otherwise.

Note: The scripting flagp597 can be enabled even when the parser was originally created for the
HTML fragment parsing algorithmp661, even though scriptp129 elements don't execute in that case.

The frameset-ok flag is set to "ok" when the parser is created. It is set to "not ok" after certain tokens are seen.

Implementations must act as if they used the following state machine to tokenize HTML. The state machine must start
in the data statep597. Most states consume a single character, which may have various side-effects, and either switches
the state machine to a new state to reconsume the same character, or switches it to a new state (to consume the next
character), or repeats the same state (to consume the next character). Some states have more complicated behavior
and can consume several characters before switching to another state. In some cases, the tokenizer state is also
changed by the tree construction stage.

The exact behavior of certain states depends on the insertion modep593 and the stack of open elementsp594. Certain
states also use a temporary buffer to track progress.

The output of the tokenization step is a series of zero or more of the following tokens: DOCTYPE, start tag, end tag,
comment, character, end-of-file. DOCTYPE tokens have a name, a public identifier, a system identifier, and a force-
quirks flag. When a DOCTYPE token is created, its name, public identifier, and system identifier must be marked as
missing (which is a distinct state from the empty string), and the force-quirks flag must be set to off (its other state is
on). Start and end tag tokens have a tag name, a self-closing flag, and a list of attributes, each of which has a name
and a value. When a start or end tag token is created, its self-closing flag must be unset (its other state is that it be
set), and its attributes list must be empty. Comment and character tokens have data.

When a token is emitted, it must immediately be handled by the tree constructionp621 stage. The tree construction
stage can affect the state of the tokenization stage, and can insert additional characters into the stream. (For example,
the scriptp129 element can result in scripts executing and using the dynamic markup insertionp105 APIs to insert
characters into the stream being tokenized.)

When a start tag token is emitted with its self-closing flag set, if the flag is not acknowledged when it is processed by
the tree construction stage, that is a parse errorp585.

When an end tag token is emitted with attributes, that is a parse errorp585.

When an end tag token is emitted with its self-closing flag set, that is a parse errorp585.

An appropriate end tag token is an end tag token whose tag name matches the tag name of the last start tag to
have been emitted from this tokenizer, if any. If no start tag has been emitted from this tokenizer, then no end tag
token is appropriate.

Before each step of the tokenizer, the user agent must first check the parser pause flagp586. If it is true, then the
tokenizer must abort the processing of any nested invocations of the tokenizer, yielding control back to the caller.

The tokenizer state machine consists of the states defined in the following subsections.

10.2.4.1 Data state

Consume the next input characterp592:

↪ U+0026 AMPERSAND (&)
Switch to the character reference in data statep598.

↪ U+003C LESS-THAN SIGN (<)
Switch to the tag open statep599.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the data statep597.

10.2.4 Tokenization

597

10.2.4.2 Character reference in data state

Attempt to consume a character referencep619, with no additional allowed characterp619.

If nothing is returned, emit a U+0026 AMPERSAND character token.

Otherwise, emit the character token that was returned.

Finally, switch to the data statep597.

10.2.4.3 RCDATA state

Consume the next input characterp592:

↪ U+0026 AMPERSAND (&)
Switch to the character reference in RCDATA statep598.

↪ U+003C LESS-THAN SIGN (<)
Switch to the RCDATA less-than sign statep600.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the RCDATA statep598.

10.2.4.4 Character reference in RCDATA state

Attempt to consume a character referencep619, with no additional allowed characterp619.

If nothing is returned, emit a U+0026 AMPERSAND character token.

Otherwise, emit the character token that was returned.

Finally, switch to the RCDATA statep598.

10.2.4.5 RAWTEXT state

Consume the next input characterp592:

↪ U+003C LESS-THAN SIGN (<)
Switch to the RAWTEXT less-than sign statep601.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the RAWTEXT statep598.

10.2.4.6 Script data state

Consume the next input characterp592:

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data less-than sign statep602.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the script data statep598.

10.2.4.7 PLAINTEXT state

Consume the next input characterp592:

598

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the PLAINTEXT statep598.

10.2.4.8 Tag open state

Consume the next input characterp592:

↪ U+0021 EXCLAMATION MARK (!)
Switch to the markup declaration open statep611.

↪ U+002F SOLIDUS (/)
Switch to the end tag open statep599.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new start tag token, set its tag name to the lowercase version of the current input characterp592

(add 0x0020 to the character's code point), then switch to the tag name statep599. (Don't emit the token yet;
further details will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new start tag token, set its tag name to the current input characterp592, then switch to the tag name
statep599. (Don't emit the token yet; further details will be filled in before it is emitted.)

↪ U+003F QUESTION MARK (?)
Parse errorp585. Switch to the bogus comment statep611.

↪ Anything else
Parse errorp585. Emit a U+003C LESS-THAN SIGN character token and reconsume the current input
characterp592 in the data statep597.

10.2.4.9 End tag open state

Consume the next input characterp592:

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, set its tag name to the lowercase version of the current input characterp592 (add
0x0020 to the character's code point), then switch to the tag name statep599. (Don't emit the token yet;
further details will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, set its tag name to the current input characterp592, then switch to the tag name
statep599. (Don't emit the token yet; further details will be filled in before it is emitted.)

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Switch to the data statep597.

↪ EOF
Parse errorp585. Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token.
Reconsume the EOF character in the data statep597.

↪ Anything else
Parse errorp585. Switch to the bogus comment statep611.

10.2.4.10 Tag name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep607.

599

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep611.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data statep597.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current tag token's tag name. Stay in the tag name statep599.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current tag token's tag name. Stay in the tag name statep599.

10.2.4.11 RCDATA less-than sign state

Consume the next input characterp592:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp597 to the empty string. Switch to the RCDATA end tag open statep600.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and reconsume the current input characterp592 in the
RCDATA statep598.

10.2.4.12 RCDATA end tag open state

Consume the next input characterp592:

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, and set its tag name to the lowercase version of the current input characterp592

(add 0x0020 to the character's code point). Append the current input characterp592 to the temporary
bufferp597. Finally, switch to the RCDATA end tag name statep600. (Don't emit the token yet; further details will
be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, and set its tag name to the current input characterp592. Append the current input
characterp592 to the temporary bufferp597. Finally, switch to the RCDATA end tag name statep600. (Don't emit
the token yet; further details will be filled in before it is emitted.)

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and reconsume the
current input characterp592 in the RCDATA statep598.

10.2.4.13 RCDATA end tag name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp597, then switch to the before attribute name
statep607. Otherwise, treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp597, then switch to the self-closing start tag
statep611. Otherwise, treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp597, then emit the current tag token and switch to
the data statep597. Otherwise, treat it as per the "anything else" entry below.

600

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current tag token's tag name. Append the current input characterp592 to the temporary bufferp597. Stay
in the RCDATA end tag name statep600.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Append the current input characterp592 to the current tag token's tag name. Append the current input
characterp592 to the temporary bufferp597. Stay in the RCDATA end tag name statep600.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, a character token for
each of the characters in the temporary bufferp597 (in the order they were added to the buffer), and
reconsume the current input characterp592 in the RCDATA statep598.

10.2.4.14 RAWTEXT less-than sign state

Consume the next input characterp592:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp597 to the empty string. Switch to the RAWTEXT end tag open statep601.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and reconsume the current input characterp592 in the
RAWTEXT statep598.

10.2.4.15 RAWTEXT end tag open state

Consume the next input characterp592:

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, and set its tag name to the lowercase version of the current input characterp592

(add 0x0020 to the character's code point). Append the current input characterp592 to the temporary
bufferp597. Finally, switch to the RAWTEXT end tag name statep601. (Don't emit the token yet; further details
will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, and set its tag name to the current input characterp592. Append the current input
characterp592 to the temporary bufferp597. Finally, switch to the RAWTEXT end tag name statep601. (Don't emit
the token yet; further details will be filled in before it is emitted.)

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and reconsume the
current input characterp592 in the RAWTEXT statep598.

10.2.4.16 RAWTEXT end tag name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp597, then switch to the before attribute name
statep607. Otherwise, treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp597, then switch to the self-closing start tag
statep611. Otherwise, treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp597, then emit the current tag token and switch to
the data statep597. Otherwise, treat it as per the "anything else" entry below.

601

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current tag token's tag name. Append the current input characterp592 to the temporary bufferp597. Stay
in the RAWTEXT end tag name statep601.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Append the current input characterp592 to the current tag token's tag name. Append the current input
characterp592 to the temporary bufferp597. Stay in the RAWTEXT end tag name statep601.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, a character token for
each of the characters in the temporary bufferp597 (in the order they were added to the buffer), and
reconsume the current input characterp592 in the RAWTEXT statep598.

10.2.4.17 Script data less-than sign state

Consume the next input characterp592:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp597 to the empty string. Switch to the script data end tag open statep602.

↪ U+0021 EXCLAMATION MARK (!)
Emit a U+003C LESS-THAN SIGN character token and a U+0021 EXCLAMATION MARK character token. Switch
to the script data escape start statep603.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and reconsume the current input characterp592 in the script
data statep598.

10.2.4.18 Script data end tag open state

Consume the next input characterp592:

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, and set its tag name to the lowercase version of the current input characterp592

(add 0x0020 to the character's code point). Append the current input characterp592 to the temporary
bufferp597. Finally, switch to the script data end tag name statep602. (Don't emit the token yet; further details
will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, and set its tag name to the current input characterp592. Append the current input
characterp592 to the temporary bufferp597. Finally, switch to the script data end tag name statep602. (Don't
emit the token yet; further details will be filled in before it is emitted.)

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and reconsume the
current input characterp592 in the script data statep598.

10.2.4.19 Script data end tag name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp597, then switch to the before attribute name
statep607. Otherwise, treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp597, then switch to the self-closing start tag
statep611. Otherwise, treat it as per the "anything else" entry below.

602

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp597, then emit the current tag token and switch to
the data statep597. Otherwise, treat it as per the "anything else" entry below.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current tag token's tag name. Append the current input characterp592 to the temporary bufferp597. Stay
in the script data end tag name statep602.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Append the current input characterp592 to the current tag token's tag name. Append the current input
characterp592 to the temporary bufferp597. Stay in the script data end tag name statep602.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, a character token for
each of the characters in the temporary bufferp597 (in the order they were added to the buffer), and
reconsume the current input characterp592 in the script data statep598.

10.2.4.20 Script data escape start state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Switch to the script data escape start dash statep603.

↪ Anything else
Reconsume the current input characterp592 in the script data statep598.

10.2.4.21 Script data escape start dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Switch to the script data escaped dash dash statep604.

↪ Anything else
Reconsume the current input characterp592 in the script data statep598.

10.2.4.22 Script data escaped state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Switch to the script data escaped dash statep603.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign statep604.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the script data escaped statep603.

10.2.4.23 Script data escaped dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Switch to the script data escaped dash dash statep604.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign statep604.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

603

↪ Anything else
Emit the current input characterp592 as a character token. Switch to the script data escaped statep603.

10.2.4.24 Script data escaped dash dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Stay in the script data escaped dash dash statep604.

↪ U+003C LESS-THAN SIGN (<)
Switch to the script data escaped less-than sign statep604.

↪ U+003E GREATER-THAN SIGN (>)
Emit a U+003E GREATER-THAN SIGN character token. Switch to the script data statep598.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Emit the current input characterp592 as a character token. Switch to the script data escaped statep603.

10.2.4.25 Script data escaped less-than sign state

Consume the next input characterp592:

↪ U+002F SOLIDUS (/)
Set the temporary bufferp597 to the empty string. Switch to the script data escaped end tag open statep604.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Emit a U+003C LESS-THAN SIGN character token and the current input characterp592 as a character token.
Set the temporary bufferp597 to the empty string. Append the lowercase version of the current input
characterp592 (add 0x0020 to the character's code point) to the temporary bufferp597. Switch to the script
data double escape start statep605.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Emit a U+003C LESS-THAN SIGN character token and the current input characterp592 as a character token.
Set the temporary bufferp597 to the empty string. Append the current input characterp592 to the temporary
bufferp597. Switch to the script data double escape start statep605.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token and reconsume the current input characterp592 in the script
data escaped statep603.

10.2.4.26 Script data escaped end tag open state

Consume the next input characterp592:

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, and set its tag name to the lowercase version of the current input characterp592

(add 0x0020 to the character's code point). Append the current input characterp592 to the temporary
bufferp597. Finally, switch to the script data escaped end tag name statep605. (Don't emit the token yet; further
details will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, and set its tag name to the current input characterp592. Append the current input
characterp592 to the temporary bufferp597. Finally, switch to the script data escaped end tag name statep605.
(Don't emit the token yet; further details will be filled in before it is emitted.)

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and reconsume the
current input characterp592 in the script data escaped statep603.

604

10.2.4.27 Script data escaped end tag name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

If the current end tag token is an appropriate end tag tokenp597, then switch to the before attribute name
statep607. Otherwise, treat it as per the "anything else" entry below.

↪ U+002F SOLIDUS (/)
If the current end tag token is an appropriate end tag tokenp597, then switch to the self-closing start tag
statep611. Otherwise, treat it as per the "anything else" entry below.

↪ U+003E GREATER-THAN SIGN (>)
If the current end tag token is an appropriate end tag tokenp597, then emit the current tag token and switch to
the data statep597. Otherwise, treat it as per the "anything else" entry below.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current tag token's tag name. Append the current input characterp592 to the temporary bufferp597. Stay
in the script data escaped end tag name statep605.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Append the current input characterp592 to the current tag token's tag name. Append the current input
characterp592 to the temporary bufferp597. Stay in the script data escaped end tag name statep605.

↪ Anything else
Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, a character token for
each of the characters in the temporary bufferp597 (in the order they were added to the buffer), and
reconsume the current input characterp592 in the script data escaped statep603.

10.2.4.28 Script data double escape start state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)

Emit the current input characterp592 as a character token. If the temporary bufferp597 is the string "script",
then switch to the script data double escaped statep605. Otherwise, switch to the script data escaped
statep603.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Emit the current input characterp592 as a character token. Append the lowercase version of the current input
characterp592 (add 0x0020 to the character's code point) to the temporary bufferp597. Stay in the script data
double escape start statep605.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Emit the current input characterp592 as a character token. Append the current input characterp592 to the
temporary bufferp597. Stay in the script data double escape start statep605.

↪ Anything else
Reconsume the current input characterp592 in the script data escaped statep603.

10.2.4.29 Script data double escaped state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Switch to the script data double escaped dash statep606.

605

↪ U+003C LESS-THAN SIGN (<)
Emit a U+003C LESS-THAN SIGN character token. Switch to the script data double escaped less-than sign
statep606.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Emit the current input characterp592 as a character token. Stay in the script data double escaped statep605.

10.2.4.30 Script data double escaped dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Switch to the script data double escaped dash dash
statep606.

↪ U+003C LESS-THAN SIGN (<)
Emit a U+003C LESS-THAN SIGN character token. Switch to the script data double escaped less-than sign
statep606.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Emit the current input characterp592 as a character token. Switch to the script data double escaped statep605.

10.2.4.31 Script data double escaped dash dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Emit a U+002D HYPHEN-MINUS character token. Stay in the script data double escaped dash dash statep606.

↪ U+003C LESS-THAN SIGN (<)
Emit a U+003C LESS-THAN SIGN character token. Switch to the script data double escaped less-than sign
statep606.

↪ U+003E GREATER-THAN SIGN (>)
Emit a U+003E GREATER-THAN SIGN character token. Switch to the script data statep598.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Emit the current input characterp592 as a character token. Switch to the script data double escaped statep605.

10.2.4.32 Script data double escaped less-than sign state

Consume the next input characterp592:

↪ U+002F SOLIDUS (/)
Emit a U+002F SOLIDUS character token. Set the temporary bufferp597 to the empty string. Switch to the
script data double escape end statep606.

↪ Anything else
Reconsume the current input characterp592 in the script data double escaped statep605.

10.2.4.33 Script data double escape end state

Consume the next input characterp592:

606

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+002F SOLIDUS (/)
↪ U+003E GREATER-THAN SIGN (>)

Emit the current input characterp592 as a character token. If the temporary bufferp597 is the string "script",
then switch to the script data escaped statep603. Otherwise, switch to the script data double escaped
statep605.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Emit the current input characterp592 as a character token. Append the lowercase version of the current input
characterp592 (add 0x0020 to the character's code point) to the temporary bufferp597. Stay in the script data
double escape end statep606.

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Emit the current input characterp592 as a character token. Append the current input characterp592 to the
temporary bufferp597. Stay in the script data double escape end statep606.

↪ Anything else
Reconsume the current input characterp592 in the script data double escaped statep605.

10.2.4.34 Before attribute name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before attribute name statep607.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep611.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data statep597.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Start a new attribute in the current tag token. Set that attribute's name to the lowercase version of the
current input characterp592 (add 0x0020 to the character's code point), and its value to the empty string.
Switch to the attribute name statep607.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)
↪ U+003D EQUALS SIGN (=)

Parse errorp585. Treat it as per the "anything else" entry below.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Start a new attribute in the current tag token. Set that attribute's name to the current input characterp592,
and its value to the empty string. Switch to the attribute name statep607.

10.2.4.35 Attribute name state

Consume the next input characterp592:

607

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the after attribute name statep608.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep611.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value statep609.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data statep597.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current attribute's name. Stay in the attribute name statep607.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)

Parse errorp585. Treat it as per the "anything else" entry below.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current attribute's name. Stay in the attribute name statep607.

When the user agent leaves the attribute name state (and before emitting the tag token, if appropriate), the complete
attribute's name must be compared to the other attributes on the same token; if there is already an attribute on the
token with the exact same name, then this is a parse errorp585 and the new attribute must be dropped, along with the
value that gets associated with it (if any).

10.2.4.36 After attribute name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the after attribute name statep608.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep611.

↪ U+003D EQUALS SIGN (=)
Switch to the before attribute value statep609.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data statep597.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Start a new attribute in the current tag token. Set that attribute's name to the lowercase version of the
current input characterp592 (add 0x0020 to the character's code point), and its value to the empty string.
Switch to the attribute name statep607.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)

Parse errorp585. Treat it as per the "anything else" entry below.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

608

↪ Anything else
Start a new attribute in the current tag token. Set that attribute's name to the current input characterp592,
and its value to the empty string. Switch to the attribute name statep607.

10.2.4.37 Before attribute value state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before attribute value statep609.

↪ U+0022 QUOTATION MARK (")
Switch to the attribute value (double-quoted) statep609.

↪ U+0026 AMPERSAND (&)
Switch to the attribute value (unquoted) statep610 and reconsume this current input characterp592.

↪ U+0027 APOSTROPHE (')
Switch to the attribute value (single-quoted) statep609.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Emit the current tag token. Switch to the data statep597.

↪ U+003C LESS-THAN SIGN (<)
↪ U+003D EQUALS SIGN (=)
↪ U+0060 GRAVE ACCENT (`)

Parse errorp585. Treat it as per the "anything else" entry below.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current attribute's value. Switch to the attribute value
(unquoted) statep610.

10.2.4.38 Attribute value (double-quoted) state

Consume the next input characterp592:

↪ U+0022 QUOTATION MARK (")
Switch to the after attribute value (quoted) statep610.

↪ U+0026 AMPERSAND (&)
Switch to the character reference in attribute value statep610, with the additional allowed characterp619 being
U+0022 QUOTATION MARK (").

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current attribute's value. Stay in the attribute value (double-
quoted) statep609.

10.2.4.39 Attribute value (single-quoted) state

Consume the next input characterp592:

↪ U+0027 APOSTROPHE (')
Switch to the after attribute value (quoted) statep610.

↪ U+0026 AMPERSAND (&)
Switch to the character reference in attribute value statep610, with the additional allowed characterp619 being
U+0027 APOSTROPHE (').

609

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current attribute's value. Stay in the attribute value (single-
quoted) statep609.

10.2.4.40 Attribute value (unquoted) state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep607.

↪ U+0026 AMPERSAND (&)
Switch to the character reference in attribute value statep610, with the additional allowed characterp619 being
U+003E GREATER-THAN SIGN (>).

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data statep597.

↪ U+0022 QUOTATION MARK (")
↪ U+0027 APOSTROPHE (')
↪ U+003C LESS-THAN SIGN (<)
↪ U+003D EQUALS SIGN (=)
↪ U+0060 GRAVE ACCENT (`)

Parse errorp585. Treat it as per the "anything else" entry below.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current attribute's value. Stay in the attribute value (unquoted)
statep610.

10.2.4.41 Character reference in attribute value state

Attempt to consume a character referencep619.

If nothing is returned, append a U+0026 AMPERSAND character to the current attribute's value.

Otherwise, append the returned character token to the current attribute's value.

Finally, switch back to the attribute value state that you were in when were switched into this state.

10.2.4.42 After attribute value (quoted) state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name statep607.

↪ U+002F SOLIDUS (/)
Switch to the self-closing start tag statep611.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data statep597.

610

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Parse errorp585. Reconsume the character in the before attribute name statep607.

10.2.4.43 Self-closing start tag state

Consume the next input characterp592:

↪ U+003E GREATER-THAN SIGN (>)
Set the self-closing flag of the current tag token. Emit the current tag token. Switch to the data statep597.

↪ EOF
Parse errorp585. Reconsume the EOF character in the data statep597.

↪ Anything else
Parse errorp585. Reconsume the character in the before attribute name statep607.

10.2.4.44 Bogus comment state

Consume every character up to and including the first U+003E GREATER-THAN SIGN character (>) or the end of the
file (EOF), whichever comes first. Emit a comment token whose data is the concatenation of all the characters starting
from and including the character that caused the state machine to switch into the bogus comment state, up to and
including the character immediately before the last consumed character (i.e. up to the character just before the
U+003E or EOF character). (If the comment was started by the end of the file (EOF), the token is empty.)

Switch to the data statep597.

If the end of the file was reached, reconsume the EOF character.

10.2.4.45 Markup declaration open state

If the next two characters are both U+002D HYPHEN-MINUS characters (-), consume those two characters, create a
comment token whose data is the empty string, and switch to the comment start statep611.

Otherwise, if the next seven characters are an ASCII case-insensitivep35 match for the word "DOCTYPE", then consume
those characters and switch to the DOCTYPE statep613.

Otherwise, if the insertion modep593 is "in foreign contentp648" and the current nodep594 is not an element in the HTML
namespacep74 and the next seven characters are an case-sensitivep35 match for the string "[CDATA[" (the five
uppercase letters "CDATA" with a U+005B LEFT SQUARE BRACKET character before and after), then consume those
characters and switch to the CDATA section statep619.

Otherwise, this is a parse errorp585. Switch to the bogus comment statep611. The next character that is consumed, if
any, is the first character that will be in the comment.

10.2.4.46 Comment start state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment start dash statep612.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Emit the comment token. Switch to the data statep597.

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the comment token's data. Switch to the comment statep612.

611

10.2.4.47 Comment start dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end statep612

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Emit the comment token. Switch to the data statep597.

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

↪ Anything else
Append a U+002D HYPHEN-MINUS character (-) and the current input characterp592 to the comment token's
data. Switch to the comment statep612.

10.2.4.48 Comment state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end dash statep612

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the comment token's data. Stay in the comment statep612.

10.2.4.49 Comment end dash state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end statep612

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

↪ Anything else
Append a U+002D HYPHEN-MINUS character (-) and the current input characterp592 to the comment token's
data. Switch to the comment statep612.

10.2.4.50 Comment end state

Consume the next input characterp592:

↪ U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data statep597.

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Parse errorp585. Append two U+002D HYPHEN-MINUS characters (-) and the current input characterp592 to the
comment token's data. Switch to the comment end space statep613.

↪ U+0021 EXCLAMATION MARK (!)
Parse errorp585. Switch to the comment end bang statep613.

↪ U+002D HYPHEN-MINUS (-)
Parse errorp585. Append a U+002D HYPHEN-MINUS character (-) to the comment token's data. Stay in the
comment end statep612.

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

612

↪ Anything else
Parse errorp585. Append two U+002D HYPHEN-MINUS characters (-) and the current input characterp592 to the
comment token's data. Switch to the comment statep612.

10.2.4.51 Comment end bang state

Consume the next input characterp592:

↪ U+002D HYPHEN-MINUS (-)
Append two U+002D HYPHEN-MINUS characters (-) and a U+0021 EXCLAMATION MARK character (!) to the
comment token's data. Switch to the comment end dash statep612.

↪ U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data statep597.

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

↪ Anything else
Append two U+002D HYPHEN-MINUS characters (-), a U+0021 EXCLAMATION MARK character (!), and the
current input characterp592 to the comment token's data. Switch to the comment statep612.

10.2.4.52 Comment end space state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Append the current input characterp592 to the comment token's data. Stay in the comment end space
statep613.

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end dash statep612.

↪ U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data statep597.

↪ EOF
Parse errorp585. Emit the comment token. Reconsume the EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the comment token's data. Switch to the comment statep612.

10.2.4.53 DOCTYPE state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE name statep614.

↪ EOF
Parse errorp585. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Reconsume the character in the before DOCTYPE name statep614.

613

10.2.4.54 Before DOCTYPE name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before DOCTYPE name statep614.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new DOCTYPE token. Set the token's name to the lowercase version of the current input
characterp592 (add 0x0020 to the character's code point). Switch to the DOCTYPE name statep614.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the token. Switch to the
data statep597.

↪ EOF
Parse errorp585. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Create a new DOCTYPE token. Set the token's name to the current input characterp592. Switch to the
DOCTYPE name statep614.

10.2.4.55 DOCTYPE name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the after DOCTYPE name statep614.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data statep597.

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input characterp592 (add 0x0020 to the character's code point)
to the current DOCTYPE token's name. Stay in the DOCTYPE name statep614.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current DOCTYPE token's name. Stay in the DOCTYPE name
statep614.

10.2.4.56 After DOCTYPE name state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the after DOCTYPE name statep614.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data statep597.

614

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
If the six characters starting from the current input characterp592 are an ASCII case-insensitivep35 match for
the word "PUBLIC", then consume those characters and switch to the after DOCTYPE public keyword
statep615.

Otherwise, if the six characters starting from the current input characterp592 are an ASCII case-insensitivep35

match for the word "SYSTEM", then consume those characters and switch to the after DOCTYPE system
keyword statep617.

Otherwise, this is the parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus
DOCTYPE statep619.

10.2.4.57 After DOCTYPE public keyword state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE public identifier statep615.

↪ U+0022 QUOTATION MARK (")
Parse errorp585. Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the
DOCTYPE public identifier (double-quoted) statep616.

↪ U+0027 APOSTROPHE (')
Parse errorp585. Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the
DOCTYPE public identifier (single-quoted) statep616.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE statep619.

10.2.4.58 Before DOCTYPE public identifier state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before DOCTYPE public identifier statep615.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE
public identifier (double-quoted) statep616.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE
public identifier (single-quoted) statep616.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

615

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE statep619.

10.2.4.59 DOCTYPE public identifier (double-quoted) state

Consume the next input characterp592:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE public identifier statep616.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current DOCTYPE token's public identifier. Stay in the DOCTYPE
public identifier (double-quoted) statep616.

10.2.4.60 DOCTYPE public identifier (single-quoted) state

Consume the next input characterp592:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE public identifier statep616.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current DOCTYPE token's public identifier. Stay in the DOCTYPE
public identifier (single-quoted) statep616.

10.2.4.61 After DOCTYPE public identifier state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the between DOCTYPE public and system identifiers statep617.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data statep597.

↪ U+0022 QUOTATION MARK (")
Parse errorp585. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to
the DOCTYPE system identifier (double-quoted) statep618.

↪ U+0027 APOSTROPHE (')
Parse errorp585. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to
the DOCTYPE system identifier (single-quoted) statep618.

616

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE statep619.

10.2.4.62 Between DOCTYPE public and system identifiers state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the between DOCTYPE public and system identifiers statep617.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data statep597.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE
system identifier (double-quoted) statep618.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE
system identifier (single-quoted) statep618.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE statep619.

10.2.4.63 After DOCTYPE system keyword state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE system identifier statep618.

↪ U+0022 QUOTATION MARK (")
Parse errorp585. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to
the DOCTYPE system identifier (double-quoted) statep618.

↪ U+0027 APOSTROPHE (')
Parse errorp585. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to
the DOCTYPE system identifier (single-quoted) statep618.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE statep619.

617

10.2.4.64 Before DOCTYPE system identifier state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before DOCTYPE system identifier statep618.

↪ U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE
system identifier (double-quoted) statep618.

↪ U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE
system identifier (single-quoted) statep618.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE statep619.

10.2.4.65 DOCTYPE system identifier (double-quoted) state

Consume the next input characterp592:

↪ U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE system identifier statep619.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current DOCTYPE token's system identifier. Stay in the
DOCTYPE system identifier (double-quoted) statep618.

10.2.4.66 DOCTYPE system identifier (single-quoted) state

Consume the next input characterp592:

↪ U+0027 APOSTROPHE (')
Switch to the after DOCTYPE system identifier statep619.

↪ U+003E GREATER-THAN SIGN (>)
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Switch to the data
statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Append the current input characterp592 to the current DOCTYPE token's system identifier. Stay in the
DOCTYPE system identifier (single-quoted) statep618.

618

10.2.4.67 After DOCTYPE system identifier state

Consume the next input characterp592:

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the after DOCTYPE system identifier statep619.

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data statep597.

↪ EOF
Parse errorp585. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the
EOF character in the data statep597.

↪ Anything else
Parse errorp585. Switch to the bogus DOCTYPE statep619. (This does not set the DOCTYPE token's force-quirks
flag to on.)

10.2.4.68 Bogus DOCTYPE state

Consume the next input characterp592:

↪ U+003E GREATER-THAN SIGN (>)
Emit the DOCTYPE token. Switch to the data statep597.

↪ EOF
Emit the DOCTYPE token. Reconsume the EOF character in the data statep597.

↪ Anything else
Stay in the bogus DOCTYPE statep619.

10.2.4.69 CDATA section state

Consume every character up to the next occurrence of the three character sequence U+005D RIGHT SQUARE
BRACKET U+005D RIGHT SQUARE BRACKET U+003E GREATER-THAN SIGN (]]>), or the end of the file (EOF),
whichever comes first. Emit a series of character tokens consisting of all the characters consumed except the
matching three character sequence at the end (if one was found before the end of the file).

Switch to the data statep597.

If the end of the file was reached, reconsume the EOF character.

10.2.4.70 Tokenizing character references

This section defines how to consume a character reference. This definition is used when parsing character
references in textp598 and in attributesp610.

The behavior depends on the identity of the next character (the one immediately after the U+0026 AMPERSAND
character):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE
↪ U+003C LESS-THAN SIGN
↪ U+0026 AMPERSAND
↪ EOF
↪ The additional allowed character, if there is one

Not a character reference. No characters are consumed, and nothing is returned. (This is not an error, either.)

619

↪ U+0023 NUMBER SIGN (#)
Consume the U+0023 NUMBER SIGN.

The behavior further depends on the character after the U+0023 NUMBER SIGN:

↪ U+0078 LATIN SMALL LETTER X
↪ U+0058 LATIN CAPITAL LETTER X

Consume the X.

Follow the steps below, but using the range of characters U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9), U+0061 LATIN SMALL LETTER A to U+0066 LATIN SMALL LETTER F, and U+0041 LATIN
CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F (in other words, 0-9, A-F, a-f).

When it comes to interpreting the number, interpret it as a hexadecimal number.

↪ Anything else
Follow the steps below, but using the range of characters U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9).

When it comes to interpreting the number, interpret it as a decimal number.

Consume as many characters as match the range of characters given above.

If no characters match the range, then don't consume any characters (and unconsume the U+0023 NUMBER
SIGN character and, if appropriate, the X character). This is a parse errorp585; nothing is returned.

Otherwise, if the next character is a U+003B SEMICOLON, consume that too. If it isn't, there is a parse
errorp585.

If one or more characters match the range, then take them all and interpret the string of characters as a
number (either hexadecimal or decimal as appropriate).

If that number is one of the numbers in the first column of the following table, then this is a parse errorp585.
Find the row with that number in the first column, and return a character token for the Unicode character
given in the second column of that row.

Number Unicode character

0x00 U+FFFD REPLACEMENT CHARACTER
0x0D U+000D CARRIAGE RETURN (CR)
0x80 U+20AC EURO SIGN (€)
0x81 U+0081 <control>
0x82 U+201A SINGLE LOW-9 QUOTATION MARK (‚)
0x83 U+0192 LATIN SMALL LETTER F WITH HOOK (ƒ)
0x84 U+201E DOUBLE LOW-9 QUOTATION MARK („)
0x85 U+2026 HORIZONTAL ELLIPSIS (…)
0x86 U+2020 DAGGER (†)
0x87 U+2021 DOUBLE DAGGER (‡)
0x88 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT (ˆ)
0x89 U+2030 PER MILLE SIGN (‰)
0x8A U+0160 LATIN CAPITAL LETTER S WITH CARON (Š)
0x8B U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK (‹)
0x8C U+0152 LATIN CAPITAL LIGATURE OE (Œ)
0x8D U+008D <control>
0x8E U+017D LATIN CAPITAL LETTER Z WITH CARON (Ž)
0x8F U+008F <control>
0x90 U+0090 <control>
0x91 U+2018 LEFT SINGLE QUOTATION MARK (‘)
0x92 U+2019 RIGHT SINGLE QUOTATION MARK (’)
0x93 U+201C LEFT DOUBLE QUOTATION MARK (“)
0x94 U+201D RIGHT DOUBLE QUOTATION MARK (”)
0x95 U+2022 BULLET (•)
0x96 U+2013 EN DASH (–)
0x97 U+2014 EM DASH (—)
0x98 U+02DC SMALL TILDE (˜)
0x99 U+2122 TRADE MARK SIGN (™)

620

Number Unicode character
0x9A U+0161 LATIN SMALL LETTER S WITH CARON (š)
0x9B U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK (›)
0x9C U+0153 LATIN SMALL LIGATURE OE (œ)
0x9D U+009D <control>
0x9E U+017E LATIN SMALL LETTER Z WITH CARON (ž)
0x9F U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS (Ÿ)

Otherwise, if the number is in the range 0xD800 to 0xDFFF or is greater than 0x10FFFF, then this is a parse
errorp585. Return a U+FFFD REPLACEMENT CHARACTER.

Otherwise, return a character token for the Unicode character whose code point is that number. If the
number is in the range 0x0001 to 0x0008, 0x000E to 0x001F, 0x007F to 0x009F, 0xFDD0 to 0xFDEF, or is
one of 0x000B, 0xFFFE, 0xFFFF, 0x1FFFE, 0x1FFFF, 0x2FFFE, 0x2FFFF, 0x3FFFE, 0x3FFFF, 0x4FFFE, 0x4FFFF,
0x5FFFE, 0x5FFFF, 0x6FFFE, 0x6FFFF, 0x7FFFE, 0x7FFFF, 0x8FFFE, 0x8FFFF, 0x9FFFE, 0x9FFFF, 0xAFFFE,
0xAFFFF, 0xBFFFE, 0xBFFFF, 0xCFFFE, 0xCFFFF, 0xDFFFE, 0xDFFFF, 0xEFFFE, 0xEFFFF, 0xFFFFE, 0xFFFFF,
0x10FFFE, or 0x10FFFF, then this is a parse errorp585.

↪ Anything else
Consume the maximum number of characters possible, with the consumed characters matching one of the
identifiers in the first column of the named character referencesp662 table (in a case-sensitivep35 manner).

If no match can be made, then no characters are consumed, and nothing is returned. In this case, if the
characters after the U+0026 AMPERSAND character (&) consist of a sequence of one or more characters in
the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), U+0061 LATIN SMALL LETTER A to U+007A
LATIN SMALL LETTER Z, and U+0041 LATIN CAPITAL LETTER A to U+005A LATIN CAPITAL LETTER Z, followed
by a U+003B SEMICOLON character (;), then this is a parse errorp585.

If the character reference is being consumed as part of an attributep610, and the last character matched is not
a U+003B SEMICOLON character (;), and the next character is either a U+003D EQUALS SIGN character (=)
or in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A to
U+005A LATIN CAPITAL LETTER Z, or U+0061 LATIN SMALL LETTER A to U+007A LATIN SMALL LETTER Z,
then, for historical reasons, all the characters that were matched after the U+0026 AMPERSAND character
(&) must be unconsumed, and nothing is returned.

Otherwise, a character reference is parsed. If the last character matched is not a U+003B SEMICOLON
character (;), there is a parse errorp585.

Return a character token for the character corresponding to the character reference name (as given by the
second column of the named character referencesp662 table).

If the markup contains (not in an attribute) the string I'm ¬it; I tell you, the character
reference is parsed as "not", as in, I'm ¬it; I tell you (and this is a parse error). But if the markup
was I'm ∉ I tell you, the character reference would be parsed as "notin;", resulting in I'm ∉
I tell you (and no parse error).

The input to the tree construction stage is a sequence of tokens from the tokenizationp597 stage. The tree construction
stage is associated with a DOM Documentp33 object when a parser is created. The "output" of this stage consists of
dynamically modifying or extending that document's DOM tree.

This specification does not define when an interactive user agent has to render the Documentp33 so that it is available
to the user, or when it has to begin accepting user input.

As each token is emitted from the tokenizer, the user agent must process the token according to the rules given in the
section corresponding to the current insertion modep593.

When the steps below require the UA to insert a character into a node, if that node has a child immediately before
where the character is to be inserted, and that child is a Textp33 node, and that Textp33 node was the last node that
the parser inserted into the document, then the character must be appended to that Textp33 node; otherwise, a new
Textp33 node whose data is just that character must be inserted in the appropriate place.

Here are some sample inputs to the parser and the corresponding number of text nodes that they result in,
assuming a user agent that executes scripts.

10.2.5 Tree construction

621

Input Number of text nodes

A<script>
var script = document.getElementsByTagName('script')[0];
document.body.removeChild(script);
</script>B

Two adjacent text nodes in the document,
containing "A" and "B".

A<script>
var text = document.createTextNode('B');
document.body.appendChild(text);
</script>C

Four text nodes; "A" before the script, the script's
contents, "B" after the script, and then,
immediately after that, "C".

A<script>
var text = document.getElementsByTagName('script')[0].firstChild;
text.data = 'B';
document.body.appendChild(text);
</script>B

Two adjacent text nodes in the document,
containing "A" and "BB".

A<table>B<tr>C</tr>C</table> Three adjacent text nodes before the table,
containing "A", "B", and "CC" respectively. (This is
caused by foster parentingp625.)

A<table><tr> B</tr> B</table> Two adjacent text nodes before the table,
containing "A" and " B B" (space-B-space-B)
respectively. (This is caused by foster
parentingp625.)

A<table><tr> B</tr> C</table> Three adjacent text nodes before the table,
containing "A", " B" (space-B), and "C"
respectively, and one text node inside the table (as
a child of a tbodyp294) with a single space
character. (Space characters separated from non-
space characters by non-character tokens are not
affected by foster parentingp625, even if those other
tokens then get ignored.)

DOM mutation events must not fire for changes caused by the UA parsing the document. (Conceptually, the parser is
not mutating the DOM, it is constructing it.) This includes the parsing of any content inserted using
document.write()p107 and document.writeln()p108 calls. [DOMEVENTS]p739

Note: Not all of the tag names mentioned below are conformant tag names in this specification;
many are included to handle legacy content. They still form part of the algorithm that
implementations are required to implement to claim conformance.

Note: The algorithm described below places no limit on the depth of the DOM tree generated, or
on the length of tag names, attribute names, attribute values, text nodes, etc. While
implementors are encouraged to avoid arbitrary limits, it is recognized that practical concernsp32

will likely force user agents to impose nesting depth constraints.

10.2.5.1 Creating and inserting elements

When the steps below require the UA to create an element for a token in a particular namespace, the UA must
create a node implementing the interface appropriate for the element type corresponding to the tag name of the token
in the given namespace (as given in the specification that defines that element, e.g. for an ap169 element in the HTML
namespacep74, this specification defines it to be the HTMLAnchorElementp170 interface), with the tag name being the
name of that element, with the node being in the given namespace, and with the attributes on the node being those
given in the given token.

The interface appropriate for an element in the HTML namespacep74 that is not defined in this specification (or other
applicable specificationsp35) is HTMLUnknownElementp87. Element in other namespaces whose interface is not defined
by that namespace's specification must use the interface Elementp33.

When a resettable elementp314 is created in this manner, its reset algorithmp387 must be invoked once the attributes
are set. (This initializes the element's valuep374 and checkednessp374 based on the element's attributes.)

When the steps below require the UA to insert an HTML element for a token, the UA must first create an element for
the tokenp622 in the HTML namespacep74, and then append this node to the current nodep594, and push it onto the stack
of open elementsp594 so that it is the new current nodep594.

The steps below may also require that the UA insert an HTML element in a particular place, in which case the UA must
follow the same steps except that it must insert or append the new node in the location specified instead of appending
it to the current nodep594. (This happens in particular during the parsing of tables with invalid content.)

622

If an element created by the insert an HTML elementp622 algorithm is a form-associated elementp313, and the form
element pointerp596 is not null, and the newly created element doesn't have a formp373 attribute, the user agent must
associatep373 the newly created element with the formp314 element pointed to by the form element pointerp596 before
inserting it wherever it is to be inserted.

When the steps below require the UA to insert a foreign element for a token, the UA must first create an element
for the tokenp622 in the given namespace, and then append this node to the current nodep594, and push it onto the
stack of open elementsp594 so that it is the new current nodep594. If the newly created element has an xmlns attribute
in the XMLNS namespacep74 whose value is not exactly the same as the element's namespace, that is a parse
errorp585. Similarly, if the newly created element has an xmlns:xlink attribute in the XMLNS namespacep74 whose
value is not the XLink Namespacep74, that is a parse errorp585.

When the steps below require the user agent to adjust MathML attributes for a token, then, if the token has an
attribute named definitionurl, change its name to definitionURL (note the case difference).

When the steps below require the user agent to adjust SVG attributes for a token, then, for each attribute on the
token whose attribute name is one of the ones in the first column of the following table, change the attribute's name
to the name given in the corresponding cell in the second column. (This fixes the case of SVG attributes that are not all
lowercase.)

Attribute name on token Attribute name on element

attributename attributeName

attributetype attributeType

basefrequency baseFrequency

baseprofile baseProfile

calcmode calcMode

clippathunits clipPathUnits

contentscripttype contentScriptType

contentstyletype contentStyleType

diffuseconstant diffuseConstant

edgemode edgeMode

externalresourcesrequired externalResourcesRequired

filterres filterRes

filterunits filterUnits

glyphref glyphRef

gradienttransform gradientTransform

gradientunits gradientUnits

kernelmatrix kernelMatrix

kernelunitlength kernelUnitLength

keypoints keyPoints

keysplines keySplines

keytimes keyTimes

lengthadjust lengthAdjust

limitingconeangle limitingConeAngle

markerheight markerHeight

markerunits markerUnits

markerwidth markerWidth

maskcontentunits maskContentUnits

maskunits maskUnits

numoctaves numOctaves

pathlength pathLength

patterncontentunits patternContentUnits

patterntransform patternTransform

patternunits patternUnits

pointsatx pointsAtX

pointsaty pointsAtY

pointsatz pointsAtZ

preservealpha preserveAlpha

preserveaspectratio preserveAspectRatio

primitiveunits primitiveUnits

refx refX

623

Attribute name on token Attribute name on element
refy refY

repeatcount repeatCount

repeatdur repeatDur

requiredextensions requiredExtensions

requiredfeatures requiredFeatures

specularconstant specularConstant

specularexponent specularExponent

spreadmethod spreadMethod

startoffset startOffset

stddeviation stdDeviation

stitchtiles stitchTiles

surfacescale surfaceScale

systemlanguage systemLanguage

tablevalues tableValues

targetx targetX

targety targetY

textlength textLength

viewbox viewBox

viewtarget viewTarget

xchannelselector xChannelSelector

ychannelselector yChannelSelector

zoomandpan zoomAndPan

When the steps below require the user agent to adjust foreign attributes for a token, then, if any of the attributes
on the token match the strings given in the first column of the following table, let the attribute be a namespaced
attribute, with the prefix being the string given in the corresponding cell in the second column, the local name being
the string given in the corresponding cell in the third column, and the namespace being the namespace given in the
corresponding cell in the fourth column. (This fixes the use of namespaced attributes, in particular lang attributes in
the XML namespacep89.)

Attribute name Prefix Local name Namespace

xlink:actuate xlink actuate XLink namespacep74

xlink:arcrole xlink arcrole XLink namespacep74

xlink:href xlink href XLink namespacep74

xlink:role xlink role XLink namespacep74

xlink:show xlink show XLink namespacep74

xlink:title xlink title XLink namespacep74

xlink:type xlink type XLink namespacep74

xml:base xml base XML namespacep74

xml:lang xml lang XML namespacep74

xml:space xml space XML namespacep74

xmlns (none) xmlns XMLNS namespacep74

xmlns:xlink xmlns xlink XMLNS namespacep74

The generic raw text element parsing algorithm and the generic RCDATA element parsing algorithm consist
of the following steps. These algorithms are always invoked in response to a start tag token.

1. Insert an HTML elementp622 for the token.

2. If the algorithm that was invoked is the generic raw text element parsing algorithmp624, switch the tokenizer
to the RAWTEXT statep598; otherwise the algorithm invoked was the generic RCDATA element parsing
algorithmp624, switch the tokenizer to the RCDATA statep598.

3. Let the original insertion modep593 be the current insertion modep593.

4. Then, switch the insertion modep593 to "textp640".

624

10.2.5.2 Closing elements that have implied end tags

When the steps below require the UA to generate implied end tags, then, while the current nodep594 is a ddp166

element, a dtp166 element, an lip163 element, an optionp358 element, an optgroupp357 element, a pp157 element, an
rpp189 element, or an rtp189 element, the UA must pop the current nodep594 off the stack of open elementsp594.

If a step requires the UA to generate implied end tags but lists an element to exclude from the process, then the UA
must perform the above steps as if that element was not in the above list.

10.2.5.3 Foster parenting

Foster parenting happens when content is misnested in tables.

When a node node is to be foster parented, the node node must be inserted into the foster parent elementp625.

The foster parent element is the parent element of the last tablep286 element in the stack of open elementsp594, if
there is a tablep286 element and it has such a parent element. If there is no tablep286 element in the stack of open
elementsp594 (fragment casep661), then the foster parent elementp625 is the first element in the stack of open
elementsp594 (the htmlp112 element). Otherwise, if there is a tablep286 element in the stack of open elementsp594, but
the last tablep286 element in the stack of open elementsp594 has no parent, or its parent node is not an element, then
the foster parent elementp625 is the element before the last tablep286 element in the stack of open elementsp594.

If the foster parent elementp625 is the parent element of the last tablep286 element in the stack of open elementsp594,
then node must be inserted immediately before the last tablep286 element in the stack of open elementsp594 in the
foster parent elementp625; otherwise, node must be appended to the foster parent elementp625.

10.2.5.4 The "initial" insertion mode

When the insertion modep593 is "initialp625", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A comment token
Append a Commentp33 node to the Documentp33 object with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
If the DOCTYPE token's name is not a case-sensitivep35 match for the string "html", or the token's public
identifier is not missing, or the token's system identifier is neither missing nor a case-sensitivep35 match for
the string "about:legacy-compatp56", and none of the sets of conditions in the following list are matched,
then there is a parse errorp585.

• The DOCTYPE token's name is a case-sensitivep35 match for the string "html", the token's public
identifier is the case-sensitivep35 string "-//W3C//DTD HTML 4.0//EN", and the token's system
identifier is either missing or the case-sensitivep35 string "http://www.w3.org/TR/REC-html40/
strict.dtd".

• The DOCTYPE token's name is a case-sensitivep35 match for the string "html", the token's public
identifier is the case-sensitivep35 string "-//W3C//DTD HTML 4.01//EN", and the token's system
identifier is either missing or the case-sensitivep35 string "http://www.w3.org/TR/html4/
strict.dtd".

• The DOCTYPE token's name is a case-sensitivep35 match for the string "html", the token's public
identifier is the case-sensitivep35 string "-//W3C//DTD XHTML 1.0 Strict//EN", and the token's
system identifier is the case-sensitivep35 string "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd".

• The DOCTYPE token's name is a case-sensitivep35 match for the string "html", the token's public
identifier is the case-sensitivep35 string "-//W3C//DTD XHTML 1.1//EN", and the token's system
identifier is the case-sensitivep35 string "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd".

Conformance checkers may, based on the values (including presence or lack thereof) of the DOCTYPE token's
name, public identifier, or system identifier, switch to a conformance checking mode for another language

625

(e.g. based on the DOCTYPE token a conformance checker could recognize that the document is an
HTML4-era document, and defer to an HTML4 conformance checker.)

Append a DocumentTypep33 node to the Documentp33 node, with the name attribute set to the name given in
the DOCTYPE token, or the empty string if the name was missing; the publicId attribute set to the public
identifier given in the DOCTYPE token, or the empty string if the public identifier was missing; the systemId
attribute set to the system identifier given in the DOCTYPE token, or the empty string if the system identifier
was missing; and the other attributes specific to DocumentTypep33 objects set to null and empty lists as
appropriate. Associate the DocumentTypep33 node with the Documentp33 object so that it is returned as the
value of the doctype attribute of the Documentp33 object.

Then, if the DOCTYPE token matches one of the conditions in the following list, then set the Documentp33 to
quirks modep79:

• The force-quirks flag is set to on.
• The name is set to anything other than "html" (compared case-sensitivelyp35).
• The public identifier starts with: "+//Silmaril//dtd html Pro v0r11 19970101//"
• The public identifier starts with: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit + extensions//"
• The public identifier starts with: "-//AS//DTD HTML 3.0 asWedit + extensions//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0//"
• The public identifier starts with: "-//IETF//DTD HTML 2.1E//"
• The public identifier starts with: "-//IETF//DTD HTML 3.0//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2//"
• The public identifier starts with: "-//IETF//DTD HTML 3//"
• The public identifier starts with: "-//IETF//DTD HTML Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict//"
• The public identifier starts with: "-//IETF//DTD HTML//"
• The public identifier starts with: "-//Metrius//DTD Metrius Presentational//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 Tables//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 Tables//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD HTML//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD Strict HTML//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML 2.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended 1.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended Relaxed

1.0//"
• The public identifier starts with: "-//SoftQuad Software//DTD HoTMetaL PRO

6.0::19990601::extensions to HTML 4.0//"
• The public identifier starts with: "-//SoftQuad//DTD HoTMetaL PRO 4.0::19971010::extensions

to HTML 4.0//"
• The public identifier starts with: "-//Spyglass//DTD HTML 2.0 Extended//"
• The public identifier starts with: "-//SQ//DTD HTML 2.0 HoTMetaL + extensions//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava HTML//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava Strict HTML//"
• The public identifier starts with: "-//W3C//DTD HTML 3 1995-03-24//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2S Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Transitional//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 19960712//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 970421//"
• The public identifier starts with: "-//W3C//DTD W3 HTML//"
• The public identifier starts with: "-//W3O//DTD W3 HTML 3.0//"
• The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML 2.0//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML//"
• The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"
• The public identifier is set to: "HTML"

626

• The system identifier is set to: "http://www.ibm.com/data/dtd/v11/
ibmxhtml1-transitional.dtd"

• The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01
Frameset//"

• The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01
Transitional//"

Otherwise, if the DOCTYPE token matches one of the conditions in the following list, then set the Documentp33

to limited-quirks modep79:

• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Transitional//"
• The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01

Frameset//"
• The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01

Transitional//"

The system identifier and public identifier strings must be compared to the values given in the lists above in
an ASCII case-insensitivep35 manner. A system identifier whose value is the empty string is not considered
missing for the purposes of the conditions above.

Then, switch the insertion modep593 to "before htmlp627".

↪ Anything else
If the document is not an iframe srcdoc documentp211, then this is a parse errorp585; set the Documentp33 to
quirks modep79.

In any case, switch the insertion modep593 to "before htmlp627", then reprocess the current token.

10.2.5.5 The "before html" insertion mode

When the insertion modep593 is "before htmlp627", tokens must be handled as follows:

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A comment token
Append a Commentp33 node to the Documentp33 object with the data attribute set to the data given in the
comment token.

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A start tag whose tag name is "html"
Create an element for the tokenp622 in the HTML namespacep74. Append it to the Documentp33 object. Put this
element in the stack of open elementsp594.

If the Documentp33 is being loaded as part of navigationp484 of a browsing contextp463, then: if the newly
created element has a manifestp112 attribute whose value is not the empty string, then resolvep55 the value
of that attribute to an absolute URLp55, relative to the newly created element, and if that is successful, run
the application cache selection algorithmp509 with the resulting absolute URLp55 with any <fragment>p55

component removed; otherwise, if there is no such attribute, or its value is the empty string, or resolving its
value fails, run the application cache selection algorithmp509 with no manifest. The algorithm must be passed
the Documentp33 object.

Switch the insertion modep593 to "before headp628".

↪ An end tag whose tag name is one of: "head", "body", "html", "br"
Act as described in the "anything else" entry below.

↪ Any other end tag
Parse errorp585. Ignore the token.

↪ Anything else
Create an htmlp112 element. Append it to the Documentp33 object. Put this element in the stack of open
elementsp594.

627

If the Documentp33 is being loaded as part of navigationp484 of a browsing contextp463, then: run the
application cache selection algorithmp509 with no manifest, passing it the Documentp33 object.

Switch the insertion modep593 to "before headp628", then reprocess the current token.

The root element can end up being removed from the Documentp33 object, e.g. by scripts; nothing in particular
happens in such cases, content continues being appended to the nodes as described in the next section.

10.2.5.6 The "before head" insertion mode

When the insertion modep593 is "before headp628", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Ignore the token.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A start tag whose tag name is "head"
Insert an HTML elementp622 for the token.

Set the head element pointerp596 to the newly created headp112 element.

Switch the insertion modep593 to "in headp628".

↪ An end tag whose tag name is one of: "head", "body", "html", "br"
Act as if a start tag token with the tag name "head" and no attributes had been seen, then reprocess the
current token.

↪ Any other end tag
Parse errorp585. Ignore the token.

↪ Anything else
Act as if a start tag token with the tag name "head" and no attributes had been seen, then reprocess the
current token.

10.2.5.7 The "in head" insertion mode

When the insertion modep593 is "in headp628", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp621 into the current nodep594.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A start tag whose tag name is one of: "base", "command", "link"
Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

628

Acknowledge the token's self-closing flagp597, if it is set.

↪ A start tag whose tag name is "meta"
Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

Acknowledge the token's self-closing flagp597, if it is set.

If the element has a charsetp119 attribute, and its value is a supported encoding, and the confidencep587 is
currently tentative, then change the encodingp592 to the encoding given by the value of the charsetp119

attribute.

Otherwise, if the element has a contentp119 attribute, and applying the algorithm for extracting an encoding
from a Content-Typep61 to its value returns a supported encoding encoding, and the confidencep587 is
currently tentative, then change the encodingp592 to the encoding encoding.

↪ A start tag whose tag name is "title"
Follow the generic RCDATA element parsing algorithmp624.

↪ A start tag whose tag name is "noscript", if the scripting flagp597 is enabled
↪ A start tag whose tag name is one of: "noframes", "style"

Follow the generic raw text element parsing algorithmp624.

↪ A start tag whose tag name is "noscript", if the scripting flagp597 is disabled
Insert an HTML elementp622 for the token.

Switch the insertion modep593 to "in head noscriptp630".

↪ A start tag whose tag name is "script"
Run these steps:

1. Create an element for the tokenp622 in the HTML namespacep74.

2. Mark the element as being "parser-inserted"p131.

Note: This ensures that, if the script is external, any document.write()p107 calls in
the script will execute in-line, instead of blowing the document away, as would
happen in most other cases. It also prevents the script from executing until the
end tag is seen.

3. If the parser was originally created for the HTML fragment parsing algorithmp661, then mark the
scriptp129 element as "already started"p130. (fragment casep661)

4. Append the new element to the current nodep594 and push it onto the stack of open elementsp594.

5. Switch the tokenizer to the script data statep598.

6. Let the original insertion modep593 be the current insertion modep593.

7. Switch the insertion modep593 to "textp640".

↪ An end tag whose tag name is "head"
Pop the current nodep594 (which will be the headp112 element) off the stack of open elementsp594.

Switch the insertion modep593 to "after headp630".

↪ An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "head"
↪ Any other end tag

Parse errorp585. Ignore the token.

↪ Anything else
Act as if an end tag token with the tag name "head" had been seen, and reprocess the current token.

629

10.2.5.8 The "in head noscript" insertion mode

When the insertion modep593 is "in head noscriptp630", tokens must be handled as follows:

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ An end tag whose tag name is "noscript"
Pop the current nodep594 (which will be a noscriptp136 element) from the stack of open elementsp594; the new
current nodep594 will be a headp112 element.

Switch the insertion modep593 to "in headp628".

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

↪ A comment token
↪ A start tag whose tag name is one of: "link", "meta", "noframes", "style"

Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ An end tag whose tag name is "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is one of: "head", "noscript"
↪ Any other end tag

Parse errorp585. Ignore the token.

↪ Anything else
Parse errorp585. Act as if an end tag with the tag name "noscript" had been seen and reprocess the current
token.

10.2.5.9 The "after head" insertion mode

When the insertion modep593 is "after headp630", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp621 into the current nodep594.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A start tag whose tag name is "body"
Insert an HTML elementp622 for the token.

Set the frameset-ok flagp597 to "not ok".

Switch the insertion modep593 to "in bodyp631".

↪ A start tag whose tag name is "frameset"
Insert an HTML elementp622 for the token.

Switch the insertion modep593 to "in framesetp651".

↪ A start tag token whose tag name is one of: "base", "link", "meta", "noframes", "script", "style",
"title"

Parse errorp585.

630

Push the node pointed to by the head element pointerp596 onto the stack of open elementsp594.

Process the token using the rules forp593 the "in headp628" insertion modep593.

Remove the node pointed to by the head element pointerp596 from the stack of open elementsp594.

Note: The head element pointerp596 cannot be null at this point.

↪ An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

↪ A start tag whose tag name is "head"
↪ Any other end tag

Parse errorp585. Ignore the token.

↪ Anything else
Act as if a start tag token with the tag name "body" and no attributes had been seen, then set the frameset-
ok flagp597 back to "ok", and then reprocess the current token.

10.2.5.10 The "in body" insertion mode

When the insertion modep593 is "in bodyp631", tokens must be handled as follows:

↪ A character token
Reconstruct the active formatting elementsp596, if any.

Insert the token's characterp621 into the current nodep594.

If the token is not one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE, then set the frameset-ok flagp597 to "not ok".

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Parse errorp585. For each attribute on the token, check to see if the attribute is already present on the top
element of the stack of open elementsp594. If it is not, add the attribute and its corresponding value to that
element.

↪ A start tag token whose tag name is one of: "base", "command", "link", "meta", "noframes", "script",
"style", "title"

Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ A start tag whose tag name is "body"
Parse errorp585.

If the second element on the stack of open elementsp594 is not a bodyp138 element, or, if the stack of open
elementsp594 has only one node on it, then ignore the token. (fragment casep661)

Otherwise, for each attribute on the token, check to see if the attribute is already present on the bodyp138

element (the second element) on the stack of open elementsp594. If it is not, add the attribute and its
corresponding value to that element.

↪ A start tag whose tag name is "frameset"
Parse errorp585.

If the second element on the stack of open elementsp594 is not a bodyp138 element, or, if the stack of open
elementsp594 has only one node on it, then ignore the token. (fragment casep661)

If the frameset-ok flagp597 is set to "not ok", ignore the token.

Otherwise, run the following steps:

631

1. Remove the second element on the stack of open elementsp594 from its parent node, if it has one.

2. Pop all the nodes from the bottom of the stack of open elementsp594, from the current nodep594 up
to, but not including, the root htmlp112 element.

3. Insert an HTML elementp622 for the token.

4. Switch the insertion modep593 to "in framesetp651".

↪ An end-of-file token
If there is a node in the stack of open elementsp594 that is not either a ddp166 element, a dtp166 element, an
lip163 element, a pp157 element, a tbodyp294 element, a tdp298 element, a tfootp296 element, a thp298 element,
a theadp295 element, a trp296 element, the bodyp138 element, or the htmlp112 element, then this is a parse
errorp585.

Stop parsingp653.

↪ An end tag whose tag name is "body"
If the stack of open elementsp594 does not have a body element in scopep595, this is a parse errorp585; ignore
the token.

Otherwise, if there is a node in the stack of open elementsp594 that is not either a ddp166 element, a dtp166

element, an lip163 element, an optgroupp357 element, an optionp358 element, a pp157 element, an rpp189

element, an rtp189 element, a tbodyp294 element, a tdp298 element, a tfootp296 element, a thp298 element, a
theadp295 element, a trp296 element, the bodyp138 element, or the htmlp112 element, then this is a parse
errorp585.

Switch the insertion modep593 to "after bodyp651".

↪ An end tag whose tag name is "html"
Act as if an end tag with tag name "body" had been seen, then, if that token wasn't ignored, reprocess the
current token.

↪ A start tag whose tag name is one of: "address", "article", "aside", "blockquote", "center", "details",
"dir", "div", "dl", "fieldset", "figure", "footer", "header", "hgroup", "menu", "nav", "ol", "p", "section",
"ul"

If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

Insert an HTML elementp622 for the token.

↪ A start tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

If the current nodep594 is an element whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this
is a parse errorp585; pop the current nodep594 off the stack of open elementsp594.

Insert an HTML elementp622 for the token.

↪ A start tag whose tag name is one of: "pre", "listing"
If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

Insert an HTML elementp622 for the token.

If the next token is a U+000A LINE FEED (LF) character token, then ignore that token and move on to the
next one. (Newlines at the start of prep158 blocks are ignored as an authoring convenience.)

Set the frameset-ok flagp597 to "not ok".

↪ A start tag whose tag name is "form"
If the form element pointerp596 is not null, then this is a parse errorp585; ignore the token.

Otherwise:

If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

632

Insert an HTML elementp622 for the token, and set the form element pointerp596 to point to the element
created.

↪ A start tag whose tag name is "li"
Run these steps:

1. Set the frameset-ok flagp597 to "not ok".

2. Initialize node to be the current nodep594 (the bottommost node of the stack).

3. Loop: If node is an lip163 element, then act as if an end tag with the tag name "li" had been seen,
then jump to the last step.

4. If node is not in the formattingp595 category, and is not in the phrasingp595 category, and is not an
addressp151, divp168, or pp157 element, then jump to the last step.

5. Otherwise, set node to the previous entry in the stack of open elementsp594 and return to the step
labeled loop.

6. This is the last step.

If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the
tag name "p" had been seen.

Finally, insert an HTML elementp622 for the token.

↪ A start tag whose tag name is one of: "dd", "dt"
Run these steps:

1. Set the frameset-ok flagp597 to "not ok".

2. Initialize node to be the current nodep594 (the bottommost node of the stack).

3. Loop: If node is a ddp166 or dtp166 element, then act as if an end tag with the same tag name as
node had been seen, then jump to the last step.

4. If node is not in the formattingp595 category, and is not in the phrasingp595 category, and is not an
addressp151, divp168, or pp157 element, then jump to the last step.

5. Otherwise, set node to the previous entry in the stack of open elementsp594 and return to the step
labeled loop.

6. This is the last step.

If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the
tag name "p" had been seen.

Finally, insert an HTML elementp622 for the token.

↪ A start tag whose tag name is "plaintext"
If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

Insert an HTML elementp622 for the token.

Switch the tokenizer to the PLAINTEXT statep598.

Note: Once a start tag with the tag name "plaintext" has been seen, that will be the last
token ever seen other than character tokens (and the end-of-file token), because there is
no way to switch out of the PLAINTEXT statep598.

↪ An end tag whose tag name is one of: "address", "article", "aside", "blockquote", "center", "details",
"dir", "div", "dl", "fieldset", "figure", "footer", "header", "hgroup", "listing", "menu", "nav", "ol", "pre",
"section", "ul"

If the stack of open elementsp594 does not have an element in scopep595 with the same tag name as that of
the token, then this is a parse errorp585; ignore the token.

Otherwise, run these steps:

633

1. Generate implied end tagsp625.

2. If the current nodep594 is not an element with the same tag name as that of the token, then this is a
parse errorp585.

3. Pop elements from the stack of open elementsp594 until an element with the same tag name as the
token has been popped from the stack.

↪ An end tag whose tag name is "form"
Let node be the element that the form element pointerp596 is set to.

Set the form element pointerp596 to null.

If node is null or the stack of open elementsp594 does not have node in scopep595, then this is a parse
errorp585; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp625.

2. If the current nodep594 is not node, then this is a parse errorp585.

3. Remove node from the stack of open elementsp594.

↪ An end tag whose tag name is "p"
If the stack of open elementsp594 does not have an element in scopep595 with the same tag name as that of
the token, then this is a parse errorp585; act as if a start tag with the tag name "p" had been seen, then
reprocess the current token.

Otherwise, run these steps:

1. Generate implied end tagsp625, except for elements with the same tag name as the token.

2. If the current nodep594 is not an element with the same tag name as that of the token, then this is a
parse errorp585.

3. Pop elements from the stack of open elementsp594 until an element with the same tag name as the
token has been popped from the stack.

↪ An end tag whose tag name is "li"
If the stack of open elementsp594 does not have an element in list item scopep595 with the same tag name as
that of the token, then this is a parse errorp585; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp625, except for elements with the same tag name as the token.

2. If the current nodep594 is not an element with the same tag name as that of the token, then this is a
parse errorp585.

3. Pop elements from the stack of open elementsp594 until an element with the same tag name as the
token has been popped from the stack.

↪ An end tag whose tag name is one of: "dd", "dt"
If the stack of open elementsp594 does not have an element in scopep595 with the same tag name as that of
the token, then this is a parse errorp585; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp625, except for elements with the same tag name as the token.

2. If the current nodep594 is not an element with the same tag name as that of the token, then this is a
parse errorp585.

3. Pop elements from the stack of open elementsp594 until an element with the same tag name as the
token has been popped from the stack.

↪ An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elementsp594 does not have an element in scopep595 whose tag name is one of "h1", "h2",
"h3", "h4", "h5", or "h6", then this is a parse errorp585; ignore the token.

634

Otherwise, run these steps:

1. Generate implied end tagsp625.

2. If the current nodep594 is not an element with the same tag name as that of the token, then this is a
parse errorp585.

3. Pop elements from the stack of open elementsp594 until an element whose tag name is one of "h1",
"h2", "h3", "h4", "h5", or "h6" has been popped from the stack.

↪ An end tag whose tag name is "sarcasm"
Take a deep breath, then act as described in the "any other end tag" entry below.

↪ A start tag whose tag name is "a"
If the list of active formatting elementsp595 contains an element whose tag name is "a" between the end of
the list and the last marker on the list (or the start of the list if there is no marker on the list), then this is a
parse errorp585; act as if an end tag with the tag name "a" had been seen, then remove that element from the
list of active formatting elementsp595 and the stack of open elementsp594 if the end tag didn't already remove
it (it might not have if the element is not in table scopep595).

In the non-conforming stream a<table>b</table>x, the first ap169

element would be closed upon seeing the second one, and the "x" character would be inside a link to
"b", not to "a". This is despite the fact that the outer ap169 element is not in table scope (meaning that
a regular end tag at the start of the table wouldn't close the outer ap169 element). The result is
that the two ap169 elements are indirectly nested inside each other — non-conforming markup will often
result in non-conforming DOMs when parsed.

Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token. Add that element to the list of active formatting elementsp595.

↪ A start tag whose tag name is one of: "b", "big", "code", "em", "font", "i", "s", "small", "strike",
"strong", "tt", "u"

Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token. Add that element to the list of active formatting elementsp595.

↪ A start tag whose tag name is "nobr"
Reconstruct the active formatting elementsp596, if any.

If the stack of open elementsp594 has a nobr element in scopep595, then this is a parse errorp585; act as if an
end tag with the tag name "nobr" had been seen, then once again reconstruct the active formatting
elementsp596, if any.

Insert an HTML elementp622 for the token. Add that element to the list of active formatting elementsp595.

↪ An end tag whose tag name is one of: "a", "b", "big", "code", "em", "font", "i", "nobr", "s", "small",
"strike", "strong", "tt", "u"

Run these steps:

1. Let the formatting element be the last element in the list of active formatting elementsp595 that:

• is between the end of the list and the last scope marker in the list, if any, or the start of
the list otherwise, and

• has the same tag name as the token.

If there is no such node, or, if that node is also in the stack of open elementsp594 but the element is
not in scopep595, then this is a parse errorp585; ignore the token, and abort these steps.

Otherwise, if there is such a node, but that node is not in the stack of open elementsp594, then this
is a parse errorp585; remove the element from the list, and abort these steps.

Otherwise, there is a formatting element and that element is in the stackp594 and is in scopep595. If
the element is not the current nodep594, this is a parse errorp585. In any case, proceed with the
algorithm as written in the following steps.

635

2. Let the furthest block be the topmost node in the stack of open elementsp594 that is lower in the
stack than the formatting element, and is not an element in the phrasingp595 or formattingp595

categories. There might not be one.

3. If there is no furthest block, then the UA must skip the subsequent steps and instead just pop all
the nodes from the bottom of the stack of open elementsp594, from the current nodep594 up to and
including the formatting element, and remove the formatting element from the list of active
formatting elementsp595.

4. Let the common ancestor be the element immediately above the formatting element in the stack
of open elementsp594.

5. Let a bookmark note the position of the formatting element in the list of active formatting
elementsp595 relative to the elements on either side of it in the list.

6. Let node and last node be the furthest block. Follow these steps:

1. Let node be the element immediately above node in the stack of open elementsp594, or if
node is no longer in the stack of open elementsp594 (e.g. because it got removed by the
next step), the element that was immediately above node in the stack of open
elementsp594 before node was removed.

2. If node is not in the list of active formatting elementsp595, then remove node from the
stack of open elementsp594 and then go back to step 1.

3. Otherwise, if node is the formatting element, then go to the next step in the overall
algorithm.

4. Otherwise, if last node is the furthest block, then move the aforementioned bookmark to
be immediately after the node in the list of active formatting elementsp595.

5. Create an element for the tokenp622 for which the element node was created, replace the
entry for node in the list of active formatting elementsp595 with an entry for the new
element, replace the entry for node in the stack of open elementsp594 with an entry for
the new element, and let node be the new element.

6. Insert last node into node, first removing it from its previous parent node if any.

7. Let last node be node.

8. Return to step 1 of this inner set of steps.

7. If the common ancestor node is a tablep286, tbodyp294, tfootp296, theadp295, or trp296 element, then,
foster parentp625 whatever last node ended up being in the previous step, first removing it from its
previous parent node if any.

Otherwise, append whatever last node ended up being in the previous step to the common
ancestor node, first removing it from its previous parent node if any.

8. Create an element for the tokenp622 for which the formatting element was created.

9. Take all of the child nodes of the furthest block and append them to the element created in the last
step.

10. Append that new element to the furthest block.

11. Remove the formatting element from the list of active formatting elementsp595, and insert the new
element into the list of active formatting elementsp595 at the position of the aforementioned
bookmark.

12. Remove the formatting element from the stack of open elementsp594, and insert the new element
into the stack of open elementsp594 immediately below the position of the furthest block in that
stack.

13. Jump back to step 1 in this series of steps.

Note: Because of the way this algorithm causes elements to change parents, it has been
dubbed the "adoption agency algorithm" (in contrast with other possible algorithms for

636

dealing with misnested content, which included the "incest algorithm", the "secret affair
algorithm", and the "Heisenberg algorithm").

↪ A start tag whose tag name is "button"
If the stack of open elementsp594 has a button element in scopep595, then this is a parse errorp585; act as if an
end tag with the tag name "button" had been seen, then reprocess the token.

Otherwise:

Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token.

Insert a marker at the end of the list of active formatting elementsp595.

Set the frameset-ok flagp597 to "not ok".

↪ A start tag token whose tag name is one of: "applet", "marquee", "object"
Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token.

Insert a marker at the end of the list of active formatting elementsp595.

Set the frameset-ok flagp597 to "not ok".

↪ An end tag token whose tag name is one of: "applet", "button", "marquee", "object"
If the stack of open elementsp594 does not have an element in scopep595 with the same tag name as that of
the token, then this is a parse errorp585; ignore the token.

Otherwise, run these steps:

1. Generate implied end tagsp625.

2. If the current nodep594 is not an element with the same tag name as that of the token, then this is a
parse errorp585.

3. Pop elements from the stack of open elementsp594 until an element with the same tag name as the
token has been popped from the stack.

4. Clear the list of active formatting elements up to the last markerp596.

↪ A start tag whose tag name is "table"
If the Documentp33 is not set to quirks modep79, and the stack of open elementsp594 has a p element in
scopep595, then act as if an end tag with the tag name "p" had been seen.

Insert an HTML elementp622 for the token.

Set the frameset-ok flagp597 to "not ok".

Switch the insertion modep593 to "in tablep641".

↪ A start tag whose tag name is one of: "area", "basefont", "bgsound", "br", "embed", "img", "input",
"keygen", "wbr"

Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

Acknowledge the token's self-closing flagp597, if it is set.

Set the frameset-ok flagp597 to "not ok".

↪ A start tag whose tag name is one of: "param", "source"
Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

Acknowledge the token's self-closing flagp597, if it is set.

637

↪ A start tag whose tag name is "hr"
If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

Acknowledge the token's self-closing flagp597, if it is set.

Set the frameset-ok flagp597 to "not ok".

↪ A start tag whose tag name is "image"
Parse errorp585. Change the token's tag name to "img" and reprocess it. (Don't ask.)

↪ A start tag whose tag name is "isindex"
Parse errorp585.

If the form element pointerp596 is not null, then ignore the token.

Otherwise:

Acknowledge the token's self-closing flagp597, if it is set.

Act as if a start tag token with the tag name "form" had been seen.

If the token has an attribute called "action", set the action attribute on the resulting formp314 element to the
value of the "action" attribute of the token.

Act as if a start tag token with the tag name "hr" had been seen.

Act as if a start tag token with the tag name "label" had been seen.

Act as if a stream of character tokens had been seen (see below for what they should say).

Act as if a start tag token with the tag name "input" had been seen, with all the attributes from the "isindex"
token except "name", "action", and "prompt". Set the namep374 attribute of the resulting inputp320 element to
the value "isindex".

Act as if a stream of character tokens had been seen (see below for what they should say).

Act as if an end tag token with the tag name "label" had been seen.

Act as if a start tag token with the tag name "hr" had been seen.

Act as if an end tag token with the tag name "form" had been seen.

If the token has an attribute with the name "prompt", then the first stream of characters must be the same
string as given in that attribute, and the second stream of characters must be empty. Otherwise, the two
streams of character tokens together should, together with the inputp320 element, express the equivalent of
"This is a searchable index. Enter search keywords: (input field)" in the user's preferred language.

↪ A start tag whose tag name is "textarea"
Run these steps:

1. Insert an HTML elementp622 for the token.

2. If the next token is a U+000A LINE FEED (LF) character token, then ignore that token and move on
to the next one. (Newlines at the start of textareap360 elements are ignored as an authoring
convenience.)

3. Switch the tokenizer to the RCDATA statep598.

4. Let the original insertion modep593 be the current insertion modep593.

5. Set the frameset-ok flagp597 to "not ok".

6. Switch the insertion modep593 to "textp640".

↪ A start tag whose tag name is "xmp"
If the stack of open elementsp594 has a p element in scopep595, then act as if an end tag with the tag name
"p" had been seen.

638

Reconstruct the active formatting elementsp596, if any.

Set the frameset-ok flagp597 to "not ok".

Follow the generic raw text element parsing algorithmp624.

↪ A start tag whose tag name is "iframe"
Set the frameset-ok flagp597 to "not ok".

Follow the generic raw text element parsing algorithmp624.

↪ A start tag whose tag name is "noembed"
↪ A start tag whose tag name is "noscript", if the scripting flagp597 is enabled

Follow the generic raw text element parsing algorithmp624.

↪ A start tag whose tag name is "select"
Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token.

Set the frameset-ok flagp597 to "not ok".

If the insertion modep593 is one of in tablep641", "in captionp643", "in column groupp644", "in table bodyp644", "in
rowp645", or "in cellp646", then switch the insertion modep593 to "in select in tablep648". Otherwise, switch the
insertion modep593 to "in selectp647".

↪ A start tag whose tag name is one of: "optgroup", "option"
If the stack of open elementsp594 has an option element in scopep595, then act as if an end tag with the tag
name "option" had been seen.

Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token.

↪ A start tag whose tag name is one of: "rp", "rt"
If the stack of open elementsp594 has a ruby element in scopep595, then generate implied end tagsp625. If the
current nodep594 is not then a rubyp188 element, this is a parse errorp585; pop all the nodes from the current
nodep594 up to the node immediately before the bottommost rubyp188 element on the stack of open
elementsp594.

Insert an HTML elementp622 for the token.

↪ An end tag whose tag name is "br"
Parse errorp585. Act as if a start tag token with the tag name "br" had been seen. Ignore the end tag token.

↪ A start tag whose tag name is "math"
Reconstruct the active formatting elementsp596, if any.

Adjust MathML attributesp623 for the token. (This fixes the case of MathML attributes that are not all
lowercase.)

Adjust foreign attributesp624 for the token. (This fixes the use of namespaced attributes, in particular XLink.)

Insert a foreign elementp623 for the token, in the MathML namespacep74.

If the token has its self-closing flag set, pop the current nodep594 off the stack of open elementsp594 and
acknowledge the token's self-closing flagp597.

Otherwise, if the insertion modep593 is not already "in foreign contentp648", let the secondary insertion
modep593 be the current insertion modep593, and then switch the insertion modep593 to "in foreign
contentp648".

↪ A start tag whose tag name is "svg"
Reconstruct the active formatting elementsp596, if any.

Adjust SVG attributesp623 for the token. (This fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributesp624 for the token. (This fixes the use of namespaced attributes, in particular XLink in
SVG.)

639

Insert a foreign elementp623 for the token, in the SVG namespacep74.

If the token has its self-closing flag set, pop the current nodep594 off the stack of open elementsp594 and
acknowledge the token's self-closing flagp597.

Otherwise, if the insertion modep593 is not already "in foreign contentp648", let the secondary insertion
modep593 be the current insertion modep593, and then switch the insertion modep593 to "in foreign
contentp648".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "frame", "head", "tbody", "td",
"tfoot", "th", "thead", "tr"

Parse errorp585. Ignore the token.

↪ Any other start tag
Reconstruct the active formatting elementsp596, if any.

Insert an HTML elementp622 for the token.

Note: This element will be a phrasingp595 element.

↪ Any other end tag
Run these steps:

1. Initialize node to be the current nodep594 (the bottommost node of the stack).

2. If node has the same tag name as the token, then:

1. Generate implied end tagsp625.

2. If the tag name of the end tag token does not match the tag name of the current
nodep594, this is a parse errorp585.

3. Pop all the nodes from the current nodep594 up to node, including node, then stop these
steps.

3. Otherwise, if node is in neither the formattingp595 category nor the phrasingp595 category, then this
is a parse errorp585; ignore the token, and abort these steps.

4. Set node to the previous entry in the stack of open elementsp594.

5. Return to step 2.

10.2.5.11 The "text" insertion mode

When the insertion modep593 is "textp640", tokens must be handled as follows:

↪ A character token
Insert the token's characterp621 into the current nodep594.

↪ An end-of-file token
Parse errorp585.

If the current nodep594 is a scriptp129 element, mark the scriptp129 element as "already started"p130.

Pop the current nodep594 off the stack of open elementsp594.

Switch the insertion modep593 to the original insertion modep593 and reprocess the current token.

↪ An end tag whose tag name is "script"
Let script be the current nodep594 (which will be a scriptp129 element).

Pop the current nodep594 off the stack of open elementsp594.

Switch the insertion modep593 to the original insertion modep593.

Let the old insertion point have the same value as the current insertion pointp592. Let the insertion pointp592

be just before the next input characterp592.

640

Increment the parser's script nesting levelp586 by one.

Runp131 the script. This might cause some script to execute, which might cause new characters to be inserted
into the tokenizerp107, and might cause the tokenizer to output more tokens, resulting in a reentrant
invocation of the parserp586.

Decrement the parser's script nesting levelp586 by one. If the parser's script nesting levelp586 is zero, then set
the parser pause flagp586 to false.

Let the insertion pointp592 have the value of the old insertion point. (In other words, restore the insertion
pointp592 to its previous value. This value might be the "undefined" value.)

At this stage, if there is a pending parsing-blocking scriptp132, then:

↪ If the script nesting levelp586 is not zero:
Set the parser pause flagp586 to true, and abort the processing of any nested invocations of the
tokenizer, yielding control back to the caller. (Tokenization will resume when the caller returns to
the "outer" tree construction stage.)

Note: The tree construction stage of this particular parser is being called
reentrantlyp586, say from a call to document.write()p107.

↪ Otherwise:
Run these steps:

1. Let the script be the pending parsing-blocking scriptp132. There is no longer a pending
parsing-blocking scriptp132.

2. Block the tokenizerp597 for this instance of the HTML parserp584, such that the event
loopp516 will not run tasksp517 that invoke the tokenizerp597.

3. Spin the event loopp518 until there is no style sheet blocking scriptsp129 and the script's
"ready to be parser-executed"p131 flag is set.

4. Unblock the tokenizerp597 for this instance of the HTML parserp584, such that tasksp517 that
invoke the tokenizerp597 can again be run.

5. Let the insertion pointp592 be just before the next input characterp592.

6. Increment the parser's script nesting levelp586 by one (it should be zero before this step,
so this sets it to one).

7. Executep133 the script.

8. Decrement the parser's script nesting levelp586 by one. If the parser's script nesting
levelp586 is zero (which it always should be at this point), then set the parser pause
flagp586 to false.

9. Let the insertion pointp592 be undefined again.

10. If there is once again a pending parsing-blocking scriptp132, then repeat these steps from
step 1.

↪ Any other end tag
Pop the current nodep594 off the stack of open elementsp594.

Switch the insertion modep593 to the original insertion modep593.

10.2.5.12 The "in table" insertion mode

When the insertion modep593 is "in tablep641", tokens must be handled as follows:

↪ A character token
Let the pending table character tokens be an empty list of tokens.

Let the original insertion modep593 be the current insertion modep593.

Switch the insertion modep593 to "in table textp643" and reprocess the token.

641

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "caption"
Clear the stack back to a table contextp643. (See below.)

Insert a marker at the end of the list of active formatting elementsp595.

Insert an HTML elementp622 for the token, then switch the insertion modep593 to "in captionp643".

↪ A start tag whose tag name is "colgroup"
Clear the stack back to a table contextp643. (See below.)

Insert an HTML elementp622 for the token, then switch the insertion modep593 to "in column groupp644".

↪ A start tag whose tag name is "col"
Act as if a start tag token with the tag name "colgroup" had been seen, then reprocess the current token.

↪ A start tag whose tag name is one of: "tbody", "tfoot", "thead"
Clear the stack back to a table contextp643. (See below.)

Insert an HTML elementp622 for the token, then switch the insertion modep593 to "in table bodyp644".

↪ A start tag whose tag name is one of: "td", "th", "tr"
Act as if a start tag token with the tag name "tbody" had been seen, then reprocess the current token.

↪ A start tag whose tag name is "table"
Parse errorp585. Act as if an end tag token with the tag name "table" had been seen, then, if that token wasn't
ignored, reprocess the current token.

Note: The fake end tag token here can only be ignored in the fragment casep661.

↪ An end tag whose tag name is "table"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as the
token, this is a parse errorp585. Ignore the token. (fragment casep661)

Otherwise:

Pop elements from this stack until a tablep286 element has been popped from the stack.

Reset the insertion mode appropriatelyp593.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "tbody", "td",
"tfoot", "th", "thead", "tr"

Parse errorp585. Ignore the token.

↪ A start tag whose tag name is one of: "style", "script"
Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ A start tag whose tag name is "input"
If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an
ASCII case-insensitivep35 match for the string "hidden", then: act as described in the "anything else" entry
below.

Otherwise:

Parse errorp585.

Insert an HTML elementp622 for the token.

Pop that inputp320 element off the stack of open elementsp594.

↪ A start tag whose tag name is "form"
Parse errorp585.

642

If the form element pointerp596 is not null, ignore the token.

Otherwise:

Insert an HTML elementp622 for the token.

Pop that formp314 element off the stack of open elementsp594.

↪ An end-of-file token
If the current nodep594 is not the root htmlp112 element, then this is a parse errorp585.

Note: It can only be the current nodep594 in the fragment casep661.

Stop parsingp653.

↪ Anything else
Parse errorp585. Process the token using the rules forp593 the "in bodyp631" insertion modep593, except that if
the current nodep594 is a tablep286, tbodyp294, tfootp296, theadp295, or trp296 element, then, whenever a node
would be inserted into the current nodep594, it must instead be foster parentedp625.

When the steps above require the UA to clear the stack back to a table context, it means that the UA must, while
the current nodep594 is not a tablep286 element or an htmlp112 element, pop elements from the stack of open
elementsp594.

Note: The current nodep594 being an htmlp112 element after this process is a fragment casep661.

10.2.5.13 The "in table text" insertion mode

When the insertion modep593 is "in table textp643", tokens must be handled as follows:

↪ A character token
Append the character token to the pending table character tokensp641 list.

↪ Anything else
If any of the tokens in the pending table character tokensp641 list are character tokens that are not one of
U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED (FF), U+000D CARRIAGE
RETURN (CR), or U+0020 SPACE, then reprocess those character tokens using the rules given in the
"anything else" entry in the in tablep641" insertion mode.

Otherwise, insert the charactersp621 given by the pending table character tokensp641 list into the current
nodep594.

Switch the insertion modep593 to the original insertion modep593 and reprocess the token.

10.2.5.14 The "in caption" insertion mode

When the insertion modep593 is "in captionp643", tokens must be handled as follows:

↪ An end tag whose tag name is "caption"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as the
token, this is a parse errorp585. Ignore the token. (fragment casep661)

Otherwise:

Generate implied end tagsp625.

Now, if the current nodep594 is not a captionp292 element, then this is a parse errorp585.

Pop elements from this stack until a captionp292 element has been popped from the stack.

Clear the list of active formatting elements up to the last markerp596.

Switch the insertion modep593 to "in tablep641".

643

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead",
"tr"

↪ An end tag whose tag name is "table"
Parse errorp585. Act as if an end tag with the tag name "caption" had been seen, then, if that token wasn't
ignored, reprocess the current token.

Note: The fake end tag token here can only be ignored in the fragment casep661.

↪ An end tag whose tag name is one of: "body", "col", "colgroup", "html", "tbody", "td", "tfoot", "th",
"thead", "tr"

Parse errorp585. Ignore the token.

↪ Anything else
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

10.2.5.15 The "in column group" insertion mode

When the insertion modep593 is "in column groupp644", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp621 into the current nodep594.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A start tag whose tag name is "col"
Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

Acknowledge the token's self-closing flagp597, if it is set.

↪ An end tag whose tag name is "colgroup"
If the current nodep594 is the root htmlp112 element, then this is a parse errorp585; ignore the token. (fragment
casep661)

Otherwise, pop the current nodep594 (which will be a colgroupp293 element) from the stack of open
elementsp594. Switch the insertion modep593 to "in tablep641".

↪ An end tag whose tag name is "col"
Parse errorp585. Ignore the token.

↪ An end-of-file token
If the current nodep594 is the root htmlp112 element, then stop parsingp653. (fragment casep661)

Otherwise, act as described in the "anything else" entry below.

↪ Anything else
Act as if an end tag with the tag name "colgroup" had been seen, and then, if that token wasn't ignored,
reprocess the current token.

Note: The fake end tag token here can only be ignored in the fragment casep661.

10.2.5.16 The "in table body" insertion mode

When the insertion modep593 is "in table bodyp644", tokens must be handled as follows:

644

↪ A start tag whose tag name is "tr"
Clear the stack back to a table body contextp645. (See below.)

Insert an HTML elementp622 for the token, then switch the insertion modep593 to "in rowp645".

↪ A start tag whose tag name is one of: "th", "td"
Parse errorp585. Act as if a start tag with the tag name "tr" had been seen, then reprocess the current token.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as the
token, this is a parse errorp585. Ignore the token.

Otherwise:

Clear the stack back to a table body contextp645. (See below.)

Pop the current nodep594 from the stack of open elementsp594. Switch the insertion modep593 to "in tablep641".

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead"
↪ An end tag whose tag name is "table"

If the stack of open elementsp594 does not have a tbody, thead, or tfoot element in table scopep595, this is a
parse errorp585. Ignore the token. (fragment casep661)

Otherwise:

Clear the stack back to a table body contextp645. (See below.)

Act as if an end tag with the same tag name as the current nodep594 ("tbody", "tfoot", or "thead") had been
seen, then reprocess the current token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th", "tr"
Parse errorp585. Ignore the token.

↪ Anything else
Process the token using the rules forp593 the "in tablep641" insertion modep593.

When the steps above require the UA to clear the stack back to a table body context, it means that the UA must,
while the current nodep594 is not a tbodyp294, tfootp296, theadp295, or htmlp112 element, pop elements from the stack of
open elementsp594.

Note: The current nodep594 being an htmlp112 element after this process is a fragment casep661.

10.2.5.17 The "in row" insertion mode

When the insertion modep593 is "in rowp645", tokens must be handled as follows:

↪ A start tag whose tag name is one of: "th", "td"
Clear the stack back to a table row contextp646. (See below.)

Insert an HTML elementp622 for the token, then switch the insertion modep593 to "in cellp646".

Insert a marker at the end of the list of active formatting elementsp595.

↪ An end tag whose tag name is "tr"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as the
token, this is a parse errorp585. Ignore the token. (fragment casep661)

Otherwise:

Clear the stack back to a table row contextp646. (See below.)

Pop the current nodep594 (which will be a trp296 element) from the stack of open elementsp594. Switch the
insertion modep593 to "in table bodyp644".

645

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead", "tr"
↪ An end tag whose tag name is "table"

Act as if an end tag with the tag name "tr" had been seen, then, if that token wasn't ignored, reprocess the
current token.

Note: The fake end tag token here can only be ignored in the fragment casep661.

↪ An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as the
token, this is a parse errorp585. Ignore the token.

Otherwise, act as if an end tag with the tag name "tr" had been seen, then reprocess the current token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th"
Parse errorp585. Ignore the token.

↪ Anything else
Process the token using the rules forp593 the "in tablep641" insertion modep593.

When the steps above require the UA to clear the stack back to a table row context, it means that the UA must,
while the current nodep594 is not a trp296 element or an htmlp112 element, pop elements from the stack of open
elementsp594.

Note: The current nodep594 being an htmlp112 element after this process is a fragment casep661.

10.2.5.18 The "in cell" insertion mode

When the insertion modep593 is "in cellp646", tokens must be handled as follows:

↪ An end tag whose tag name is one of: "td", "th"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as
that of the token, then this is a parse errorp585 and the token must be ignored.

Otherwise:

Generate implied end tagsp625.

Now, if the current nodep594 is not an element with the same tag name as the token, then this is a parse
errorp585.

Pop elements from the stack of open elementsp594 stack until an element with the same tag name as the
token has been popped from the stack.

Clear the list of active formatting elements up to the last markerp596.

Switch the insertion modep593 to "in rowp645". (The current nodep594 will be a trp296 element at this point.)

↪ A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead",
"tr"

If the stack of open elementsp594 does not have a td or th element in table scopep595, then this is a parse
errorp585; ignore the token. (fragment casep661)

Otherwise, close the cellp647 (see below) and reprocess the current token.

↪ An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html"
Parse errorp585. Ignore the token.

↪ An end tag whose tag name is one of: "table", "tbody", "tfoot", "thead", "tr"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as
that of the token (which can only happen for "tbody", "tfoot" and "thead", or, in the fragment casep661), then
this is a parse errorp585 and the token must be ignored.

Otherwise, close the cellp647 (see below) and reprocess the current token.

↪ Anything else
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

646

Where the steps above say to close the cell, they mean to run the following algorithm:

1. If the stack of open elementsp594 has a td element in table scopep595, then act as if an end tag token with the
tag name "td" had been seen.

2. Otherwise, the stack of open elementsp594 will have a th element in table scopep595; act as if an end tag
token with the tag name "th" had been seen.

Note: The stack of open elementsp594 cannot have both a tdp298 and a thp298 element in table
scopep595 at the same time, nor can it have neither when the insertion modep593 is "in cellp646".

10.2.5.19 The "in select" insertion mode

When the insertion modep593 is "in selectp647", tokens must be handled as follows:

↪ A character token
Insert the token's characterp621 into the current nodep594.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A start tag whose tag name is "option"
If the current nodep594 is an optionp358 element, act as if an end tag with the tag name "option" had been
seen.

Insert an HTML elementp622 for the token.

↪ A start tag whose tag name is "optgroup"
If the current nodep594 is an optionp358 element, act as if an end tag with the tag name "option" had been
seen.

If the current nodep594 is an optgroupp357 element, act as if an end tag with the tag name "optgroup" had
been seen.

Insert an HTML elementp622 for the token.

↪ An end tag whose tag name is "optgroup"
First, if the current nodep594 is an optionp358 element, and the node immediately before it in the stack of open
elementsp594 is an optgroupp357 element, then act as if an end tag with the tag name "option" had been seen.

If the current nodep594 is an optgroupp357 element, then pop that node from the stack of open elementsp594.
Otherwise, this is a parse errorp585; ignore the token.

↪ An end tag whose tag name is "option"
If the current nodep594 is an optionp358 element, then pop that node from the stack of open elementsp594.
Otherwise, this is a parse errorp585; ignore the token.

↪ An end tag whose tag name is "select"
If the stack of open elementsp594 does not have an element in table scopep595 with the same tag name as the
token, this is a parse errorp585. Ignore the token. (fragment casep661)

Otherwise:

Pop elements from the stack of open elementsp594 until a selectp353 element has been popped from the
stack.

Reset the insertion mode appropriatelyp593.

647

↪ A start tag whose tag name is "select"
Parse errorp585. Act as if the token had been an end tag with the tag name "select" instead.

↪ A start tag whose tag name is one of: "input", "keygen", "textarea"
Parse errorp585.

If the stack of open elementsp594 does not have a select element in table scopep595, ignore the token.
(fragment casep661)

Otherwise, act as if an end tag with the tag name "select" had been seen, and reprocess the token.

↪ A start tag token whose tag name is "script"
Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ An end-of-file token
If the current nodep594 is not the root htmlp112 element, then this is a parse errorp585.

Note: It can only be the current nodep594 in the fragment casep661.

Stop parsingp653.

↪ Anything else
Parse errorp585. Ignore the token.

10.2.5.20 The "in select in table" insertion mode

When the insertion modep593 is "in select in tablep648", tokens must be handled as follows:

↪ A start tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"
Parse errorp585. Act as if an end tag with the tag name "select" had been seen, and reprocess the token.

↪ An end tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"
Parse errorp585.

If the stack of open elementsp594 has an element in table scopep595 with the same tag name as that of the
token, then act as if an end tag with the tag name "select" had been seen, and reprocess the token.
Otherwise, ignore the token.

↪ Anything else
Process the token using the rules forp593 the "in selectp647" insertion modep593.

10.2.5.21 The "in foreign content" insertion mode

When the insertion modep593 is "in foreign contentp648", tokens must be handled as follows:

↪ A character token
Insert the token's characterp621 into the current nodep594.

If the token is not one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED
(FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE, then set the frameset-ok flagp597 to "not ok".

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ An end tag whose tag name is "script", if the current nodep594 is a script element in the SVG
namespacep74.

Pop the current nodep594 off the stack of open elementsp594.

Let the old insertion point have the same value as the current insertion pointp592. Let the insertion pointp592

be just before the next input characterp592.

648

Increment the parser's script nesting levelp586 by one. Set the parser pause flagp586 to true.

Process the script element according to the SVG rules, if the user agent supports SVG. [SVG]p742

Note: Even if this causes new characters to be inserted into the tokenizerp107, the parser
will not be executed reentrantly, since the parser pause flagp586 is true.

Decrement the parser's script nesting levelp586 by one. If the parser's script nesting levelp586 is zero, then set
the parser pause flagp586 to false.

Let the insertion pointp592 have the value of the old insertion point. (In other words, restore the insertion
pointp592 to its previous value. This value might be the "undefined" value.)

↪ An end tag, if the current nodep594 is not an element in the HTML namespacep74.
Run these steps:

1. Initialize node to be the current nodep594 (the bottommost node of the stack).

2. If node is not an element with the same tag name as the token, then this is a parse errorp585.

3. Loop: If node has the same tag name as the token, pop elements from the stack of open
elementsp594 until node has been popped from the stack, and then abort these steps.

4. Set node to the previous entry in the stack of open elementsp594.

5. If node is an element in the HTML namespacep74, process the token using the rules forp593 the
secondary insertion modep593. If, after doing so, the insertion modep593 is still "in foreign
contentp648", but there is no element in scopep595 that has a namespace other than the HTML
namespacep74, switch the insertion modep593 to the secondary insertion modep593.

6. Return to the step labeled loop.

↪ A start tag whose tag name is neither "mglyph" nor "malignmark", if the current nodep594 is an mi
element in the MathML namespacep74.

↪ A start tag whose tag name is neither "mglyph" nor "malignmark", if the current nodep594 is an mo
element in the MathML namespacep74.

↪ A start tag whose tag name is neither "mglyph" nor "malignmark", if the current nodep594 is an mn
element in the MathML namespacep74.

↪ A start tag whose tag name is neither "mglyph" nor "malignmark", if the current nodep594 is an ms
element in the MathML namespacep74.

↪ A start tag whose tag name is neither "mglyph" nor "malignmark", if the current nodep594 is an mtext
element in the MathML namespacep74.

↪ A start tag whose tag name is "svg", if the current nodep594 is an annotation-xml element in the
MathML namespacep74.

↪ A start tag, if the current nodep594 is a foreignObject element in the SVG namespacep74.
↪ A start tag, if the current nodep594 is a desc element in the SVG namespacep74.
↪ A start tag, if the current nodep594 is a title element in the SVG namespacep74.
↪ A start tag, if the current nodep594 is an element in the HTML namespacep74.
↪ Any other end tag

Process the token using the rules forp593 the secondary insertion modep593.

If, after doing so, the insertion modep593 is still "in foreign contentp648", but there is no element in scopep595

that has a namespace other than the HTML namespacep74, switch the insertion modep593 to the secondary
insertion modep593.

↪ A start tag whose tag name is one of: "b", "big", "blockquote", "body", "br", "center", "code", "dd",
"div", "dl", "dt", "em", "embed", "h1", "h2", "h3", "h4", "h5", "h6", "head", "hr", "i", "img", "li",
"listing", "menu", "meta", "nobr", "ol", "p", "pre", "ruby", "s", "small", "span", "strong", "strike",
"sub", "sup", "table", "tt", "u", "ul", "var"

↪ A start tag whose tag name is "font", if the token has any attributes named "color", "face", or "size"
↪ An end-of-file token

Parse errorp585.

649

http://www.w3.org/TR/SVGMobile12/script.html#ScriptContentProcessing

Pop elements from the stack of open elementsp594 until either a mathp285 element or an svgp285 element has
been popped from the stack, and reprocess the token.

↪ Any other start tag
If the current nodep594 is an element in the MathML namespacep74, adjust MathML attributesp623 for the token.
(This fixes the case of MathML attributes that are not all lowercase.)

If the current nodep594 is an element in the SVG namespacep74, and the token's tag name is one of the ones
in the first column of the following table, change the tag name to the name given in the corresponding cell in
the second column. (This fixes the case of SVG elements that are not all lowercase.)

Tag name Element name

altglyph altGlyph

altglyphdef altGlyphDef

altglyphitem altGlyphItem

animatecolor animateColor

animatemotion animateMotion

animatetransform animateTransform

clippath clipPath

feblend feBlend

fecolormatrix feColorMatrix

fecomponenttransfer feComponentTransfer

fecomposite feComposite

feconvolvematrix feConvolveMatrix

fediffuselighting feDiffuseLighting

fedisplacementmap feDisplacementMap

fedistantlight feDistantLight

feflood feFlood

fefunca feFuncA

fefuncb feFuncB

fefuncg feFuncG

fefuncr feFuncR

fegaussianblur feGaussianBlur

feimage feImage

femerge feMerge

femergenode feMergeNode

femorphology feMorphology

feoffset feOffset

fepointlight fePointLight

fespecularlighting feSpecularLighting

fespotlight feSpotLight

fetile feTile

feturbulence feTurbulence

foreignobject foreignObject

glyphref glyphRef

lineargradient linearGradient

radialgradient radialGradient

textpath textPath

If the current nodep594 is an element in the SVG namespacep74, adjust SVG attributesp623 for the token. (This
fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributesp624 for the token. (This fixes the use of namespaced attributes, in particular XLink in
SVG.)

Insert a foreign elementp623 for the token, in the same namespace as the current nodep594.

If the token has its self-closing flag set, pop the current nodep594 off the stack of open elementsp594 and
acknowledge the token's self-closing flagp597.

650

10.2.5.22 The "after body" insertion mode

When the insertion modep593 is "after bodyp651", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A comment token
Append a Commentp33 node to the first element in the stack of open elementsp594 (the htmlp112 element), with
the data attribute set to the data given in the comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ An end tag whose tag name is "html"
If the parser was originally created as part of the HTML fragment parsing algorithmp661, this is a parse
errorp585; ignore the token. (fragment casep661)

Otherwise, switch the insertion modep593 to "after after bodyp652".

↪ An end-of-file token
Stop parsingp653.

↪ Anything else
Parse errorp585. Switch the insertion modep593 to "in bodyp631" and reprocess the token.

10.2.5.23 The "in frameset" insertion mode

When the insertion modep593 is "in framesetp651", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp621 into the current nodep594.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ A start tag whose tag name is "frameset"
Insert an HTML elementp622 for the token.

↪ An end tag whose tag name is "frameset"
If the current nodep594 is the root htmlp112 element, then this is a parse errorp585; ignore the token. (fragment
casep661)

Otherwise, pop the current nodep594 from the stack of open elementsp594.

If the parser was not originally created as part of the HTML fragment parsing algorithmp661 (fragment
casep661), and the current nodep594 is no longer a framesetp704 element, then switch the insertion modep593 to
"after framesetp652".

↪ A start tag whose tag name is "frame"
Insert an HTML elementp622 for the token. Immediately pop the current nodep594 off the stack of open
elementsp594.

Acknowledge the token's self-closing flagp597, if it is set.

651

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ An end-of-file token
If the current nodep594 is not the root htmlp112 element, then this is a parse errorp585.

Note: It can only be the current nodep594 in the fragment casep661.

Stop parsingp653.

↪ Anything else
Parse errorp585. Ignore the token.

10.2.5.24 The "after frameset" insertion mode

When the insertion modep593 is "after framesetp652", tokens must be handled as follows:

↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C
FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE

Insert the characterp621 into the current nodep594.

↪ A comment token
Append a Commentp33 node to the current nodep594 with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
Parse errorp585. Ignore the token.

↪ A start tag whose tag name is "html"
Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ An end tag whose tag name is "html"
Switch the insertion modep593 to "after after framesetp653".

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ An end-of-file token
Stop parsingp653.

↪ Anything else
Parse errorp585. Ignore the token.

10.2.5.25 The "after after body" insertion mode

When the insertion modep593 is "after after bodyp652", tokens must be handled as follows:

↪ A comment token
Append a Commentp33 node to the Documentp33 object with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C

FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
↪ A start tag whose tag name is "html"

Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ An end-of-file token
Stop parsingp653.

↪ Anything else
Parse errorp585. Switch the insertion modep593 to "in bodyp631" and reprocess the token.

652

10.2.5.26 The "after after frameset" insertion mode

When the insertion modep593 is "after after framesetp653", tokens must be handled as follows:

↪ A comment token
Append a Commentp33 node to the Documentp33 object with the data attribute set to the data given in the
comment token.

↪ A DOCTYPE token
↪ A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), U+000C

FORM FEED (FF), U+000D CARRIAGE RETURN (CR), or U+0020 SPACE
↪ A start tag whose tag name is "html"

Process the token using the rules forp593 the "in bodyp631" insertion modep593.

↪ An end-of-file token
Stop parsingp653.

↪ A start tag whose tag name is "noframes"
Process the token using the rules forp593 the "in headp628" insertion modep593.

↪ Anything else
Parse errorp585. Ignore the token.

Once the user agent stops parsing the document, the user agent must run the following steps:

1. Set the current document readinessp79 to "interactive" and the insertion pointp592 to undefined.

2. Pop all the nodes off the stack of open elementsp594.

3. If the list of scripts that will execute when the document has finished parsingp132 is not empty, run these
substeps:

1. Spin the event loopp518 until the first scriptp129 in the list of scripts that will execute when the
document has finished parsingp132 has its "ready to be parser-executed"p131 flag set and there is no
style sheet blocking scriptsp129.

2. Executep133 the first scriptp129 in the list of scripts that will execute when the document has
finished parsingp132.

3. Remove the first scriptp129 element from the list of scripts that will execute when the document
has finished parsingp132 (i.e. shift out the first entry in the list).

4. If the list of scripts that will execute when the document has finished parsingp132 is still not empty,
repeat these substeps again from substep 1.

4. Queue a taskp517 to fire a simple eventp523 named DOMContentLoaded at the Documentp33.

5. Spin the event loopp518 until the set of scripts that will execute as soon as possiblep132 is empty.

6. Spin the event loopp518 until there is nothing that delays the load event in the Documentp33.

7. Queue a taskp517 to set the current document readinessp79 to "complete".

8. If the Documentp33 is in a browsing contextp463, then queue a taskp517 to fire a simple eventp523 named load at
the Documentp33 's Windowp467 object, but with its targetp33 set to the Documentp33 object (and the
currentTarget set to the Windowp467 object).

9. If the Documentp33 is in a browsing contextp463, then queue a taskp517 to fire a pageshowp493 event at the
Windowp467 object of the Documentp33, but with its targetp33 set to the Documentp33 object (and the
currentTarget set to the Windowp467 object), using the PageTransitionEventp493 interface, with the
persistedp493 attribute set to false. This event must not bubble, must not be cancelable, and has no default
action.

10. If the Documentp33 has a pending state objectp492, then queue a taskp517 to fire a popstatep492 event at the
Documentp33 's Windowp467 object using the PopStateEventp492 interface, with the statep493 attribute set to the

10.2.6 The end

653

current value of the pending state objectp492. This event must bubble but not be cancelable and has no
default action.

11. If the Documentp33 has any pending application cache download process tasksp509, then queuep517 each such
taskp517 in the order they were added to the list of pending application cache download process tasksp509,
and then empty the list of pending application cache download process tasksp509. The task sourcep517 for
these tasksp517 is the networking task sourcep518.

12. The Documentp33 is now completely loaded.

When the user agent is to abort an HTML parser, it must run the following steps:

1. Throw away any pending content in the input streamp586, and discard any future content that would have
been added to it.

2. Pop all the nodes off the stack of open elementsp594.

Except where otherwise specified, the task sourcep517 for the tasksp517 mentioned in this section is the DOM
manipulation task sourcep518.

When an application uses an HTML parserp584 in conjunction with an XML pipeline, it is possible that the constructed
DOM is not compatible with the XML tool chain in certain subtle ways. For example, an XML toolchain might not be
able to represent attributes with the name xmlns, since they conflict with the Namespaces in XML syntax. There is also
some data that the HTML parserp584 generates that isn't included in the DOM itself. This section specifies some rules
for handling these issues.

If the XML API being used doesn't support DOCTYPEs, the tool may drop DOCTYPEs altogether.

If the XML API doesn't support attributes in no namespace that are named "xmlns", attributes whose names start with
"xmlns:", or attributes in the XMLNS namespacep74, then the tool may drop such attributes.

The tool may annotate the output with any namespace declarations required for proper operation.

If the XML API being used restricts the allowable characters in the local names of elements and attributes, then the
tool may map all element and attribute local names that the API wouldn't support to a set of names that are allowed,
by replacing any character that isn't supported with the uppercase letter U and the six digits of the character's
Unicode code point when expressed in hexadecimal, using digits 0-9 and capital letters A-F as the symbols, in
increasing numeric order.

For example, the element name foo<bar, which can be output by the HTML parserp584, though it is neither a
legal HTML element name nor a well-formed XML element name, would be converted into fooU00003Cbar,
which is a well-formed XML element name (though it's still not legal in HTML by any means).

As another example, consider the attribute xlink:href. Used on a MathML element, it becomes, after being
adjustedp624, an attribute with a prefix "xlink" and a local name "href". However, used on an HTML element, it
becomes an attribute with no prefix and the local name "xlink:href", which is not a valid NCName, and thus
might not be accepted by an XML API. It could thus get converted, becoming "xlinkU00003Ahref".

Note: The resulting names from this conversion conveniently can't clash with any attribute
generated by the HTML parserp584, since those are all either lowercase or those listed in the
adjust foreign attributesp624 algorithm's table.

If the XML API restricts comments from having two consecutive U+002D HYPHEN-MINUS characters (--), the tool may
insert a single U+0020 SPACE character between any such offending characters.

If the XML API restricts comments from ending in a U+002D HYPHEN-MINUS character (-), the tool may insert a single
U+0020 SPACE character at the end of such comments.

If the XML API restricts allowed characters in character data, attribute values, or comments, the tool may replace any
U+000C FORM FEED (FF) character with a U+0020 SPACE character, and any other literal non-XML character with a
U+FFFD REPLACEMENT CHARACTER.

If the tool has no way to convey out-of-band information, then the tool may drop the following information:

• Whether the document is set to no-quirks modep79, limited-quirks modep79, or quirks modep79

10.2.7 Coercing an HTML DOM into an infoset

654

• The association between form controls and forms that aren't their nearest formp314 element ancestor (use of
the form element pointerp596 in the parser)

Note: The mutations allowed by this section apply after the HTML parserp584 's rules have been
applied. For example, a <a::> start tag will be closed by a </a::> end tag, and never by a
</aU00003AU00003A> end tag, even if the user agent is using the rules above to then generate an
actual element in the DOM with the name aU00003AU00003A for that start tag.

This section is non-normative.

This section examines some erroneous markup and discusses how the HTML parserp584 handles these cases.

10.2.8.1 Misnested tags: <i></i>

This section is non-normative.

The most-often discussed example of erroneous markup is as follows:

<p>12<i>34</i>5</p>

The parsing of this markup is straightforward up to the "3". At this point, the DOM looks like this:

Here, the stack of open elementsp594 has five elements on it: htmlp112, bodyp138, pp157, bp185, and ip184. The list of active
formatting elementsp595 just has two: bp185 and ip184. The insertion modep593 is "in bodyp631".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithmp635" is invoked. This is a
simple case, in that the formatting element is the bp185 element, and there is no furthest block. Thus, the stack of open
elementsp594 ends up with just three elements: htmlp112, bodyp138, and pp157, while the list of active formatting
elementsp595 has just one: ip184. The DOM tree is unmodified at this point.

The next token is a character ("4"), triggers the reconstruction of the active formatting elementsp596, in this case just
the ip184 element. A new ip184 element is thus created for the "4" text node. After the end tag token for the "i" is also
received, and the "5" text node is inserted, the DOM looks as follows:

10.2.8.2 Misnested tags: <p></p>

This section is non-normative.

A case similar to the previous one is the following:

1<p>23</p>

htmlp112

headp112

bodyp138

pp157

#text: 1
bp185

#text: 2
ip184

#text: 3

htmlp112

headp112

bodyp138

pp157

#text: 1
bp185

#text: 2
ip184

#text: 3
ip184

#text: 4
#text: 5

10.2.8 An introduction to error handling and strange cases in the parser

655

Up to the "2" the parsing here is straightforward:

The interesting part is when the end tag token with the tag name "b" is parsed.

Before that token is seen, the stack of open elementsp594 has four elements on it: htmlp112, bodyp138, bp185, and pp157.
The list of active formatting elementsp595 just has the one: bp185. The insertion modep593 is "in bodyp631".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithmp635" is invoked, as in the
previous example. However, in this case, there is a furthest block, namely the pp157 element. Thus, this time the
adoption agency algorithm isn't skipped over.

The common ancestor is the bodyp138 element. A conceptual "bookmark" marks the position of the bp185 in the list of
active formatting elementsp595, but since that list has only one element in it, it won't have much effect.

As the algorithm progresses, node ends up set to the formatting element (bp185), and last node ends up set to the
furthest block (pp157).

The last node gets appended (moved) to the common ancestor, so that the DOM looks like:

A new bp185 element is created, and the children of the pp157 element are moved to it:

Finally, the new bp185 element is appended to the pp157 element, so that the DOM looks like:

The bp185 element is removed from the list of active formatting elementsp595 and the stack of open elementsp594, so
that when the "3" is parsed, it is appended to the pp157 element:

htmlp112

headp112

bodyp138

bp185

#text: 1
pp157

#text: 2

htmlp112

headp112

bodyp138

bp185

#text: 1
pp157

#text: 2

htmlp112

headp112

bodyp138

bp185

#text: 1
pp157

bp185

#text: 2

htmlp112

headp112

bodyp138

bp185

#text: 1
pp157

bp185

#text: 2

htmlp112

headp112

bodyp138

bp185

#text: 1
pp157

bp185

#text: 2

656

10.2.8.3 Unexpected markup in tables

This section is non-normative.

Error handling in tables is, for historical reasons, especially strange. For example, consider the following markup:

<table><tr><td>aaa</td></tr>bbb</table>ccc

The highlighted bp185 element start tag is not allowed directly inside a table like that, and the parser handles this case
by placing the element before the table. (This is called foster parentingp625.) This can be seen by examining the DOM
tree as it stands just after the tablep286 element's start tag has been seen:

...and then immediately after the bp185 element start tag has been seen:

At this point, the stack of open elementsp594 has on it the elements htmlp112, bodyp138, tablep286, and bp185 (in that
order, despite the resulting DOM tree); the list of active formatting elementsp595 just has the bp185 element in it; and
the insertion modep593 is "in tablep641".

The trp296 start tag causes the bp185 element to be popped off the stack and a tbodyp294 start tag to be implied; the
tbodyp294 and trp296 elements are then handled in a rather straight-forward manner, taking the parser through the "in
table bodyp644" and "in rowp645" insertion modes, after which the DOM looks as follows:

Here, the stack of open elementsp594 has on it the elements htmlp112, bodyp138, tablep286, tbodyp294, and trp296; the list
of active formatting elementsp595 still has the bp185 element in it; and the insertion modep593 is "in rowp645".

The tdp298 element start tag token, after putting a tdp298 element on the tree, puts a marker on the list of active
formatting elementsp595 (it also switches to the "in cellp646" insertion modep593).

The marker means that when the "aaa" character tokens are seen, no bp185 element is created to hold the resulting
text node:

#text: 3

htmlp112

headp112

bodyp138

tablep286

htmlp112

headp112

bodyp138

bp185

tablep286

htmlp112

headp112

bodyp138

bp185

tablep286

tbodyp294

trp296

htmlp112

headp112

bodyp138

bp185

tablep286

tbodyp294

trp296

tdp298

htmlp112

headp112

bodyp138

bp185

tablep286

tbodyp294

657

The end tags are handled in a straight-forward manner; after handling them, the stack of open elementsp594 has on it
the elements htmlp112, bodyp138, tablep286, and tbodyp294; the list of active formatting elementsp595 still has the bp185

element in it (the marker having been removed by the "td" end tag token); and the insertion modep593 is "in table
bodyp644".

Thus it is that the "bbb" character tokens are found. These trigger the "in table textp643" insertion mode to be used
(with the original insertion modep593 set to "in table bodyp644"). The character tokens are collected, and when the next
token (the tablep286 element end tag) is seen, they are processed as a group. Since they are not all spaces, they are
handled as per the "anything else" rules in the "in tablep641" insertion mode, which defer to the "in bodyp631" insertion
mode but with foster parentingp625.

When the active formatting elements are reconstructedp596, a bp185 element is created and foster parentedp625, and
then the "bbb" text node is appended to it:

The stack of open elementsp594 has on it the elements htmlp112, bodyp138, tablep286, tbodyp294, and the new bp185

(again, note that this doesn't match the resulting tree!); the list of active formatting elementsp595 has the new bp185

element in it; and the insertion modep593 is still "in table bodyp644".

Had the character tokens been only space charactersp36 instead of "bbb", then those space charactersp36 would just be
appended to the tbodyp294 element.

Finally, the tablep286 is closed by a "table" end tag. This pops all the nodes from the stack of open elementsp594 up to
and including the tablep286 element, but it doesn't affect the list of active formatting elementsp595, so the "ccc"
character tokens after the table result in yet another bp185 element being created, this time after the table:

10.2.8.4 Scripts that modify the page as it is being parsed

This section is non-normative.

Consider the following markup, which for this example we will assume is the document with URLp54

http://example.com/inner, being rendered as the content of an iframep211 in another document with the URLp54

http://example.com/outer:

<div id=a>
<script>
var div = document.getElementById('a');

trp296

tdp298

#text: aaa

htmlp112

headp112

bodyp138

bp185

bp185

#text: bbb
tablep286

tbodyp294

trp296

tdp298

#text: aaa

htmlp112

headp112

bodyp138

bp185

bp185

#text: bbb
tablep286

tbodyp294

trp296

tdp298

#text: aaa
bp185

#text: ccc

658

parent.document.body.appendChild(div);
</script>
<script>
alert(document.URL);

</script>
</div>
<script>
alert(document.URL);

</script>

Up to the first "script" end tag, before the script is parsed, the result is relatively straightforward:

After the script is parsed, though, the divp168 element and its child scriptp129 element are gone:

They are, at this point, in the Documentp33 of the aforementioned outer browsing contextp463. However, the stack of
open elementsp594 still contains the divp168 element.

Thus, when the second scriptp129 element is parsed, it is inserted into the outer Documentp33 object.

This also means that the script's global objectp515 is the outer browsing contextp463 's Windowp467 object, not the
Windowp467 object inside the iframep211.

Note: This isn't a security problem since the script that moves the divp168 into the outer Documentp33

can only do so because the two Documentp33 object have the same originp474.

Thus, the first alert says "http://example.com/outer".

Once the divp168 element's end tag is parsed, the divp168 element is popped off the stack, and so the next scriptp129

element is in the inner Documentp33:

This second alert will say "http://example.com/inner".

10.3 Serializing HTML fragments

The following steps form the HTML fragment serialization algorithm. The algorithm takes as input a DOM
Elementp33 or Documentp33, referred to as the node, and either returns a string or raises an exception.

Note: This algorithm serializes the children of the node being serialized, not the node itself.

1. Let s be a string, and initialize it to the empty string.

2. For each child node of the node, in tree orderp29, run the following steps:

1. Let current node be the child node being processed.

2. Append the appropriate string from the following list to s:

htmlp112

headp112

bodyp138

divp168 id="ap169"
#text:
scriptp129

#text: var div = document.getElementById('a'); ? parent.document.body.appendChild(div);

htmlp112

headp112

bodyp138

htmlp112

headp112

bodyp138

scriptp129

#text: alert(document.URL);

659

↪ If current node is an Element
Append a U+003C LESS-THAN SIGN character character (<), followed by the element's
tag name. (For nodes created by the HTML parserp584 or Document.createElement(), the
tag name will be lowercase.)

For each attribute that the element has, append a U+0020 SPACE character, the
attribute's name (which, for attributes set by the HTML parserp584 or by
Element.setAttributeNode() or Element.setAttribute(), will be lowercase), a
U+003D EQUALS SIGN character (=), a U+0022 QUOTATION MARK character ("), the
attribute's value, escaped as described belowp660 in attribute mode, and a second
U+0022 QUOTATION MARK character (").

While the exact order of attributes is UA-defined, and may depend on factors such as the
order that the attributes were given in the original markup, the sort order must be stable,
such that consecutive invocations of this algorithm serialize an element's attributes in
the same order.

Append a U+003E GREATER-THAN SIGN character (>).

If current node is an areap280, basep114, basefontp697, bgsoundp697, brp191, colp294,
embedp217, framep705, hrp158, imgp196, inputp320, keygenp363, linkp115, metap119, paramp224, or
wbrp192 element, then continue on to the next child node at this point.

If current node is a prep158, textareap360, or listingp697 element, append a U+000A LINE
FEED (LF) character.

Append the value of running the HTML fragment serialization algorithmp659 on the current
node element (thus recursing into this algorithm for that element), followed by a U+003C
LESS-THAN SIGN character (<), a U+002F SOLIDUS character (/), the element's tag name
again, and finally a U+003E GREATER-THAN SIGN character (>).

↪ If current node is a Text or CDATASection node
If the parent of current node is a stylep126, scriptp129, xmpp697, iframep211, noembedp697,
noframesp697, or plaintextp697 element, or if the parent of current node is noscriptp136

element and scripting is enabledp514 for the node, then append the value of current
node's data IDL attribute literally.

Otherwise, append the value of current node's data IDL attribute, escaped as described
belowp660.

↪ If current node is a Comment
Append the literal string <!-- (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK,
U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS), followed by the value of current
node's data IDL attribute, followed by the literal string --> (U+002D HYPHEN-MINUS,
U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN).

↪ If current node is a ProcessingInstruction
Append the literal string <? (U+003C LESS-THAN SIGN, U+003F QUESTION MARK),
followed by the value of current node's target IDL attribute, followed by a single
U+0020 SPACE character, followed by the value of current node's data IDL attribute,
followed by a single U+003E GREATER-THAN SIGN character (>).

↪ If current node is a DocumentType
Append the literal string <!DOCTYPE (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION
MARK, U+0044 LATIN CAPITAL LETTER D, U+004F LATIN CAPITAL LETTER O, U+0043
LATIN CAPITAL LETTER C, U+0054 LATIN CAPITAL LETTER T, U+0059 LATIN CAPITAL
LETTER Y, U+0050 LATIN CAPITAL LETTER P, U+0045 LATIN CAPITAL LETTER E), followed
by a space (U+0020 SPACE), followed by the value of current node's name IDL attribute,
followed by the literal string > (U+003E GREATER-THAN SIGN).

Other node types (e.g. Attr) cannot occur as children of elements. If, despite this, they somehow
do occur, this algorithm must raise an INVALID_STATE_ERRp74 exception.

3. The result of the algorithm is the string s.

Escaping a string (for the purposes of the algorithm above) consists of replacing any occurrences of the "&"
character by the string "&", any occurrences of the U+00A0 NO-BREAK SPACE character by the string " ",
and, if the algorithm was invoked in the attribute mode, any occurrences of the """ character by the string """,

660

or if it was not, any occurrences of the "<" character by the string "<", any occurrences of the ">" character by the
string ">".

Note: Entity reference nodes are assumed to be expandedp33 by the user agent, and are therefore
not covered in the algorithm above.

Note: It is possible that the output of this algorithm, if parsed with an HTML parserp584, will not
return the original tree structure. For instance, if a textareap360 element to which a Comment node
has been appended is serialized and the output is then reparsed, the comment will end up being
displayed in the text field. Similarly, if, as a result of DOM manipulation, an element contains a
comment that contains the literal string "-->", then when the result of serializing the element is
parsed, the comment will be truncated at that point and the rest of the comment will be
interpreted as markup. More examples would be making a scriptp129 element contain a text node
with the text string "</script>", or having a pp157 element that contains a ulp162 element (as the
ulp162 element's start tagp579 would imply the end tag for the pp157).

10.4 Parsing HTML fragments

The following steps form the HTML fragment parsing algorithm. The algorithm optionally takes as input an
Elementp33 node, referred to as the context element, which gives the context for the parser, as well as input, a string
to parse, and returns a list of zero or more nodes.

Note: Parts marked fragment case in algorithms in the parser section are parts that only occur if
the parser was created for the purposes of this algorithm (and with a context element). The
algorithms have been annotated with such markings for informational purposes only; such
markings have no normative weight. If it is possible for a condition described as a fragment
casep661 to occur even when the parser wasn't created for the purposes of handling this algorithm,
then that is an error in the specification.

1. Create a new Documentp33 node, and mark it as being an HTML documentp75.

2. If there is a context element, and the Documentp33 of the context element is in quirks modep79, then let the
Documentp33 be in quirks modep79. Otherwise, if there is a context element, and the Documentp33 of the
context element is in limited-quirks modep79, then let the Documentp33 be in limited-quirks modep79.
Otherwise, leave the Documentp33 in no-quirks modep79.

3. Create a new HTML parserp584, and associate it with the just created Documentp33 node.

4. If there is a context element, run these substeps:

1. Set the state of the HTML parserp584 's tokenizationp597 stage as follows:

↪ If it is a titlep113 or textareap360 element
Switch the tokenizer to the RCDATA statep598.

↪ If it is a stylep126, xmpp697, iframep211, noembedp697, or noframesp697 element
Switch the tokenizer to the RAWTEXT statep598.

↪ If it is a scriptp129 element
Switch the tokenizer to the script data statep598.

↪ If it is a noscriptp136 element
If the scripting flagp597 is enabled, switch the tokenizer to the RAWTEXT statep598.
Otherwise, leave the tokenizer in the data statep597.

↪ If it is a plaintextp697 element
Switch the tokenizer to the PLAINTEXT statep598.

↪ Otherwise
Leave the tokenizer in the data statep597.

Note: For performance reasons, an implementation that does not report errors
and that uses the actual state machine described in this specification directly
could use the PLAINTEXT state instead of the RAWTEXT and script data states

661

where those are mentioned in the list above. Except for rules regarding parse
errors, they are equivalent, since there is no appropriate end tag tokenp597 in
the fragment case, yet they involve far fewer state transitions.

2. Let root be a new htmlp112 element with no attributes.

3. Append the element root to the Documentp33 node created above.

4. Set up the parser's stack of open elementsp594 so that it contains just the single element root.

5. Reset the parser's insertion mode appropriatelyp593.

Note: The parser will reference the context element as part of that algorithm.

6. Set the parser's form element pointerp596 to the nearest node to the context element that is a
formp314 element (going straight up the ancestor chain, and including the element itself, if it is a
formp314 element), or, if there is no such formp314 element, to null.

5. Place into the input streamp586 for the HTML parserp584 just created the input. The encoding confidencep587 is
irrelevant.

6. Start the parser and let it run until it has consumed all the characters just inserted into the input stream.

7. If there is a context element, return the child nodes of root, in tree orderp29.

Otherwise, return the children of the Documentp33 object, in tree orderp29.

10.5 Named character references

This table lists the character reference names that are supported by HTML, and the code points to which they refer. It
is referenced by the previous sections.

Name Character Glyph

AElig; U+000C6 Æ
AElig U+000C6 Æ
AMP; U+00026 &
AMP U+00026 &
Aacute; U+000C1 Á
Aacute U+000C1 Á
Abreve; U+00102 Ă
Acirc; U+000C2 Â
Acirc U+000C2 Â
Acy; U+00410 А
Afr; U+1D504 ?
Agrave; U+000C0 À
Agrave U+000C0 À
Alpha; U+00391 Α
Amacr; U+00100 Ā
And; U+02A53 ?
Aogon; U+00104 Ą
Aopf; U+1D538 𝔸
ApplyFunction; U+02061
Aring; U+000C5 Å
Aring U+000C5 Å
Ascr; U+1D49C ?
Assign; U+02254 ≔
Atilde; U+000C3 Ã
Atilde U+000C3 Ã
Auml; U+000C4 Ä
Auml U+000C4 Ä
Backslash; U+02216 ∖
Barv; U+02AE7 ?
Barwed; U+02306 ⌆
Bcy; U+00411 Б
Because; U+02235 ∵
Bernoullis; U+0212C ℬ
Beta; U+00392 Β
Bfr; U+1D505 ?
Bopf; U+1D539 𝔹
Breve; U+002D8 ˘
Bscr; U+0212C ℬ
Bumpeq; U+0224E ≎
CHcy; U+00427 Ч
COPY; U+000A9 ©
COPY U+000A9 ©
Cacute; U+00106 Ć
Cap; U+022D2 ?
CapitalDifferentialD; U+02145 ⅅ
Cayleys; U+0212D ℭ
Ccaron; U+0010C Č

Name Character Glyph

Ccedil; U+000C7 Ç
Ccedil U+000C7 Ç
Ccirc; U+00108 Ĉ
Cconint; U+02230 ∰
Cdot; U+0010A Ċ
Cedilla; U+000B8 ¸
CenterDot; U+000B7 ·
Cfr; U+0212D ℭ
Chi; U+003A7 Χ
CircleDot; U+02299 ⊙
CircleMinus; U+02296 ⊖
CirclePlus; U+02295 ⊕
CircleTimes; U+02297 ⊗
ClockwiseContourIntegral; U+02232 ∲
CloseCurlyDoubleQuote; U+0201D ”
CloseCurlyQuote; U+02019 ’
Colon; U+02237 ∷
Colone; U+02A74 ?
Congruent; U+02261 ≡
Conint; U+0222F ∯
ContourIntegral; U+0222E ∮
Copf; U+02102 ℂ
Coproduct; U+02210 ∐
CounterClockwiseContourIntegral; U+02233 ∳
Cross; U+02A2F ⨯
Cscr; U+1D49E ?
Cup; U+022D3 ?
CupCap; U+0224D ≍
DD; U+02145 ⅅ
DDotrahd; U+02911 ?
DJcy; U+00402 Ђ
DScy; U+00405 Ѕ
DZcy; U+0040F Џ
Dagger; U+02021 ‡
Darr; U+021A1 ↡
Dashv; U+02AE4 ?
Dcaron; U+0010E Ď
Dcy; U+00414 Д
Del; U+02207 ∇
Delta; U+00394 Δ
Dfr; U+1D507 ?
DiacriticalAcute; U+000B4 ´
DiacriticalDot; U+002D9 ˙
DiacriticalDoubleAcute; U+002DD ˝
DiacriticalGrave; U+00060 `
DiacriticalTilde; U+002DC ˜
Diamond; U+022C4 ⋄

Name Character Glyph

DifferentialD; U+02146 ⅆ
Dopf; U+1D53B 𝔻
Dot; U+000A8 ¨
DotDot; U+020DC ◌?
DotEqual; U+02250 ≐
DoubleContourIntegral; U+0222F ∯
DoubleDot; U+000A8 ¨
DoubleDownArrow; U+021D3 ⇓
DoubleLeftArrow; U+021D0 ⇐
DoubleLeftRightArrow; U+021D4 ⇔
DoubleLeftTee; U+02AE4 ?
DoubleLongLeftArrow; U+027F8 ⟸
DoubleLongLeftRightArrow; U+027FA ⟺
DoubleLongRightArrow; U+027F9 ⟹
DoubleRightArrow; U+021D2 ⇒
DoubleRightTee; U+022A8 ⊨
DoubleUpArrow; U+021D1 ⇑
DoubleUpDownArrow; U+021D5 ⇕
DoubleVerticalBar; U+02225 ∥
DownArrow; U+02193 ↓
DownArrowBar; U+02913 ?
DownArrowUpArrow; U+021F5 ⇵
DownBreve; U+00311 ◌̑
DownLeftRightVector; U+02950 ?
DownLeftTeeVector; U+0295E ?
DownLeftVector; U+021BD ↽
DownLeftVectorBar; U+02956 ?
DownRightTeeVector; U+0295F ?
DownRightVector; U+021C1 ⇁
DownRightVectorBar; U+02957 ?
DownTee; U+022A4 ⊤
DownTeeArrow; U+021A7 ↧
Downarrow; U+021D3 ⇓
Dscr; U+1D49F ?
Dstrok; U+00110 Đ
ENG; U+0014A Ŋ
ETH; U+000D0 Ð
ETH U+000D0 Ð
Eacute; U+000C9 É
Eacute U+000C9 É
Ecaron; U+0011A Ě
Ecirc; U+000CA Ê
Ecirc U+000CA Ê
Ecy; U+0042D Э
Edot; U+00116 Ė
Efr; U+1D508 ?
Egrave; U+000C8 È

Name Character Glyph

Egrave U+000C8 È
Element; U+02208 ∈
Emacr; U+00112 Ē
EmptySmallSquare; U+025FB ◻
EmptyVerySmallSquare; U+025AB ▫
Eogon; U+00118 Ę
Eopf; U+1D53C 𝔼
Epsilon; U+00395 Ε
Equal; U+02A75 ?
EqualTilde; U+02242 ≂
Equilibrium; U+021CC ⇌
Escr; U+02130 ℰ
Esim; U+02A73 ?
Eta; U+00397 Η
Euml; U+000CB Ë
Euml U+000CB Ë
Exists; U+02203 ∃
ExponentialE; U+02147 ⅇ
Fcy; U+00424 Ф
Ffr; U+1D509 ?
FilledSmallSquare; U+025FC ◼
FilledVerySmallSquare; U+025AA ▪
Fopf; U+1D53D 𝔽
ForAll; U+02200 ∀
Fouriertrf; U+02131 ℱ
Fscr; U+02131 ℱ
GJcy; U+00403 Ѓ
GT; U+0003E >
GT U+0003E >
Gamma; U+00393 Γ
Gammad; U+003DC Ϝ
Gbreve; U+0011E Ğ
Gcedil; U+00122 Ģ
Gcirc; U+0011C Ĝ
Gcy; U+00413 Г
Gdot; U+00120 Ġ
Gfr; U+1D50A ?
Gg; U+022D9 ⋙
Gopf; U+1D53E 𝔾
GreaterEqual; U+02265 ≥
GreaterEqualLess; U+022DB ⋛
GreaterFullEqual; U+02267 ≧
GreaterGreater; U+02AA2 ?
GreaterLess; U+02277 ≷
GreaterSlantEqual; U+02A7E ⩾
GreaterTilde; U+02273 ≳
Gscr; U+1D4A2 ?

662

Name Character Glyph

Gt; U+0226B ≫
HARDcy; U+0042A Ъ
Hacek; U+002C7 ˇ
Hat; U+0005E ^
Hcirc; U+00124 Ĥ
Hfr; U+0210C ℌ
HilbertSpace; U+0210B ℋ
Hopf; U+0210D ℍ
HorizontalLine; U+02500 ─
Hscr; U+0210B ℋ
Hstrok; U+00126 Ħ
HumpDownHump; U+0224E ≎
HumpEqual; U+0224F ≏
IEcy; U+00415 Е
IJlig; U+00132 Ĳ
IOcy; U+00401 Ё
Iacute; U+000CD Í
Iacute U+000CD Í
Icirc; U+000CE Î
Icirc U+000CE Î
Icy; U+00418 И
Idot; U+00130 İp184

Ifr; U+02111 ℑ
Igrave; U+000CC Ì
Igrave U+000CC Ì
Im; U+02111 ℑ
Imacr; U+0012A Ī
ImaginaryI; U+02148 ⅈ
Implies; U+021D2 ⇒
Int; U+0222C ∬
Integral; U+0222B ∫
Intersection; U+022C2 ⋂
InvisibleComma; U+02063
InvisibleTimes; U+02062
Iogon; U+0012E Į
Iopf; U+1D540 𝕀
Iota; U+00399 Ι
Iscr; U+02110 ℐ
Itilde; U+00128 Ĩ
Iukcy; U+00406 І
Iuml; U+000CF Ï
Iuml U+000CF Ï
Jcirc; U+00134 Ĵ
Jcy; U+00419 Й
Jfr; U+1D50D ?
Jopf; U+1D541 𝕁
Jscr; U+1D4A5 ?
Jsercy; U+00408 Ј
Jukcy; U+00404 Є
KHcy; U+00425 Х
KJcy; U+0040C Ќ
Kappa; U+0039A Κ
Kcedil; U+00136 Ķ
Kcy; U+0041A К
Kfr; U+1D50E ?
Kopf; U+1D542 𝕂
Kscr; U+1D4A6 ?
LJcy; U+00409 Љ
LT; U+0003C <
LT U+0003C <
Lacute; U+00139 Ĺ
Lambda; U+0039B Λ
Lang; U+027EA ⟪
Laplacetrf; U+02112 ℒ
Larr; U+0219E ↞
Lcaron; U+0013D Ľ
Lcedil; U+0013B Ļ
Lcy; U+0041B Л
LeftAngleBracket; U+027E8 ?
LeftArrow; U+02190 ←
LeftArrowBar; U+021E4 ⇤
LeftArrowRightArrow; U+021C6 ⇆
LeftCeiling; U+02308 ⌈
LeftDoubleBracket; U+027E6 ⟦
LeftDownTeeVector; U+02961 ?
LeftDownVector; U+021C3 ⇃
LeftDownVectorBar; U+02959 ?
LeftFloor; U+0230A ⌊
LeftRightArrow; U+02194 ↔
LeftRightVector; U+0294E ?
LeftTee; U+022A3 ⊣
LeftTeeArrow; U+021A4 ↤
LeftTeeVector; U+0295A ?
LeftTriangle; U+022B2 ⊲
LeftTriangleBar; U+029CF ⧏
LeftTriangleEqual; U+022B4 ⊴
LeftUpDownVector; U+02951 ?
LeftUpTeeVector; U+02960 ?
LeftUpVector; U+021BF ↿
LeftUpVectorBar; U+02958 ?
LeftVector; U+021BC ↼
LeftVectorBar; U+02952 ?
Leftarrow; U+021D0 ⇐
Leftrightarrow; U+021D4 ⇔

Name Character Glyph

LessEqualGreater; U+022DA ⋚
LessFullEqual; U+02266 ≦
LessGreater; U+02276 ≶
LessLess; U+02AA1 ?
LessSlantEqual; U+02A7D ⩽
LessTilde; U+02272 ≲
Lfr; U+1D50F ?
Ll; U+022D8 ⋘
Lleftarrow; U+021DA ⇚
Lmidot; U+0013F Ŀ
LongLeftArrow; U+027F5 ⟵
LongLeftRightArrow; U+027F7 ⟷
LongRightArrow; U+027F6 ⟶
Longleftarrow; U+027F8 ⟸
Longleftrightarrow; U+027FA ⟺
Longrightarrow; U+027F9 ⟹
Lopf; U+1D543 𝕃
LowerLeftArrow; U+02199 ↙
LowerRightArrow; U+02198 ↘
Lscr; U+02112 ℒ
Lsh; U+021B0 ↰
Lstrok; U+00141 Ł
Lt; U+0226A ≪
Map; U+02905 ?
Mcy; U+0041C М
MediumSpace; U+0205F
Mellintrf; U+02133 ℳ
Mfr; U+1D510 ?
MinusPlus; U+02213 ∓
Mopf; U+1D544 𝕄
Mscr; U+02133 ℳ
Mu; U+0039C Μ
NJcy; U+0040A Њ
Nacute; U+00143 Ń
Ncaron; U+00147 Ň
Ncedil; U+00145 Ņ
Ncy; U+0041D Н
NegativeMediumSpace; U+0200B
NegativeThickSpace; U+0200B
NegativeThinSpace; U+0200B
NegativeVeryThinSpace; U+0200B
NestedGreaterGreater; U+0226B ≫
NestedLessLess; U+0226A ≪
NewLine; U+0000A
Nfr; U+1D511 ?
NoBreak; U+02060
NonBreakingSpace; U+000A0
Nopf; U+02115 ℕ
Not; U+02AEC ?
NotCongruent; U+02262 ≢
NotCupCap; U+0226D ≭
NotDoubleVerticalBar; U+02226 ∦
NotElement; U+02209 ∉
NotEqual; U+02260 ≠
NotExists; U+02204 ∄
NotGreater; U+0226F ≯
NotGreaterEqual; U+02271 ≱
NotGreaterLess; U+02279 ≹
NotGreaterTilde; U+02275 ≵
NotLeftTriangle; U+022EA ⋪
NotLeftTriangleEqual; U+022EC ⋬
NotLess; U+0226E ≮
NotLessEqual; U+02270 ≰
NotLessGreater; U+02278 ≸
NotLessTilde; U+02274 ≴
NotPrecedes; U+02280 ⊀
NotPrecedesSlantEqual; U+022E0 ⋠
NotReverseElement; U+0220C ∌
NotRightTriangle; U+022EB ⋫
NotRightTriangleEqual; U+022ED ⋭
NotSquareSubsetEqual; U+022E2 ⋢
NotSquareSupersetEqual; U+022E3 ⋣
NotSubsetEqual; U+02288 ⊈
NotSucceeds; U+02281 ⊁
NotSucceedsSlantEqual; U+022E1 ⋡
NotSupersetEqual; U+02289 ⊉
NotTilde; U+02241 ≁
NotTildeEqual; U+02244 ≄
NotTildeFullEqual; U+02247 ≇
NotTildeTilde; U+02249 ≉
NotVerticalBar; U+02224 ∤
Nscr; U+1D4A9 ?
Ntilde; U+000D1 Ñ
Ntilde U+000D1 Ñ
Nu; U+0039D Ν
OElig; U+00152 Œ
Oacute; U+000D3 Ó
Oacute U+000D3 Ó
Ocirc; U+000D4 Ô
Ocirc U+000D4 Ô
Ocy; U+0041E О
Odblac; U+00150 Ő
Ofr; U+1D512 ?
Ograve; U+000D2 Ò

Name Character Glyph

Ograve U+000D2 Ò
Omacr; U+0014C Ō
Omega; U+003A9 Ω
Omicron; U+0039F Ο
Oopf; U+1D546 𝕆
OpenCurlyDoubleQuote; U+0201C “
OpenCurlyQuote; U+02018 ‘
Or; U+02A54 ?
Oscr; U+1D4AA ?
Oslash; U+000D8 Ø
Oslash U+000D8 Ø
Otilde; U+000D5 Õ
Otilde U+000D5 Õ
Otimes; U+02A37 ?
Ouml; U+000D6 Ö
Ouml U+000D6 Ö
OverBar; U+0203E ‾
OverBrace; U+023DE ?
OverBracket; U+023B4 ?
OverParenthesis; U+023DC ?
PartialD; U+02202 ∂
Pcy; U+0041F П
Pfr; U+1D513 ?
Phi; U+003A6 Φ
Pi; U+003A0 Π
PlusMinus; U+000B1 ±
Poincareplane; U+0210C ℌ
Popf; U+02119 ℙ
Pr; U+02ABB ?
Precedes; U+0227A ≺
PrecedesEqual; U+02AAF ⪯
PrecedesSlantEqual; U+0227C ≼
PrecedesTilde; U+0227E ≾
Prime; U+02033 ″
Product; U+0220F ∏
Proportion; U+02237 ∷
Proportional; U+0221D ∝
Pscr; U+1D4AB ?
Psi; U+003A8 Ψ
QUOT; U+00022 "
QUOT U+00022 "
Qfr; U+1D514 ?
Qopf; U+0211A ℚ
Qscr; U+1D4AC ?
RBarr; U+02910 ?
REG; U+000AE ®
REG U+000AE ®
Racute; U+00154 Ŕ
Rang; U+027EB ⟫
Rarr; U+021A0 ↠
Rarrtl; U+02916 ?
Rcaron; U+00158 Ř
Rcedil; U+00156 Ŗ
Rcy; U+00420 Р
Re; U+0211C ℜ
ReverseElement; U+0220B ∋
ReverseEquilibrium; U+021CB ⇋
ReverseUpEquilibrium; U+0296F ?
Rfr; U+0211C ℜ
Rho; U+003A1 Ρ
RightAngleBracket; U+027E9 ?
RightArrow; U+02192 →
RightArrowBar; U+021E5 ⇥
RightArrowLeftArrow; U+021C4 ⇄
RightCeiling; U+02309 ⌉
RightDoubleBracket; U+027E7 ⟧
RightDownTeeVector; U+0295D ?
RightDownVector; U+021C2 ⇂
RightDownVectorBar; U+02955 ?
RightFloor; U+0230B ⌋
RightTee; U+022A2 ⊢
RightTeeArrow; U+021A6 ↦
RightTeeVector; U+0295B ?
RightTriangle; U+022B3 ⊳
RightTriangleBar; U+029D0 ⧐
RightTriangleEqual; U+022B5 ⊵
RightUpDownVector; U+0294F ?
RightUpTeeVector; U+0295C ?
RightUpVector; U+021BE ↾
RightUpVectorBar; U+02954 ?
RightVector; U+021C0 ⇀
RightVectorBar; U+02953 ?
Rightarrow; U+021D2 ⇒
Ropf; U+0211D ℝ
RoundImplies; U+02970 ?
Rrightarrow; U+021DB ⇛
Rscr; U+0211B ℛ
Rsh; U+021B1 ↱
RuleDelayed; U+029F4 ?
SHCHcy; U+00429 Щ
SHcy; U+00428 Ш
SOFTcy; U+0042C Ь
Sacute; U+0015A Ś
Sc; U+02ABC ?

Name Character Glyph

Scaron; U+00160 Š
Scedil; U+0015E Ş
Scirc; U+0015C Ŝ
Scy; U+00421 С
Sfr; U+1D516 ?
ShortDownArrow; U+02193 ↓
ShortLeftArrow; U+02190 ←
ShortRightArrow; U+02192 →
ShortUpArrow; U+02191 ↑
Sigma; U+003A3 Σ
SmallCircle; U+02218 ∘
Sopf; U+1D54A 𝕊
Sqrt; U+0221A √
Square; U+025A1 □
SquareIntersection; U+02293 ⊓
SquareSubset; U+0228F ⊏
SquareSubsetEqual; U+02291 ⊑
SquareSuperset; U+02290 ⊐
SquareSupersetEqual; U+02292 ⊒
SquareUnion; U+02294 ⊔
Sscr; U+1D4AE ?
Star; U+022C6 ⋆
Sub; U+022D0 ?
Subset; U+022D0 ?
SubsetEqual; U+02286 ⊆
Succeeds; U+0227B ≻
SucceedsEqual; U+02AB0 ⪰
SucceedsSlantEqual; U+0227D ≽
SucceedsTilde; U+0227F ≿
SuchThat; U+0220B ∋
Sum; U+02211 ∑
Sup; U+022D1 ?
Superset; U+02283 ⊃
SupersetEqual; U+02287 ⊇
Supset; U+022D1 ?
THORN; U+000DE Þ
THORN U+000DE Þ
TRADE; U+02122 ™
TSHcy; U+0040B Ћ
TScy; U+00426 Ц
Tab; U+00009
Tau; U+003A4 Τ
Tcaron; U+00164 Ť
Tcedil; U+00162 Ţ
Tcy; U+00422 Т
Tfr; U+1D517 ?
Therefore; U+02234 ∴
Theta; U+00398 Θ
ThinSpace; U+02009
Tilde; U+0223C ∼
TildeEqual; U+02243 ≃
TildeFullEqual; U+02245 ≅
TildeTilde; U+02248 ≈
Topf; U+1D54B 𝕋
TripleDot; U+020DB ◌?
Tscr; U+1D4AF ?
Tstrok; U+00166 Ŧ
Uacute; U+000DA Ú
Uacute U+000DA Ú
Uarr; U+0219F ↟
Uarrocir; U+02949 ?
Ubrcy; U+0040E Ў
Ubreve; U+0016C Ŭ
Ucirc; U+000DB Û
Ucirc U+000DB Û
Ucy; U+00423 У
Udblac; U+00170 Ű
Ufr; U+1D518 ?
Ugrave; U+000D9 Ù
Ugrave U+000D9 Ù
Umacr; U+0016A Ū
UnderBar; U+0005F _
UnderBrace; U+023DF ?
UnderBracket; U+023B5 ?
UnderParenthesis; U+023DD ?
Union; U+022C3 ⋃
UnionPlus; U+0228E ⊎
Uogon; U+00172 Ų
Uopf; U+1D54C 𝕌
UpArrow; U+02191 ↑
UpArrowBar; U+02912 ?
UpArrowDownArrow; U+021C5 ⇅
UpDownArrow; U+02195 ↕
UpEquilibrium; U+0296E ?
UpTee; U+022A5 ⊥
UpTeeArrow; U+021A5 ↥
Uparrow; U+021D1 ⇑
Updownarrow; U+021D5 ⇕
UpperLeftArrow; U+02196 ↖
UpperRightArrow; U+02197 ↗
Upsi; U+003D2 ϒ
Upsilon; U+003A5 Υ
Uring; U+0016E Ů
Uscr; U+1D4B0 ?

663

Name Character Glyph

Utilde; U+00168 Ũ
Uuml; U+000DC Ü
Uuml U+000DC Ü
VDash; U+022AB ⊫
Vbar; U+02AEB ?
Vcy; U+00412 В
Vdash; U+022A9 ⊩
Vdashl; U+02AE6 ?
Vee; U+022C1 ⋁
Verbar; U+02016 ‖
Vert; U+02016 ‖
VerticalBar; U+02223 ∣
VerticalLine; U+0007C |
VerticalSeparator; U+02758 ❘
VerticalTilde; U+02240 ≀
VeryThinSpace; U+0200A
Vfr; U+1D519 ?
Vopf; U+1D54D 𝕍
Vscr; U+1D4B1 ?
Vvdash; U+022AA ⊪
Wcirc; U+00174 Ŵ
Wedge; U+022C0 ⋀
Wfr; U+1D51A ?
Wopf; U+1D54E 𝕎
Wscr; U+1D4B2 ?
Xfr; U+1D51B ?
Xi; U+0039E Ξ
Xopf; U+1D54F 𝕏
Xscr; U+1D4B3 ?
YAcy; U+0042F Я
YIcy; U+00407 Ї
YUcy; U+0042E Ю
Yacute; U+000DD Ý
Yacute U+000DD Ý
Ycirc; U+00176 Ŷ
Ycy; U+0042B Ы
Yfr; U+1D51C ?
Yopf; U+1D550 𝕐
Yscr; U+1D4B4 ?
Yuml; U+00178 Ÿ
ZHcy; U+00416 Ж
Zacute; U+00179 Ź
Zcaron; U+0017D Ž
Zcy; U+00417 З
Zdot; U+0017B Ż
ZeroWidthSpace; U+0200B
Zeta; U+00396 Ζ
Zfr; U+02128 ℨ
Zopf; U+02124 ℤ
Zscr; U+1D4B5 ?
aacute; U+000E1 á
aacute U+000E1 á
abreve; U+00103 ă
ac; U+0223E ∾
acd; U+0223F ∿
acirc; U+000E2 â
acirc U+000E2 â
acute; U+000B4 ´
acute U+000B4 ´
acy; U+00430 а
aelig; U+000E6 æ
aelig U+000E6 æ
af; U+02061
afr; U+1D51E ?
agrave; U+000E0 à
agrave U+000E0 à
alefsym; U+02135 ℵ
aleph; U+02135 ℵ
alpha; U+003B1 α
amacr; U+00101 ā
amalg; U+02A3F ?
amp; U+00026 &
amp U+00026 &
and; U+02227 ∧
andand; U+02A55 ?
andd; U+02A5C ?
andslope; U+02A58 ?
andv; U+02A5A ?
ang; U+02220 ∠
ange; U+029A4 ?
angle; U+02220 ∠
angmsd; U+02221 ∡
angmsdaa; U+029A8 ?
angmsdab; U+029A9 ?
angmsdac; U+029AA ?
angmsdad; U+029AB ?
angmsdae; U+029AC ?
angmsdaf; U+029AD ?
angmsdag; U+029AE ?
angmsdah; U+029AF ?
angrt; U+0221F ∟
angrtvb; U+022BE ⊾
angrtvbd; U+0299D ?
angsph; U+02222 ∢

Name Character Glyph

angst; U+000C5 Å
angzarr; U+0237C ?
aogon; U+00105 ą
aopf; U+1D552 𝕒
ap; U+02248 ≈
apE; U+02A70 ?
apacir; U+02A6F ?
ape; U+0224A ≊
apid; U+0224B ≋
apos; U+00027 '
approx; U+02248 ≈
approxeq; U+0224A ≊
aring; U+000E5 å
aring U+000E5 å
ascr; U+1D4B6 ?
ast; U+0002A *
asymp; U+02248 ≈
asympeq; U+0224D ≍
atilde; U+000E3 ã
atilde U+000E3 ã
auml; U+000E4 ä
auml U+000E4 ä
awconint; U+02233 ∳
awint; U+02A11 ⨑
bNot; U+02AED ?
backcong; U+0224C ≌
backepsilon; U+003F6 ϶
backprime; U+02035 ‵
backsim; U+0223D ∽
backsimeq; U+022CD ⋍
barvee; U+022BD ⊽
barwed; U+02305 ⌅
barwedge; U+02305 ⌅
bbrk; U+023B5 ?
bbrktbrk; U+023B6 ?
bcong; U+0224C ≌
bcy; U+00431 б
bdquo; U+0201E „
becaus; U+02235 ∵
because; U+02235 ∵
bemptyv; U+029B0 ?
bepsi; U+003F6 ϶
bernou; U+0212C ℬ
beta; U+003B2 β
beth; U+02136 ℶ
between; U+0226C ≬
bfr; U+1D51F ?
bigcap; U+022C2 ⋂
bigcirc; U+025EF ◯
bigcup; U+022C3 ⋃
bigodot; U+02A00 ⨀
bigoplus; U+02A01 ⨁
bigotimes; U+02A02 ⨂
bigsqcup; U+02A06 ?
bigstar; U+02605 ★
bigtriangledown; U+025BD ▽
bigtriangleup; U+025B3 △
biguplus; U+02A04 ?
bigvee; U+022C1 ⋁
bigwedge; U+022C0 ⋀
bkarow; U+0290D ?
blacklozenge; U+029EB ⧫
blacksquare; U+025AA ▪
blacktriangle; U+025B4 ▴
blacktriangledown; U+025BE ▾
blacktriangleleft; U+025C2 ◂
blacktriangleright; U+025B8 ▸
blank; U+02423 ␣
blk12; U+02592 ▒
blk14; U+02591 ░
blk34; U+02593 ▓
block; U+02588 █
bnot; U+02310 ⌐
bopf; U+1D553 𝕓
bot; U+022A5 ⊥
bottom; U+022A5 ⊥
bowtie; U+022C8 ⋈
boxDL; U+02557 ╗
boxDR; U+02554 ╔
boxDl; U+02556 ╖
boxDr; U+02553 ╓
boxH; U+02550 ═
boxHD; U+02566 ╦
boxHU; U+02569 ╩
boxHd; U+02564 ╤
boxHu; U+02567 ╧
boxUL; U+0255D ╝
boxUR; U+0255A ╚
boxUl; U+0255C ╜
boxUr; U+02559 ╙
boxV; U+02551 ║
boxVH; U+0256C ╬
boxVL; U+02563 ╣
boxVR; U+02560 ╠

Name Character Glyph

boxVh; U+0256B ╫
boxVl; U+02562 ╢
boxVr; U+0255F ╟
boxbox; U+029C9 ?
boxdL; U+02555 ╕
boxdR; U+02552 ╒
boxdl; U+02510 ┐
boxdr; U+0250C ┌
boxh; U+02500 ─
boxhD; U+02565 ╥
boxhU; U+02568 ╨
boxhd; U+0252C ┬
boxhu; U+02534 ┴
boxminus; U+0229F ⊟
boxplus; U+0229E ⊞
boxtimes; U+022A0 ⊠
boxuL; U+0255B ╛
boxuR; U+02558 ╘
boxul; U+02518 ┘
boxur; U+02514 └
boxv; U+02502 │
boxvH; U+0256A ╪
boxvL; U+02561 ╡
boxvR; U+0255E ╞
boxvh; U+0253C ┼
boxvl; U+02524 ┤
boxvr; U+0251C ├
bprime; U+02035 ‵
breve; U+002D8 ˘
brvbar; U+000A6 ¦
brvbar U+000A6 ¦
bscr; U+1D4B7 ?
bsemi; U+0204F ⁏
bsim; U+0223D ∽
bsime; U+022CD ⋍
bsol; U+0005C \
bsolb; U+029C5 ?
bsolhsub; U+027C8 ?
bull; U+02022 •
bullet; U+02022 •
bump; U+0224E ≎
bumpE; U+02AAE ⪮
bumpe; U+0224F ≏
bumpeq; U+0224F ≏
cacute; U+00107 ć
cap; U+02229 ∩
capand; U+02A44 ?
capbrcup; U+02A49 ?
capcap; U+02A4B ?
capcup; U+02A47 ?
capdot; U+02A40 ?
caret; U+02041 ⁁
caron; U+002C7 ˇ
ccaps; U+02A4D ?
ccaron; U+0010D č
ccedil; U+000E7 ç
ccedil U+000E7 ç
ccirc; U+00109 ĉ
ccups; U+02A4C ?
ccupssm; U+02A50 ?
cdot; U+0010B ċ
cedil; U+000B8 ¸
cedil U+000B8 ¸
cemptyv; U+029B2 ?
cent; U+000A2 ¢
cent U+000A2 ¢
centerdot; U+000B7 ·
cfr; U+1D520 ?
chcy; U+00447 ч
check; U+02713 ✓
checkmark; U+02713 ✓
chi; U+003C7 χ
cir; U+025CB ○
cirE; U+029C3 ?
circ; U+002C6 ˆ
circeq; U+02257 ≗
circlearrowleft; U+021BA ↺
circlearrowright; U+021BB ↻
circledR; U+000AE ®
circledS; U+024C8 ?
circledast; U+0229B ⊛
circledcirc; U+0229A ⊚
circleddash; U+0229D ⊝
cire; U+02257 ≗
cirfnint; U+02A10 ⨐
cirmid; U+02AEF ?
cirscir; U+029C2 ?
clubs; U+02663 ♣
clubsuit; U+02663 ♣
colon; U+0003A :
colone; U+02254 ≔
coloneq; U+02254 ≔
comma; U+0002C ,
commat; U+00040 @

Name Character Glyph

comp; U+02201 ∁
compfn; U+02218 ∘
complement; U+02201 ∁
complexes; U+02102 ℂ
cong; U+02245 ≅
congdot; U+02A6D ?
conint; U+0222E ∮
copf; U+1D554 𝕔
coprod; U+02210 ∐
copy; U+000A9 ©
copy U+000A9 ©
copysr; U+02117 ℗
crarr; U+021B5 ↵
cross; U+02717 ✗
cscr; U+1D4B8 ?
csub; U+02ACF ?
csube; U+02AD1 ?
csup; U+02AD0 ?
csupe; U+02AD2 ?
ctdot; U+022EF ⋯
cudarrl; U+02938 ?
cudarrr; U+02935 ?
cuepr; U+022DE ⋞
cuesc; U+022DF ⋟
cularr; U+021B6 ↶
cularrp; U+0293D ?
cup; U+0222A ∪
cupbrcap; U+02A48 ?
cupcap; U+02A46 ?
cupcup; U+02A4A ?
cupdot; U+0228D ⊍
cupor; U+02A45 ?
curarr; U+021B7 ↷
curarrm; U+0293C ?
curlyeqprec; U+022DE ⋞
curlyeqsucc; U+022DF ⋟
curlyvee; U+022CE ?
curlywedge; U+022CF ?
curren; U+000A4 ¤
curren U+000A4 ¤
curvearrowleft; U+021B6 ↶
curvearrowright; U+021B7 ↷
cuvee; U+022CE ?
cuwed; U+022CF ?
cwconint; U+02232 ∲
cwint; U+02231 ∱
cylcty; U+0232D ?
dArr; U+021D3 ⇓
dHar; U+02965 ?
dagger; U+02020 †
daleth; U+02138 ℸ
darr; U+02193 ↓
dash; U+02010 ‐
dashv; U+022A3 ⊣
dbkarow; U+0290F ?
dblac; U+002DD ˝
dcaron; U+0010F ď
dcy; U+00434 д
dd; U+02146 ⅆ
ddagger; U+02021 ‡
ddarr; U+021CA ⇊
ddotseq; U+02A77 ?
deg; U+000B0 °
deg U+000B0 °
delta; U+003B4 δ
demptyv; U+029B1 ?
dfisht; U+0297F ?
dfr; U+1D521 ?
dharl; U+021C3 ⇃
dharr; U+021C2 ⇂
diam; U+022C4 ⋄
diamond; U+022C4 ⋄
diamondsuit; U+02666 ♦
diams; U+02666 ♦
die; U+000A8 ¨
digamma; U+003DD ϝ
disin; U+022F2 ⋲
div; U+000F7 ÷
divide; U+000F7 ÷
divide U+000F7 ÷
divideontimes; U+022C7 ?
divonx; U+022C7 ?
djcy; U+00452 ђ
dlcorn; U+0231E ⌞
dlcrop; U+0230D ⌍
dollar; U+00024 $
dopf; U+1D555 𝕕
dot; U+002D9 ˙
doteq; U+02250 ≐
doteqdot; U+02251 ≑
dotminus; U+02238 ∸
dotplus; U+02214 ∔
dotsquare; U+022A1 ⊡
doublebarwedge; U+02306 ⌆

664

Name Character Glyph

downarrow; U+02193 ↓
downdownarrows; U+021CA ⇊
downharpoonleft; U+021C3 ⇃
downharpoonright; U+021C2 ⇂
drbkarow; U+02910 ?
drcorn; U+0231F ⌟
drcrop; U+0230C ⌌
dscr; U+1D4B9 ?
dscy; U+00455 ѕ
dsol; U+029F6 ?
dstrok; U+00111 đ
dtdot; U+022F1 ⋱
dtri; U+025BF ▿
dtrif; U+025BE ▾
duarr; U+021F5 ⇵
duhar; U+0296F ?
dwangle; U+029A6 ?
dzcy; U+0045F џ
dzigrarr; U+027FF ⟿
eDDot; U+02A77 ?
eDot; U+02251 ≑
eacute; U+000E9 é
eacute U+000E9 é
easter; U+02A6E ?
ecaron; U+0011B ě
ecir; U+02256 ≖
ecirc; U+000EA ê
ecirc U+000EA ê
ecolon; U+02255 ≕
ecy; U+0044D э
edot; U+00117 ė
ee; U+02147 ⅇ
efDot; U+02252 ≒
efr; U+1D522 ?
eg; U+02A9A ⪚
egrave; U+000E8 è
egrave U+000E8 è
egs; U+02A96 ⪖
egsdot; U+02A98 ⪘
el; U+02A99 ⪙
elinters; U+023E7 ?
ell; U+02113 ℓ
els; U+02A95 ⪕
elsdot; U+02A97 ⪗
emacr; U+00113 ē
empty; U+02205 ∅
emptyset; U+02205 ∅
emptyv; U+02205 ∅
emsp13; U+02004
emsp14; U+02005
emsp; U+02003
eng; U+0014B ŋ
ensp; U+02002
eogon; U+00119 ę
eopf; U+1D556 𝕖
epar; U+022D5 ?
eparsl; U+029E3 ?
eplus; U+02A71 ?
epsi; U+003B5 ε
epsilon; U+003B5 ε
epsiv; U+003F5 ϵ
eqcirc; U+02256 ≖
eqcolon; U+02255 ≕
eqsim; U+02242 ≂
eqslantgtr; U+02A96 ⪖
eqslantless; U+02A95 ⪕
equals; U+0003D =
equest; U+0225F ≟
equiv; U+02261 ≡
equivDD; U+02A78 ?
eqvparsl; U+029E5 ?
erDot; U+02253 ≓
erarr; U+02971 ?
escr; U+0212F ℯ
esdot; U+02250 ≐
esim; U+02242 ≂
eta; U+003B7 η
eth; U+000F0 ð
eth U+000F0 ð
euml; U+000EB ë
euml U+000EB ë
euro; U+020AC €
excl; U+00021 !
exist; U+02203 ∃
expectation; U+02130 ℰ
exponentiale; U+02147 ⅇ
fallingdotseq; U+02252 ≒
fcy; U+00444 ф
female; U+02640 ♀
ffilig; U+0FB03 ffi
fflig; U+0FB00 ff
ffllig; U+0FB04 ffl
ffr; U+1D523 ?
filig; U+0FB01 fi

Name Character Glyph

flat; U+0266D ♭
fllig; U+0FB02 fl
fltns; U+025B1 ▱
fnof; U+00192 ƒ
fopf; U+1D557 𝕗
forall; U+02200 ∀
fork; U+022D4 ?
forkv; U+02AD9 ?
fpartint; U+02A0D ⨍
frac12; U+000BD ½
frac12 U+000BD ½
frac13; U+02153 ⅓
frac14; U+000BC ¼
frac14 U+000BC ¼
frac15; U+02155 ⅕
frac16; U+02159 ⅙
frac18; U+0215B ⅛
frac23; U+02154 ⅔
frac25; U+02156 ⅖
frac34; U+000BE ¾
frac34 U+000BE ¾
frac35; U+02157 ⅗
frac38; U+0215C ⅜
frac45; U+02158 ⅘
frac56; U+0215A ⅚
frac58; U+0215D ⅝
frac78; U+0215E ⅞
frasl; U+02044 ⁄
frown; U+02322 ?
fscr; U+1D4BB ?
gE; U+02267 ≧
gEl; U+02A8C ⪌
gacute; U+001F5 ǵ
gamma; U+003B3 γ
gammad; U+003DD ϝ
gap; U+02A86 ⪆
gbreve; U+0011F ğ
gcirc; U+0011D ĝ
gcy; U+00433 г
gdot; U+00121 ġ
ge; U+02265 ≥
gel; U+022DB ⋛
geq; U+02265 ≥
geqq; U+02267 ≧
geqslant; U+02A7E ⩾
ges; U+02A7E ⩾
gescc; U+02AA9 ?
gesdot; U+02A80 ⪀
gesdoto; U+02A82 ⪂
gesdotol; U+02A84 ⪄
gesles; U+02A94 ⪔
gfr; U+1D524 ?
gg; U+0226B ≫
ggg; U+022D9 ⋙
gimel; U+02137 ℷ
gjcy; U+00453 ѓ
gl; U+02277 ≷
glE; U+02A92 ⪒
gla; U+02AA5 ?
glj; U+02AA4 ?
gnE; U+02269 ≩
gnap; U+02A8A ⪊
gnapprox; U+02A8A ⪊
gne; U+02A88 ⪈
gneq; U+02A88 ⪈
gneqq; U+02269 ≩
gnsim; U+022E7 ⋧
gopf; U+1D558 𝕘
grave; U+00060 `
gscr; U+0210A g
gsim; U+02273 ≳
gsime; U+02A8E ⪎
gsiml; U+02A90 ⪐
gt; U+0003E >
gt U+0003E >
gtcc; U+02AA7 ?
gtcir; U+02A7A ?
gtdot; U+022D7 ⋗
gtlPar; U+02995 ?
gtquest; U+02A7C ?
gtrapprox; U+02A86 ⪆
gtrarr; U+02978 ?
gtrdot; U+022D7 ⋗
gtreqless; U+022DB ⋛
gtreqqless; U+02A8C ⪌
gtrless; U+02277 ≷
gtrsim; U+02273 ≳
hArr; U+021D4 ⇔
hairsp; U+0200A
half; U+000BD ½
hamilt; U+0210B ℋ
hardcy; U+0044A ъ
harr; U+02194 ↔
harrcir; U+02948 ?

Name Character Glyph

harrw; U+021AD ↭
hbar; U+0210F ℏ
hcirc; U+00125 ĥ
hearts; U+02665 ♥
heartsuit; U+02665 ♥
hellip; U+02026 …
hercon; U+022B9 ⊹
hfr; U+1D525 ?
hksearow; U+02925 ?
hkswarow; U+02926 ?
hoarr; U+021FF ⇿
homtht; U+0223B ∻
hookleftarrow; U+021A9 ↩
hookrightarrow; U+021AA ↪
hopf; U+1D559 𝕙
horbar; U+02015 ―
hscr; U+1D4BD ?
hslash; U+0210F ℏ
hstrok; U+00127 ħ
hybull; U+02043 ⁃
hyphen; U+02010 ‐
iacute; U+000ED í
iacute U+000ED í
ic; U+02063
icirc; U+000EE î
icirc U+000EE î
icy; U+00438 и
iecy; U+00435 е
iexcl; U+000A1 ¡
iexcl U+000A1 ¡
iff; U+021D4 ⇔
ifr; U+1D526 ?
igrave; U+000EC ì
igrave U+000EC ì
ii; U+02148 ⅈ
iiiint; U+02A0C ⨌
iiint; U+0222D ∭
iinfin; U+029DC ?
iiota; U+02129 ℩
ijlig; U+00133 ĳ
imacr; U+0012B ī
image; U+02111 ℑ
imagline; U+02110 ℐ
imagpart; U+02111 ℑ
imath; U+00131 ı
imof; U+022B7 ⊷
imped; U+001B5 Ƶ
in; U+02208 ∈
incare; U+02105 ℅
infin; U+0221E ∞
infintie; U+029DD ?
inodot; U+00131 ı
int; U+0222B ∫
intcal; U+022BA ⊺
integers; U+02124 ℤ
intercal; U+022BA ⊺
intlarhk; U+02A17 ⨗
intprod; U+02A3C ?
iocy; U+00451 ё
iogon; U+0012F į
iopf; U+1D55A 𝕚
iota; U+003B9 ι
iprod; U+02A3C ?
iquest; U+000BF ¿
iquest U+000BF ¿
iscr; U+1D4BE ?
isin; U+02208 ∈
isinE; U+022F9 ⋹
isindot; U+022F5 ⋵
isins; U+022F4 ⋴
isinsv; U+022F3 ⋳
isinv; U+02208 ∈
it; U+02062
itilde; U+00129 ĩ
iukcy; U+00456 і
iuml; U+000EF ï
iuml U+000EF ï
jcirc; U+00135 ĵ
jcy; U+00439 й
jfr; U+1D527 ?
jmath; U+00237 ȷ
jopf; U+1D55B 𝕛
jscr; U+1D4BF ?
jsercy; U+00458 ј
jukcy; U+00454 є
kappa; U+003BA κ
kappav; U+003F0 ϰ
kcedil; U+00137 ķ
kcy; U+0043A к
kfr; U+1D528 ?
kgreen; U+00138 ĸ
khcy; U+00445 х
kjcy; U+0045C ќ
kopf; U+1D55C 𝕜

Name Character Glyph

kscr; U+1D4C0 ?
lAarr; U+021DA ⇚
lArr; U+021D0 ⇐
lAtail; U+0291B ?
lBarr; U+0290E ?
lE; U+02266 ≦
lEg; U+02A8B ⪋
lHar; U+02962 ?
lacute; U+0013A ĺ
laemptyv; U+029B4 ?
lagran; U+02112 ℒ
lambda; U+003BB λ
lang; U+027E8 ?
langd; U+02991 ?
langle; U+027E8 ?
lap; U+02A85 ⪅
laquo; U+000AB «
laquo U+000AB «
larr; U+02190 ←
larrb; U+021E4 ⇤
larrbfs; U+0291F ?
larrfs; U+0291D ?
larrhk; U+021A9 ↩
larrlp; U+021AB ↫
larrpl; U+02939 ?
larrsim; U+02973 ?
larrtl; U+021A2 ↢
lat; U+02AAB ?
latail; U+02919 ?
late; U+02AAD ?
lbarr; U+0290C ?
lbbrk; U+02772 ❲
lbrace; U+0007B {
lbrack; U+0005B [
lbrke; U+0298B ?
lbrksld; U+0298F ?
lbrkslu; U+0298D ?
lcaron; U+0013E ľ
lcedil; U+0013C ļ
lceil; U+02308 ⌈
lcub; U+0007B {
lcy; U+0043B л
ldca; U+02936 ?
ldquo; U+0201C “
ldquor; U+0201E „
ldrdhar; U+02967 ?
ldrushar; U+0294B ?
ldsh; U+021B2 ↲
le; U+02264 ≤
leftarrow; U+02190 ←
leftarrowtail; U+021A2 ↢
leftharpoondown; U+021BD ↽
leftharpoonup; U+021BC ↼
leftleftarrows; U+021C7 ⇇
leftrightarrow; U+02194 ↔
leftrightarrows; U+021C6 ⇆
leftrightharpoons; U+021CB ⇋
leftrightsquigarrow; U+021AD ↭
leftthreetimes; U+022CB ⋋
leg; U+022DA ⋚
leq; U+02264 ≤
leqq; U+02266 ≦
leqslant; U+02A7D ⩽
les; U+02A7D ⩽
lescc; U+02AA8 ?
lesdot; U+02A7F ⩿
lesdoto; U+02A81 ⪁
lesdotor; U+02A83 ⪃
lesges; U+02A93 ⪓
lessapprox; U+02A85 ⪅
lessdot; U+022D6 ⋖
lesseqgtr; U+022DA ⋚
lesseqqgtr; U+02A8B ⪋
lessgtr; U+02276 ≶
lesssim; U+02272 ≲
lfisht; U+0297C ?
lfloor; U+0230A ⌊
lfr; U+1D529 ?
lg; U+02276 ≶
lgE; U+02A91 ⪑
lhard; U+021BD ↽
lharu; U+021BC ↼
lharul; U+0296A ?
lhblk; U+02584 ▄
ljcy; U+00459 љ
ll; U+0226A ≪
llarr; U+021C7 ⇇
llcorner; U+0231E ⌞
llhard; U+0296B ?
lltri; U+025FA ◺
lmidot; U+00140 ŀ
lmoust; U+023B0 ?
lmoustache; U+023B0 ?
lnE; U+02268 ≨

665

Name Character Glyph

lnap; U+02A89 ⪉
lnapprox; U+02A89 ⪉
lne; U+02A87 ⪇
lneq; U+02A87 ⪇
lneqq; U+02268 ≨
lnsim; U+022E6 ⋦
loang; U+027EC ?
loarr; U+021FD ⇽
lobrk; U+027E6 ⟦
longleftarrow; U+027F5 ⟵
longleftrightarrow; U+027F7 ⟷
longmapsto; U+027FC ⟼
longrightarrow; U+027F6 ⟶
looparrowleft; U+021AB ↫
looparrowright; U+021AC ↬
lopar; U+02985 ?
lopf; U+1D55D 𝕝
loplus; U+02A2D ?
lotimes; U+02A34 ?
lowast; U+02217 ∗
lowbar; U+0005F _
loz; U+025CA ◊
lozenge; U+025CA ◊
lozf; U+029EB ⧫
lpar; U+00028 (
lparlt; U+02993 ?
lrarr; U+021C6 ⇆
lrcorner; U+0231F ⌟
lrhar; U+021CB ⇋
lrhard; U+0296D ?
lrm; U+0200E
lrtri; U+022BF ⊿
lsaquo; U+02039 ‹
lscr; U+1D4C1 ?
lsh; U+021B0 ↰
lsim; U+02272 ≲
lsime; U+02A8D ⪍
lsimg; U+02A8F ⪏
lsqb; U+0005B [
lsquo; U+02018 ‘
lsquor; U+0201A ‚
lstrok; U+00142 ł
lt; U+0003C <
lt U+0003C <
ltcc; U+02AA6 ?
ltcir; U+02A79 ?
ltdot; U+022D6 ⋖
lthree; U+022CB ⋋
ltimes; U+022C9 ⋉
ltlarr; U+02976 ?
ltquest; U+02A7B ?
ltrPar; U+02996 ?
ltri; U+025C3 ◃
ltrie; U+022B4 ⊴
ltrif; U+025C2 ◂
lurdshar; U+0294A ?
luruhar; U+02966 ?
mDDot; U+0223A ∺
macr; U+000AF ¯
macr U+000AF ¯
male; U+02642 ♂
malt; U+02720 ✠
maltese; U+02720 ✠
map; U+021A6 ↦
mapsto; U+021A6 ↦
mapstodown; U+021A7 ↧
mapstoleft; U+021A4 ↤
mapstoup; U+021A5 ↥
marker; U+025AE ▮
mcomma; U+02A29 ?
mcy; U+0043C м
mdash; U+02014 —
measuredangle; U+02221 ∡
mfr; U+1D52A ?
mho; U+02127 ℧
micro; U+000B5 µ
micro U+000B5 µ
mid; U+02223 ∣
midast; U+0002A *
midcir; U+02AF0 ?
middot; U+000B7 ·
middot U+000B7 ·
minus; U+02212 −
minusb; U+0229F ⊟
minusd; U+02238 ∸
minusdu; U+02A2A ?
mlcp; U+02ADB ?
mldr; U+02026 …
mnplus; U+02213 ∓
models; U+022A7 ⊧
mopf; U+1D55E 𝕞
mp; U+02213 ∓
mscr; U+1D4C2 ?
mstpos; U+0223E ∾

Name Character Glyph

mu; U+003BC μ
multimap; U+022B8 ⊸
mumap; U+022B8 ⊸
nLeftarrow; U+021CD ⇍
nLeftrightarrow; U+021CE ⇎
nRightarrow; U+021CF ⇏
nVDash; U+022AF ⊯
nVdash; U+022AE ⊮
nabla; U+02207 ∇
nacute; U+00144 ń
nap; U+02249 ≉
napos; U+00149 ŉ
napprox; U+02249 ≉
natur; U+0266E ♮
natural; U+0266E ♮
naturals; U+02115 ℕ
nbsp; U+000A0
nbsp U+000A0
ncap; U+02A43 ?
ncaron; U+00148 ň
ncedil; U+00146 ņ
ncong; U+02247 ≇
ncup; U+02A42 ?
ncy; U+0043D н
ndash; U+02013 –
ne; U+02260 ≠
neArr; U+021D7 ⇗
nearhk; U+02924 ?
nearr; U+02197 ↗
nearrow; U+02197 ↗
nequiv; U+02262 ≢
nesear; U+02928 ?
nexist; U+02204 ∄
nexists; U+02204 ∄
nfr; U+1D52B ?
nge; U+02271 ≱
ngeq; U+02271 ≱
ngsim; U+02275 ≵
ngt; U+0226F ≯
ngtr; U+0226F ≯
nhArr; U+021CE ⇎
nharr; U+021AE ↮
nhpar; U+02AF2 ?
ni; U+0220B ∋
nis; U+022FC ⋼
nisd; U+022FA ⋺
niv; U+0220B ∋
njcy; U+0045A њ
nlArr; U+021CD ⇍
nlarr; U+0219A ↚
nldr; U+02025 ‥
nle; U+02270 ≰
nleftarrow; U+0219A ↚
nleftrightarrow; U+021AE ↮
nleq; U+02270 ≰
nless; U+0226E ≮
nlsim; U+02274 ≴
nlt; U+0226E ≮
nltri; U+022EA ⋪
nltrie; U+022EC ⋬
nmid; U+02224 ∤
nopf; U+1D55F 𝕟
not; U+000AC ¬
not U+000AC ¬
notin; U+02209 ∉
notinva; U+02209 ∉
notinvb; U+022F7 ⋷
notinvc; U+022F6 ⋶
notni; U+0220C ∌
notniva; U+0220C ∌
notnivb; U+022FE ⋾
notnivc; U+022FD ⋽
npar; U+02226 ∦
nparallel; U+02226 ∦
npolint; U+02A14 ⨔
npr; U+02280 ⊀
nprcue; U+022E0 ⋠
nprec; U+02280 ⊀
nrArr; U+021CF ⇏
nrarr; U+0219B ↛
nrightarrow; U+0219B ↛
nrtri; U+022EB ⋫
nrtrie; U+022ED ⋭
nsc; U+02281 ⊁
nsccue; U+022E1 ⋡
nscr; U+1D4C3 ?
nshortmid; U+02224 ∤
nshortparallel; U+02226 ∦
nsim; U+02241 ≁
nsime; U+02244 ≄
nsimeq; U+02244 ≄
nsmid; U+02224 ∤
nspar; U+02226 ∦
nsqsube; U+022E2 ⋢

Name Character Glyph

nsqsupe; U+022E3 ⋣
nsub; U+02284 ⊄
nsube; U+02288 ⊈
nsubseteq; U+02288 ⊈
nsucc; U+02281 ⊁
nsup; U+02285 ⊅
nsupe; U+02289 ⊉
nsupseteq; U+02289 ⊉
ntgl; U+02279 ≹
ntilde; U+000F1 ñ
ntilde U+000F1 ñ
ntlg; U+02278 ≸
ntriangleleft; U+022EA ⋪
ntrianglelefteq; U+022EC ⋬
ntriangleright; U+022EB ⋫
ntrianglerighteq; U+022ED ⋭
nu; U+003BD ν
num; U+00023 #
numero; U+02116 №
numsp; U+02007  
nvDash; U+022AD ⊭
nvHarr; U+02904 ?
nvdash; U+022AC ⊬
nvinfin; U+029DE ?
nvlArr; U+02902 ?
nvrArr; U+02903 ?
nwArr; U+021D6 ⇖
nwarhk; U+02923 ?
nwarr; U+02196 ↖
nwarrow; U+02196 ↖
nwnear; U+02927 ?
oS; U+024C8 ?
oacute; U+000F3 ó
oacute U+000F3 ó
oast; U+0229B ⊛
ocir; U+0229A ⊚
ocirc; U+000F4 ô
ocirc U+000F4 ô
ocy; U+0043E о
odash; U+0229D ⊝
odblac; U+00151 ő
odiv; U+02A38 ?
odot; U+02299 ⊙
odsold; U+029BC ?
oelig; U+00153 œ
ofcir; U+029BF ?
ofr; U+1D52C ?
ogon; U+002DB ˛
ograve; U+000F2 ò
ograve U+000F2 ò
ogt; U+029C1 ?
ohbar; U+029B5 ?
ohm; U+003A9 Ω
oint; U+0222E ∮
olarr; U+021BA ↺
olcir; U+029BE ?
olcross; U+029BB ?
oline; U+0203E ‾
olt; U+029C0 ?
omacr; U+0014D ō
omega; U+003C9 ω
omicron; U+003BF ο
omid; U+029B6 ?
ominus; U+02296 ⊖
oopf; U+1D560 𝕠
opar; U+029B7 ?
operp; U+029B9 ?
oplus; U+02295 ⊕
or; U+02228 ∨
orarr; U+021BB ↻
ord; U+02A5D ?
order; U+02134 ℴ
orderof; U+02134 ℴ
ordf; U+000AA ª
ordf U+000AA ª
ordm; U+000BA º
ordm U+000BA º
origof; U+022B6 ⊶
oror; U+02A56 ?
orslope; U+02A57 ?
orv; U+02A5B ?
oscr; U+02134 ℴ
oslash; U+000F8 ø
oslash U+000F8 ø
osol; U+02298 ⊘
otilde; U+000F5 õ
otilde U+000F5 õ
otimes; U+02297 ⊗
otimesas; U+02A36 ?
ouml; U+000F6 ö
ouml U+000F6 ö
ovbar; U+0233D ?
par; U+02225 ∥
para; U+000B6 ¶

Name Character Glyph

para U+000B6 ¶
parallel; U+02225 ∥
parsim; U+02AF3 ?
parsl; U+02AFD ?
part; U+02202 ∂
pcy; U+0043F п
percnt; U+00025 %
period; U+0002E .
permil; U+02030 ‰
perp; U+022A5 ⊥
pertenk; U+02031 ‱
pfr; U+1D52D ?
phi; U+003C6 φ
phiv; U+003D5 ϕ
phmmat; U+02133 ℳ
phone; U+0260E ☎
pi; U+003C0 π
pitchfork; U+022D4 ?
piv; U+003D6 ϖ
planck; U+0210F ℏ
planckh; U+0210E ℎ
plankv; U+0210F ℏ
plus; U+0002B +
plusacir; U+02A23 ?
plusb; U+0229E ⊞
pluscir; U+02A22 ?
plusdo; U+02214 ∔
plusdu; U+02A25 ?
pluse; U+02A72 ?
plusmn; U+000B1 ±
plusmn U+000B1 ±
plussim; U+02A26 ?
plustwo; U+02A27 ?
pm; U+000B1 ±
pointint; U+02A15 ⨕
popf; U+1D561 𝕡
pound; U+000A3 £
pound U+000A3 £
pr; U+0227A ≺
prE; U+02AB3 ⪳
prap; U+02AB7 ⪷
prcue; U+0227C ≼
pre; U+02AAF ⪯
prec; U+0227A ≺
precapprox; U+02AB7 ⪷
preccurlyeq; U+0227C ≼
preceq; U+02AAF ⪯
precnapprox; U+02AB9 ⪹
precneqq; U+02AB5 ⪵
precnsim; U+022E8 ⋨
precsim; U+0227E ≾
prime; U+02032 ′
primes; U+02119 ℙ
prnE; U+02AB5 ⪵
prnap; U+02AB9 ⪹
prnsim; U+022E8 ⋨
prod; U+0220F ∏
profalar; U+0232E ?
profline; U+02312 ⌒

profsurf; U+02313 ?
prop; U+0221D ∝
propto; U+0221D ∝
prsim; U+0227E ≾
prurel; U+022B0 ?
pscr; U+1D4C5 ?
psi; U+003C8 ψ
puncsp; U+02008
qfr; U+1D52E ?
qint; U+02A0C ⨌
qopf; U+1D562 𝕢
qprime; U+02057 ⁗
qscr; U+1D4C6 ?
quaternions; U+0210D ℍ
quatint; U+02A16 ⨖
quest; U+0003F ?
questeq; U+0225F ≟
quot; U+00022 "
quot U+00022 "
rAarr; U+021DB ⇛
rArr; U+021D2 ⇒
rAtail; U+0291C ?
rBarr; U+0290F ?
rHar; U+02964 ?
racute; U+00155 ŕ
radic; U+0221A √
raemptyv; U+029B3 ?
rang; U+027E9 ?
rangd; U+02992 ?
range; U+029A5 ?
rangle; U+027E9 ?
raquo; U+000BB »
raquo U+000BB »
rarr; U+02192 →
rarrap; U+02975 ?

666

Name Character Glyph

rarrb; U+021E5 ⇥
rarrbfs; U+02920 ?
rarrc; U+02933 ?
rarrfs; U+0291E ?
rarrhk; U+021AA ↪
rarrlp; U+021AC ↬
rarrpl; U+02945 ?
rarrsim; U+02974 ?
rarrtl; U+021A3 ↣
rarrw; U+0219D ↝
ratail; U+0291A ?
ratio; U+02236 ∶
rationals; U+0211A ℚ
rbarr; U+0290D ?
rbbrk; U+02773 ❳
rbrace; U+0007D }
rbrack; U+0005D]
rbrke; U+0298C ?
rbrksld; U+0298E ?
rbrkslu; U+02990 ?
rcaron; U+00159 ř
rcedil; U+00157 ŗ
rceil; U+02309 ⌉
rcub; U+0007D }
rcy; U+00440 р
rdca; U+02937 ?
rdldhar; U+02969 ?
rdquo; U+0201D ”
rdquor; U+0201D ”
rdsh; U+021B3 ↳
real; U+0211C ℜ
realine; U+0211B ℛ
realpart; U+0211C ℜ
reals; U+0211D ℝ
rect; U+025AD ▭
reg; U+000AE ®
reg U+000AE ®
rfisht; U+0297D ?
rfloor; U+0230B ⌋
rfr; U+1D52F ?
rhard; U+021C1 ⇁
rharu; U+021C0 ⇀
rharul; U+0296C ?
rho; U+003C1 ρ
rhov; U+003F1 ϱ
rightarrow; U+02192 →
rightarrowtail; U+021A3 ↣
rightharpoondown; U+021C1 ⇁
rightharpoonup; U+021C0 ⇀
rightleftarrows; U+021C4 ⇄
rightleftharpoons; U+021CC ⇌
rightrightarrows; U+021C9 ⇉
rightsquigarrow; U+0219D ↝
rightthreetimes; U+022CC ⋌
ring; U+002DA ˚
risingdotseq; U+02253 ≓
rlarr; U+021C4 ⇄
rlhar; U+021CC ⇌
rlm; U+0200F
rmoust; U+023B1 ?
rmoustache; U+023B1 ?
rnmid; U+02AEE ?
roang; U+027ED ?
roarr; U+021FE ⇾
robrk; U+027E7 ⟧
ropar; U+02986 ?
ropf; U+1D563 𝕣
roplus; U+02A2E ?
rotimes; U+02A35 ?
rpar; U+00029)
rpargt; U+02994 ?
rppolint; U+02A12 ⨒
rrarr; U+021C9 ⇉
rsaquo; U+0203A ›
rscr; U+1D4C7 ?
rsh; U+021B1 ↱
rsqb; U+0005D]
rsquo; U+02019 ’
rsquor; U+02019 ’
rthree; U+022CC ⋌
rtimes; U+022CA ⋊
rtri; U+025B9 ▹
rtrie; U+022B5 ⊵
rtrif; U+025B8 ▸
rtriltri; U+029CE ⧎
ruluhar; U+02968 ?
rx; U+0211E ℞
sacute; U+0015B ś
sbquo; U+0201A ‚
sc; U+0227B ≻
scE; U+02AB4 ⪴
scap; U+02AB8 ⪸
scaron; U+00161 š
sccue; U+0227D ≽

Name Character Glyph

sce; U+02AB0 ⪰
scedil; U+0015F ş
scirc; U+0015D ŝ
scnE; U+02AB6 ⪶
scnap; U+02ABA ⪺
scnsim; U+022E9 ⋩
scpolint; U+02A13 ⨓
scsim; U+0227F ≿
scy; U+00441 с
sdot; U+022C5 ⋅
sdotb; U+022A1 ⊡
sdote; U+02A66 ?
seArr; U+021D8 ⇘
searhk; U+02925 ?
searr; U+02198 ↘
searrow; U+02198 ↘
sect; U+000A7 §
sect U+000A7 §
semi; U+0003B ;
seswar; U+02929 ?
setminus; U+02216 ∖
setmn; U+02216 ∖
sext; U+02736 ✶
sfr; U+1D530 ?
sfrown; U+02322 ?
sharp; U+0266F ♯
shchcy; U+00449 щ
shcy; U+00448 ш
shortmid; U+02223 ∣
shortparallel; U+02225 ∥
shy; U+000AD
shy U+000AD
sigma; U+003C3 σ
sigmaf; U+003C2 ς
sigmav; U+003C2 ς
sim; U+0223C ∼
simdot; U+02A6A ?
sime; U+02243 ≃
simeq; U+02243 ≃
simg; U+02A9E ⪞
simgE; U+02AA0 ⪠
siml; U+02A9D ⪝
simlE; U+02A9F ⪟
simne; U+02246 ≆
simplus; U+02A24 ?
simrarr; U+02972 ?
slarr; U+02190 ←
smallsetminus; U+02216 ∖
smashp; U+02A33 ?
smeparsl; U+029E4 ?
smid; U+02223 ∣
smile; U+02323 ?
smt; U+02AAA ?
smte; U+02AAC ?
softcy; U+0044C ь
sol; U+0002F /
solb; U+029C4 ?
solbar; U+0233F ?
sopf; U+1D564 𝕤
spades; U+02660 ♠
spadesuit; U+02660 ♠
spar; U+02225 ∥
sqcap; U+02293 ⊓
sqcup; U+02294 ⊔
sqsub; U+0228F ⊏
sqsube; U+02291 ⊑
sqsubset; U+0228F ⊏
sqsubseteq; U+02291 ⊑
sqsup; U+02290 ⊐
sqsupe; U+02292 ⊒
sqsupset; U+02290 ⊐
sqsupseteq; U+02292 ⊒
squ; U+025A1 □
square; U+025A1 □
squarf; U+025AA ▪
squf; U+025AA ▪
srarr; U+02192 →
sscr; U+1D4C8 ?
ssetmn; U+02216 ∖
ssmile; U+02323 ?
sstarf; U+022C6 ⋆
star; U+02606 ☆
starf; U+02605 ★
straightepsilon; U+003F5 ϵ
straightphi; U+003D5 ϕ
strns; U+000AF ¯
sub; U+02282 ⊂
subE; U+02AC5 ?
subdot; U+02ABD ?
sube; U+02286 ⊆
subedot; U+02AC3 ?
submult; U+02AC1 ?
subnE; U+02ACB ?
subne; U+0228A ⊊

Name Character Glyph

subplus; U+02ABF ?
subrarr; U+02979 ?
subset; U+02282 ⊂
subseteq; U+02286 ⊆
subseteqq; U+02AC5 ?
subsetneq; U+0228A ⊊
subsetneqq; U+02ACB ?
subsim; U+02AC7 ?
subsub; U+02AD5 ?
subsup; U+02AD3 ?
succ; U+0227B ≻
succapprox; U+02AB8 ⪸
succcurlyeq; U+0227D ≽
succeq; U+02AB0 ⪰
succnapprox; U+02ABA ⪺
succneqq; U+02AB6 ⪶
succnsim; U+022E9 ⋩
succsim; U+0227F ≿
sum; U+02211 ∑
sung; U+0266A ♪
sup1; U+000B9 ¹
sup1 U+000B9 ¹
sup2; U+000B2 ²
sup2 U+000B2 ²
sup3; U+000B3 ³
sup3 U+000B3 ³
sup; U+02283 ⊃
supE; U+02AC6 ?
supdot; U+02ABE ?
supdsub; U+02AD8 ?
supe; U+02287 ⊇
supedot; U+02AC4 ?
suphsol; U+027C9 ?
suphsub; U+02AD7 ?
suplarr; U+0297B ?
supmult; U+02AC2 ?
supnE; U+02ACC ?
supne; U+0228B ⊋
supplus; U+02AC0 ?
supset; U+02283 ⊃
supseteq; U+02287 ⊇
supseteqq; U+02AC6 ?
supsetneq; U+0228B ⊋
supsetneqq; U+02ACC ?
supsim; U+02AC8 ?
supsub; U+02AD4 ?
supsup; U+02AD6 ?
swArr; U+021D9 ⇙
swarhk; U+02926 ?
swarr; U+02199 ↙
swarrow; U+02199 ↙
swnwar; U+0292A ?
szlig; U+000DF ß
szlig U+000DF ß
target; U+02316 ?
tau; U+003C4 τ
tbrk; U+023B4 ?
tcaron; U+00165 ť
tcedil; U+00163 ţ
tcy; U+00442 т
tdot; U+020DB ◌?
telrec; U+02315 ?
tfr; U+1D531 ?
there4; U+02234 ∴
therefore; U+02234 ∴
theta; U+003B8 θ
thetasym; U+003D1 ϑ
thetav; U+003D1 ϑ
thickapprox; U+02248 ≈
thicksim; U+0223C ∼
thinsp; U+02009
thkap; U+02248 ≈
thksim; U+0223C ∼
thorn; U+000FE þ
thorn U+000FE þ
tilde; U+002DC ˜
times; U+000D7 ×
times U+000D7 ×
timesb; U+022A0 ⊠
timesbar; U+02A31 ?
timesd; U+02A30 ?
tint; U+0222D ∭
toea; U+02928 ?
top; U+022A4 ⊤
topbot; U+02336 ?
topcir; U+02AF1 ?
topf; U+1D565 𝕥
topfork; U+02ADA ?
tosa; U+02929 ?
tprime; U+02034 ‴
trade; U+02122 ™
triangle; U+025B5 ▵
triangledown; U+025BF ▿
triangleleft; U+025C3 ◃

Name Character Glyph

trianglelefteq; U+022B4 ⊴
triangleq; U+0225C ≜
triangleright; U+025B9 ▹
trianglerighteq; U+022B5 ⊵
tridot; U+025EC ◬
trie; U+0225C ≜
triminus; U+02A3A ?
triplus; U+02A39 ?
trisb; U+029CD ?
tritime; U+02A3B ?
trpezium; U+023E2 ?
tscr; U+1D4C9 ?
tscy; U+00446 ц
tshcy; U+0045B ћ
tstrok; U+00167 ŧ
twixt; U+0226C ≬
twoheadleftarrow; U+0219E ↞
twoheadrightarrow; U+021A0 ↠
uArr; U+021D1 ⇑
uHar; U+02963 ?
uacute; U+000FA ú
uacute U+000FA ú
uarr; U+02191 ↑
ubrcy; U+0045E ў
ubreve; U+0016D ŭ
ucirc; U+000FB û
ucirc U+000FB û
ucy; U+00443 у
udarr; U+021C5 ⇅
udblac; U+00171 ű
udhar; U+0296E ?
ufisht; U+0297E ?
ufr; U+1D532 ?
ugrave; U+000F9 ù
ugrave U+000F9 ù
uharl; U+021BF ↿
uharr; U+021BE ↾
uhblk; U+02580 ▀
ulcorn; U+0231C ⌜
ulcorner; U+0231C ⌜
ulcrop; U+0230F ⌏
ultri; U+025F8 ◸
umacr; U+0016B ū
uml; U+000A8 ¨
uml U+000A8 ¨
uogon; U+00173 ų
uopf; U+1D566 𝕦
uparrow; U+02191 ↑
updownarrow; U+02195 ↕
upharpoonleft; U+021BF ↿
upharpoonright; U+021BE ↾
uplus; U+0228E ⊎
upsi; U+003C5 υ
upsih; U+003D2 ϒ
upsilon; U+003C5 υ
upuparrows; U+021C8 ⇈
urcorn; U+0231D ⌝
urcorner; U+0231D ⌝
urcrop; U+0230E ⌎
uring; U+0016F ů
urtri; U+025F9 ◹
uscr; U+1D4CA ?
utdot; U+022F0 ⋰
utilde; U+00169 ũ
utri; U+025B5 ▵
utrif; U+025B4 ▴
uuarr; U+021C8 ⇈
uuml; U+000FC ü
uuml U+000FC ü
uwangle; U+029A7 ?
vArr; U+021D5 ⇕
vBar; U+02AE8 ?
vBarv; U+02AE9 ?
vDash; U+022A8 ⊨
vangrt; U+0299C ?
varepsilon; U+003F5 ϵ
varkappa; U+003F0 ϰ
varnothing; U+02205 ∅
varphi; U+003D5 ϕ
varpi; U+003D6 ϖ
varpropto; U+0221D ∝
varr; U+02195 ↕
varrho; U+003F1 ϱ
varsigma; U+003C2 ς
vartheta; U+003D1 ϑ
vartriangleleft; U+022B2 ⊲
vartriangleright; U+022B3 ⊳
vcy; U+00432 в
vdash; U+022A2 ⊢
vee; U+02228 ∨
veebar; U+022BB ⊻
veeeq; U+0225A ≚
vellip; U+022EE ⋮
verbar; U+0007C |

667

Name Character Glyph

vert; U+0007C |
vfr; U+1D533 ?
vltri; U+022B2 ⊲
vopf; U+1D567 𝕧
vprop; U+0221D ∝
vrtri; U+022B3 ⊳
vscr; U+1D4CB ?
vzigzag; U+0299A ?
wcirc; U+00175 ŵ
wedbar; U+02A5F ?
wedge; U+02227 ∧
wedgeq; U+02259 ≙
weierp; U+02118 ℘
wfr; U+1D534 ?
wopf; U+1D568 𝕨
wp; U+02118 ℘
wr; U+02240 ≀
wreath; U+02240 ≀

Name Character Glyph

wscr; U+1D4CC ?
xcap; U+022C2 ⋂
xcirc; U+025EF ◯
xcup; U+022C3 ⋃
xdtri; U+025BD ▽
xfr; U+1D535 ?
xhArr; U+027FA ⟺
xharr; U+027F7 ⟷
xi; U+003BE ξ
xlArr; U+027F8 ⟸
xlarr; U+027F5 ⟵
xmap; U+027FC ⟼
xnis; U+022FB ⋻
xodot; U+02A00 ⨀
xopf; U+1D569 𝕩
xoplus; U+02A01 ⨁
xotime; U+02A02 ⨂
xrArr; U+027F9 ⟹

Name Character Glyph

xrarr; U+027F6 ⟶
xscr; U+1D4CD ?
xsqcup; U+02A06 ?
xuplus; U+02A04 ?
xutri; U+025B3 △
xvee; U+022C1 ⋁
xwedge; U+022C0 ⋀
yacute; U+000FD ý
yacute U+000FD ý
yacy; U+0044F я
ycirc; U+00177 ŷ
ycy; U+0044B ы
yen; U+000A5 ¥
yen U+000A5 ¥
yfr; U+1D536 ?
yicy; U+00457 ї
yopf; U+1D56A 𝕪
yscr; U+1D4CE ?

Name Character Glyph

yucy; U+0044E ю
yuml; U+000FF ÿ
yuml U+000FF ÿ
zacute; U+0017A ź
zcaron; U+0017E ž
zcy; U+00437 з
zdot; U+0017C ż
zeetrf; U+02128 ℨ
zeta; U+003B6 ζ
zfr; U+1D537 ?
zhcy; U+00436 ж
zigrarr; U+021DD ⇝
zopf; U+1D56B 𝕫
zscr; U+1D4CF ?
zwj; U+0200D
zwnj; U+0200C

The glyphs displayed above are non-normative. Refer to the Unicode specifications for formal definitions of the
characters listed above.

668

11 The XHTML syntax

Note: This section only describes the rules for XML resources. Rules for text/htmlp715 resources are
discussed in the section above entitled "The HTML syntaxp577".

11.1 Writing XHTML documents

The syntax for using HTML with XML, whether in XHTML documents or embedded in other XML documents, is defined
in the XML and Namespaces in XML specifications. [XML]p743 [XMLNS]p743

This specification does not define any syntax-level requirements beyond those defined for XML proper.

XML documents may contain a DOCTYPE if desired, but this is not required to conform to this specification. This
specification does not define a public or system identifier, nor provide a format DTD.

Note: According to the XML specification, XML processors are not guaranteed to process the
external DTD subset referenced in the DOCTYPE. This means, for example, that using entity
references for characters in XHTML documents is unsafe if they are defined in an external file
(except for <, >, &, " and ').

11.2 Parsing XHTML documents

This section describes the relationship between XML and the DOM, with a particular emphasis on how this interacts
with HTML.

An XML parser, for the purposes of this specification, is a construct that follows the rules given in the XML
specification to map a string of bytes or characters into a Documentp33 object.

An XML parserp669 is either associated with a Documentp33 object when it is created, or creates one implicitly.

This Documentp33 must then be populated with DOM nodes that represent the tree structure of the input passed to the
parser, as defined by the XML specification, the Namespaces in XML specification, and the DOM Core specification.
DOM mutation events must not fire for the operations that the XML parserp669 performs on the Documentp33 's tree, but
the user agent must act as if elements and attributes were individually appended and set respectively so as to trigger
rules in this specification regarding what happens when an element in inserted into a document or has its attributes
set. [XML]p743 [XMLNS]p743 [DOMCORE]p739 [DOMEVENTS]p739

Between the time an element's start tag is parsed and the time either the element's end tag is parsed on the parser
detects a well-formedness error, the user agent must act as if the element was in a stack of open elementsp594.

Note: This is used by the objectp220 element to avoid instantiating plugins before the paramp224

element children have been parsed.

This specification provides the following additional information that user agents should use when retrieving an external
entity: the public identifiers given in the following list all correspond to the URL given by this link.

• -//W3C//DTD XHTML 1.0 Transitional//EN
• -//W3C//DTD XHTML 1.1//EN
• -//W3C//DTD XHTML 1.0 Strict//EN
• -//W3C//DTD XHTML 1.0 Frameset//EN
• -//W3C//DTD XHTML Basic 1.0//EN
• -//W3C//DTD XHTML 1.1 plus MathML 2.0//EN
• -//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN
• -//W3C//DTD MathML 2.0//EN
• -//WAPFORUM//DTD XHTML Mobile 1.0//EN

Furthermore, user agents should attempt to retrieve the above external entity's content when one of the above public
identifiers is used, and should not attempt to retrieve any other external entity's content.

Note: This is not strictly a violationp18 of the XML specification, but it does contradict the spirit of
the XML specification's requirements. This is motivated by a desire for user agents to all handle
entities in an interoperable fashion without requiring any network access for handling external
subsets. [XML]p743

669

data:application/xml-dtd;base64,PCFFTlRJVFkgVGFiICImI3g5OyI%2BPCFFTlRJVFkgTmV3TGluZSAiJiN4QTsiPjwhRU5USVRZIGV4Y2wgIiYjeDIxOyI%2BPCFFTlRJVFkgcXVvdCAiJiN4MjI7Ij48IUVOVElUWSBRVU9UICImI3gyMjsiPjwhRU5USVRZIG51bSAiJiN4MjM7Ij48IUVOVElUWSBkb2xsYXIgIiYjeDI0OyI%2BPCFFTlRJVFkgcGVyY250ICImI3gyNTsiPjwhRU5USVRZIGFtcCAiJiN4MjY7Ij48IUVOVElUWSBBTVAgIiYjeDI2OyI%2BPCFFTlRJVFkgYXBvcyAiJiN4Mjc7Ij48IUVOVElUWSBscGFyICImI3gyODsiPjwhRU5USVRZIHJwYXIgIiYjeDI5OyI%2BPCFFTlRJVFkgYXN0ICImI3gyQTsiPjwhRU5USVRZIG1pZGFzdCAiJiN4MkE7Ij48IUVOVElUWSBwbHVzICImI3gyQjsiPjwhRU5USVRZIGNvbW1hICImI3gyQzsiPjwhRU5USVRZIHBlcmlvZCAiJiN4MkU7Ij48IUVOVElUWSBzb2wgIiYjeDJGOyI%2BPCFFTlRJVFkgY29sb24gIiYjeDNBOyI%2BPCFFTlRJVFkgc2VtaSAiJiN4M0I7Ij48IUVOVElUWSBsdCAiJiN4M0M7Ij48IUVOVElUWSBMVCAiJiN4M0M7Ij48IUVOVElUWSBlcXVhbHMgIiYjeDNEOyI%2BPCFFTlRJVFkgZ3QgIiYjeDNFOyI%2BPCFFTlRJVFkgR1QgIiYjeDNFOyI%2BPCFFTlRJVFkgcXVlc3QgIiYjeDNGOyI%2BPCFFTlRJVFkgY29tbWF0ICImI3g0MDsiPjwhRU5USVRZIGxzcWIgIiYjeDVCOyI%2BPCFFTlRJVFkgbGJyYWNrICImI3g1QjsiPjwhRU5USVRZIGJzb2wgIiYjeDVDOyI%2BPCFFTlRJVFkgcnNxYiAiJiN4NUQ7Ij48IUVOVElUWSByYnJhY2sgIiYjeDVEOyI%2BPCFFTlRJVFkgSGF0ICImI3g1RTsiPjwhRU5USVRZIGxvd2JhciAiJiN4NUY7Ij48IUVOVElUWSBVbmRlckJhciAiJiN4NUY7Ij48IUVOVElUWSBncmF2ZSAiJiN4NjA7Ij48IUVOVElUWSBEaWFjcml0aWNhbEdyYXZlICImI3g2MDsiPjwhRU5USVRZIGxjdWIgIiYjeDdCOyI%2BPCFFTlRJVFkgbGJyYWNlICImI3g3QjsiPjwhRU5USVRZIHZlcmJhciAiJiN4N0M7Ij48IUVOVElUWSB2ZXJ0ICImI3g3QzsiPjwhRU5USVRZIFZlcnRpY2FsTGluZSAiJiN4N0M7Ij48IUVOVElUWSByY3ViICImI3g3RDsiPjwhRU5USVRZIHJicmFjZSAiJiN4N0Q7Ij48IUVOVElUWSBuYnNwICImI3hBMDsiPjwhRU5USVRZIE5vbkJyZWFraW5nU3BhY2UgIiYjeEEwOyI%2BPCFFTlRJVFkgaWV4Y2wgIiYjeEExOyI%2BPCFFTlRJVFkgY2VudCAiJiN4QTI7Ij48IUVOVElUWSBwb3VuZCAiJiN4QTM7Ij48IUVOVElUWSBjdXJyZW4gIiYjeEE0OyI%2BPCFFTlRJVFkgeWVuICImI3hBNTsiPjwhRU5USVRZIGJydmJhciAiJiN4QTY7Ij48IUVOVElUWSBzZWN0ICImI3hBNzsiPjwhRU5USVRZIERvdCAiJiN4QTg7Ij48IUVOVElUWSBkaWUgIiYjeEE4OyI%2BPCFFTlRJVFkgRG91YmxlRG90ICImI3hBODsiPjwhRU5USVRZIHVtbCAiJiN4QTg7Ij48IUVOVElUWSBjb3B5ICImI3hBOTsiPjwhRU5USVRZIENPUFkgIiYjeEE5OyI%2BPCFFTlRJVFkgb3JkZiAiJiN4QUE7Ij48IUVOVElUWSBsYXF1byAiJiN4QUI7Ij48IUVOVElUWSBub3QgIiYjeEFDOyI%2BPCFFTlRJVFkgc2h5ICImI3hBRDsiPjwhRU5USVRZIHJlZyAiJiN4QUU7Ij48IUVOVElUWSBjaXJjbGVkUiAiJiN4QUU7Ij48IUVOVElUWSBSRUcgIiYjeEFFOyI%2BPCFFTlRJVFkgbWFjciAiJiN4QUY7Ij48IUVOVElUWSBzdHJucyAiJiN4QUY7Ij48IUVOVElUWSBkZWcgIiYjeEIwOyI%2BPCFFTlRJVFkgcGx1c21uICImI3hCMTsiPjwhRU5USVRZIHBtICImI3hCMTsiPjwhRU5USVRZIFBsdXNNaW51cyAiJiN4QjE7Ij48IUVOVElUWSBzdXAyICImI3hCMjsiPjwhRU5USVRZIHN1cDMgIiYjeEIzOyI%2BPCFFTlRJVFkgYWN1dGUgIiYjeEI0OyI%2BPCFFTlRJVFkgRGlhY3JpdGljYWxBY3V0ZSAiJiN4QjQ7Ij48IUVOVElUWSBtaWNybyAiJiN4QjU7Ij48IUVOVElUWSBwYXJhICImI3hCNjsiPjwhRU5USVRZIG1pZGRvdCAiJiN4Qjc7Ij48IUVOVElUWSBjZW50ZXJkb3QgIiYjeEI3OyI%2BPCFFTlRJVFkgQ2VudGVyRG90ICImI3hCNzsiPjwhRU5USVRZIGNlZGlsICImI3hCODsiPjwhRU5USVRZIENlZGlsbGEgIiYjeEI4OyI%2BPCFFTlRJVFkgc3VwMSAiJiN4Qjk7Ij48IUVOVElUWSBvcmRtICImI3hCQTsiPjwhRU5USVRZIHJhcXVvICImI3hCQjsiPjwhRU5USVRZIGZyYWMxNCAiJiN4QkM7Ij48IUVOVElUWSBmcmFjMTIgIiYjeEJEOyI%2BPCFFTlRJVFkgaGFsZiAiJiN4QkQ7Ij48IUVOVElUWSBmcmFjMzQgIiYjeEJFOyI%2BPCFFTlRJVFkgaXF1ZXN0ICImI3hCRjsiPjwhRU5USVRZIEFncmF2ZSAiJiN4QzA7Ij48IUVOVElUWSBBYWN1dGUgIiYjeEMxOyI%2BPCFFTlRJVFkgQWNpcmMgIiYjeEMyOyI%2BPCFFTlRJVFkgQXRpbGRlICImI3hDMzsiPjwhRU5USVRZIEF1bWwgIiYjeEM0OyI%2BPCFFTlRJVFkgQXJpbmcgIiYjeEM1OyI%2BPCFFTlRJVFkgYW5nc3QgIiYjeEM1OyI%2BPCFFTlRJVFkgQUVsaWcgIiYjeEM2OyI%2BPCFFTlRJVFkgQ2NlZGlsICImI3hDNzsiPjwhRU5USVRZIEVncmF2ZSAiJiN4Qzg7Ij48IUVOVElUWSBFYWN1dGUgIiYjeEM5OyI%2BPCFFTlRJVFkgRWNpcmMgIiYjeENBOyI%2BPCFFTlRJVFkgRXVtbCAiJiN4Q0I7Ij48IUVOVElUWSBJZ3JhdmUgIiYjeENDOyI%2BPCFFTlRJVFkgSWFjdXRlICImI3hDRDsiPjwhRU5USVRZIEljaXJjICImI3hDRTsiPjwhRU5USVRZIEl1bWwgIiYjeENGOyI%2BPCFFTlRJVFkgRVRIICImI3hEMDsiPjwhRU5USVRZIE50aWxkZSAiJiN4RDE7Ij48IUVOVElUWSBPZ3JhdmUgIiYjeEQyOyI%2BPCFFTlRJVFkgT2FjdXRlICImI3hEMzsiPjwhRU5USVRZIE9jaXJjICImI3hENDsiPjwhRU5USVRZIE90aWxkZSAiJiN4RDU7Ij48IUVOVElUWSBPdW1sICImI3hENjsiPjwhRU5USVRZIHRpbWVzICImI3hENzsiPjwhRU5USVRZIE9zbGFzaCAiJiN4RDg7Ij48IUVOVElUWSBVZ3JhdmUgIiYjeEQ5OyI%2BPCFFTlRJVFkgVWFjdXRlICImI3hEQTsiPjwhRU5USVRZIFVjaXJjICImI3hEQjsiPjwhRU5USVRZIFV1bWwgIiYjeERDOyI%2BPCFFTlRJVFkgWWFjdXRlICImI3hERDsiPjwhRU5USVRZIFRIT1JOICImI3hERTsiPjwhRU5USVRZIHN6bGlnICImI3hERjsiPjwhRU5USVRZIGFncmF2ZSAiJiN4RTA7Ij48IUVOVElUWSBhYWN1dGUgIiYjeEUxOyI%2BPCFFTlRJVFkgYWNpcmMgIiYjeEUyOyI%2BPCFFTlRJVFkgYXRpbGRlICImI3hFMzsiPjwhRU5USVRZIGF1bWwgIiYjeEU0OyI%2BPCFFTlRJVFkgYXJpbmcgIiYjeEU1OyI%2BPCFFTlRJVFkgYWVsaWcgIiYjeEU2OyI%2BPCFFTlRJVFkgY2NlZGlsICImI3hFNzsiPjwhRU5USVRZIGVncmF2ZSAiJiN4RTg7Ij48IUVOVElUWSBlYWN1dGUgIiYjeEU5OyI%2BPCFFTlRJVFkgZWNpcmMgIiYjeEVBOyI%2BPCFFTlRJVFkgZXVtbCAiJiN4RUI7Ij48IUVOVElUWSBpZ3JhdmUgIiYjeEVDOyI%2BPCFFTlRJVFkgaWFjdXRlICImI3hFRDsiPjwhRU5USVRZIGljaXJjICImI3hFRTsiPjwhRU5USVRZIGl1bWwgIiYjeEVGOyI%2BPCFFTlRJVFkgZXRoICImI3hGMDsiPjwhRU5USVRZIG50aWxkZSAiJiN4RjE7Ij48IUVOVElUWSBvZ3JhdmUgIiYjeEYyOyI%2BPCFFTlRJVFkgb2FjdXRlICImI3hGMzsiPjwhRU5USVRZIG9jaXJjICImI3hGNDsiPjwhRU5USVRZIG90aWxkZSAiJiN4RjU7Ij48IUVOVElUWSBvdW1sICImI3hGNjsiPjwhRU5USVRZIGRpdmlkZSAiJiN4Rjc7Ij48IUVOVElUWSBkaXYgIiYjeEY3OyI%2BPCFFTlRJVFkgb3NsYXNoICImI3hGODsiPjwhRU5USVRZIHVncmF2ZSAiJiN4Rjk7Ij48IUVOVElUWSB1YWN1dGUgIiYjeEZBOyI%2BPCFFTlRJVFkgdWNpcmMgIiYjeEZCOyI%2BPCFFTlRJVFkgdXVtbCAiJiN4RkM7Ij48IUVOVElUWSB5YWN1dGUgIiYjeEZEOyI%2BPCFFTlRJVFkgdGhvcm4gIiYjeEZFOyI%2BPCFFTlRJVFkgeXVtbCAiJiN4RkY7Ij48IUVOVElUWSBBbWFjciAiJiN4MTAwOyI%2BPCFFTlRJVFkgYW1hY3IgIiYjeDEwMTsiPjwhRU5USVRZIEFicmV2ZSAiJiN4MTAyOyI%2BPCFFTlRJVFkgYWJyZXZlICImI3gxMDM7Ij48IUVOVElUWSBBb2dvbiAiJiN4MTA0OyI%2BPCFFTlRJVFkgYW9nb24gIiYjeDEwNTsiPjwhRU5USVRZIENhY3V0ZSAiJiN4MTA2OyI%2BPCFFTlRJVFkgY2FjdXRlICImI3gxMDc7Ij48IUVOVElUWSBDY2lyYyAiJiN4MTA4OyI%2BPCFFTlRJVFkgY2NpcmMgIiYjeDEwOTsiPjwhRU5USVRZIENkb3QgIiYjeDEwQTsiPjwhRU5USVRZIGNkb3QgIiYjeDEwQjsiPjwhRU5USVRZIENjYXJvbiAiJiN4MTBDOyI%2BPCFFTlRJVFkgY2Nhcm9uICImI3gxMEQ7Ij48IUVOVElUWSBEY2Fyb24gIiYjeDEwRTsiPjwhRU5USVRZIGRjYXJvbiAiJiN4MTBGOyI%2BPCFFTlRJVFkgRHN0cm9rICImI3gxMTA7Ij48IUVOVElUWSBkc3Ryb2sgIiYjeDExMTsiPjwhRU5USVRZIEVtYWNyICImI3gxMTI7Ij48IUVOVElUWSBlbWFjciAiJiN4MTEzOyI%2BPCFFTlRJVFkgRWRvdCAiJiN4MTE2OyI%2BPCFFTlRJVFkgZWRvdCAiJiN4MTE3OyI%2BPCFFTlRJVFkgRW9nb24gIiYjeDExODsiPjwhRU5USVRZIGVvZ29uICImI3gxMTk7Ij48IUVOVElUWSBFY2Fyb24gIiYjeDExQTsiPjwhRU5USVRZIGVjYXJvbiAiJiN4MTFCOyI%2BPCFFTlRJVFkgR2NpcmMgIiYjeDExQzsiPjwhRU5USVRZIGdjaXJjICImI3gxMUQ7Ij48IUVOVElUWSBHYnJldmUgIiYjeDExRTsiPjwhRU5USVRZIGdicmV2ZSAiJiN4MTFGOyI%2BPCFFTlRJVFkgR2RvdCAiJiN4MTIwOyI%2BPCFFTlRJVFkgZ2RvdCAiJiN4MTIxOyI%2BPCFFTlRJVFkgR2NlZGlsICImI3gxMjI7Ij48IUVOVElUWSBIY2lyYyAiJiN4MTI0OyI%2BPCFFTlRJVFkgaGNpcmMgIiYjeDEyNTsiPjwhRU5USVRZIEhzdHJvayAiJiN4MTI2OyI%2BPCFFTlRJVFkgaHN0cm9rICImI3gxMjc7Ij48IUVOVElUWSBJdGlsZGUgIiYjeDEyODsiPjwhRU5USVRZIGl0aWxkZSAiJiN4MTI5OyI%2BPCFFTlRJVFkgSW1hY3IgIiYjeDEyQTsiPjwhRU5USVRZIGltYWNyICImI3gxMkI7Ij48IUVOVElUWSBJb2dvbiAiJiN4MTJFOyI%2BPCFFTlRJVFkgaW9nb24gIiYjeDEyRjsiPjwhRU5USVRZIElkb3QgIiYjeDEzMDsiPjwhRU5USVRZIGltYXRoICImI3gxMzE7Ij48IUVOVElUWSBpbm9kb3QgIiYjeDEzMTsiPjwhRU5USVRZIElKbGlnICImI3gxMzI7Ij48IUVOVElUWSBpamxpZyAiJiN4MTMzOyI%2BPCFFTlRJVFkgSmNpcmMgIiYjeDEzNDsiPjwhRU5USVRZIGpjaXJjICImI3gxMzU7Ij48IUVOVElUWSBLY2VkaWwgIiYjeDEzNjsiPjwhRU5USVRZIGtjZWRpbCAiJiN4MTM3OyI%2BPCFFTlRJVFkga2dyZWVuICImI3gxMzg7Ij48IUVOVElUWSBMYWN1dGUgIiYjeDEzOTsiPjwhRU5USVRZIGxhY3V0ZSAiJiN4MTNBOyI%2BPCFFTlRJVFkgTGNlZGlsICImI3gxM0I7Ij48IUVOVElUWSBsY2VkaWwgIiYjeDEzQzsiPjwhRU5USVRZIExjYXJvbiAiJiN4MTNEOyI%2BPCFFTlRJVFkgbGNhcm9uICImI3gxM0U7Ij48IUVOVElUWSBMbWlkb3QgIiYjeDEzRjsiPjwhRU5USVRZIGxtaWRvdCAiJiN4MTQwOyI%2BPCFFTlRJVFkgTHN0cm9rICImI3gxNDE7Ij48IUVOVElUWSBsc3Ryb2sgIiYjeDE0MjsiPjwhRU5USVRZIE5hY3V0ZSAiJiN4MTQzOyI%2BPCFFTlRJVFkgbmFjdXRlICImI3gxNDQ7Ij48IUVOVElUWSBOY2VkaWwgIiYjeDE0NTsiPjwhRU5USVRZIG5jZWRpbCAiJiN4MTQ2OyI%2BPCFFTlRJVFkgTmNhcm9uICImI3gxNDc7Ij48IUVOVElUWSBuY2Fyb24gIiYjeDE0ODsiPjwhRU5USVRZIG5hcG9zICImI3gxNDk7Ij48IUVOVElUWSBFTkcgIiYjeDE0QTsiPjwhRU5USVRZIGVuZyAiJiN4MTRCOyI%2BPCFFTlRJVFkgT21hY3IgIiYjeDE0QzsiPjwhRU5USVRZIG9tYWNyICImI3gxNEQ7Ij48IUVOVElUWSBPZGJsYWMgIiYjeDE1MDsiPjwhRU5USVRZIG9kYmxhYyAiJiN4MTUxOyI%2BPCFFTlRJVFkgT0VsaWcgIiYjeDE1MjsiPjwhRU5USVRZIG9lbGlnICImI3gxNTM7Ij48IUVOVElUWSBSYWN1dGUgIiYjeDE1NDsiPjwhRU5USVRZIHJhY3V0ZSAiJiN4MTU1OyI%2BPCFFTlRJVFkgUmNlZGlsICImI3gxNTY7Ij48IUVOVElUWSByY2VkaWwgIiYjeDE1NzsiPjwhRU5USVRZIFJjYXJvbiAiJiN4MTU4OyI%2BPCFFTlRJVFkgcmNhcm9uICImI3gxNTk7Ij48IUVOVElUWSBTYWN1dGUgIiYjeDE1QTsiPjwhRU5USVRZIHNhY3V0ZSAiJiN4MTVCOyI%2BPCFFTlRJVFkgU2NpcmMgIiYjeDE1QzsiPjwhRU5USVRZIHNjaXJjICImI3gxNUQ7Ij48IUVOVElUWSBTY2VkaWwgIiYjeDE1RTsiPjwhRU5USVRZIHNjZWRpbCAiJiN4MTVGOyI%2BPCFFTlRJVFkgU2Nhcm9uICImI3gxNjA7Ij48IUVOVElUWSBzY2Fyb24gIiYjeDE2MTsiPjwhRU5USVRZIFRjZWRpbCAiJiN4MTYyOyI%2BPCFFTlRJVFkgdGNlZGlsICImI3gxNjM7Ij48IUVOVElUWSBUY2Fyb24gIiYjeDE2NDsiPjwhRU5USVRZIHRjYXJvbiAiJiN4MTY1OyI%2BPCFFTlRJVFkgVHN0cm9rICImI3gxNjY7Ij48IUVOVElUWSB0c3Ryb2sgIiYjeDE2NzsiPjwhRU5USVRZIFV0aWxkZSAiJiN4MTY4OyI%2BPCFFTlRJVFkgdXRpbGRlICImI3gxNjk7Ij48IUVOVElUWSBVbWFjciAiJiN4MTZBOyI%2BPCFFTlRJVFkgdW1hY3IgIiYjeDE2QjsiPjwhRU5USVRZIFVicmV2ZSAiJiN4MTZDOyI%2BPCFFTlRJVFkgdWJyZXZlICImI3gxNkQ7Ij48IUVOVElUWSBVcmluZyAiJiN4MTZFOyI%2BPCFFTlRJVFkgdXJpbmcgIiYjeDE2RjsiPjwhRU5USVRZIFVkYmxhYyAiJiN4MTcwOyI%2BPCFFTlRJVFkgdWRibGFjICImI3gxNzE7Ij48IUVOVElUWSBVb2dvbiAiJiN4MTcyOyI%2BPCFFTlRJVFkgdW9nb24gIiYjeDE3MzsiPjwhRU5USVRZIFdjaXJjICImI3gxNzQ7Ij48IUVOVElUWSB3Y2lyYyAiJiN4MTc1OyI%2BPCFFTlRJVFkgWWNpcmMgIiYjeDE3NjsiPjwhRU5USVRZIHljaXJjICImI3gxNzc7Ij48IUVOVElUWSBZdW1sICImI3gxNzg7Ij48IUVOVElUWSBaYWN1dGUgIiYjeDE3OTsiPjwhRU5USVRZIHphY3V0ZSAiJiN4MTdBOyI%2BPCFFTlRJVFkgWmRvdCAiJiN4MTdCOyI%2BPCFFTlRJVFkgemRvdCAiJiN4MTdDOyI%2BPCFFTlRJVFkgWmNhcm9uICImI3gxN0Q7Ij48IUVOVElUWSB6Y2Fyb24gIiYjeDE3RTsiPjwhRU5USVRZIGZub2YgIiYjeDE5MjsiPjwhRU5USVRZIGltcGVkICImI3gxQjU7Ij48IUVOVElUWSBnYWN1dGUgIiYjeDFGNTsiPjwhRU5USVRZIGptYXRoICImI3gyMzc7Ij48IUVOVElUWSBjaXJjICImI3gyQzY7Ij48IUVOVElUWSBjYXJvbiAiJiN4MkM3OyI%2BPCFFTlRJVFkgSGFjZWsgIiYjeDJDNzsiPjwhRU5USVRZIGJyZXZlICImI3gyRDg7Ij48IUVOVElUWSBCcmV2ZSAiJiN4MkQ4OyI%2BPCFFTlRJVFkgZG90ICImI3gyRDk7Ij48IUVOVElUWSBEaWFjcml0aWNhbERvdCAiJiN4MkQ5OyI%2BPCFFTlRJVFkgcmluZyAiJiN4MkRBOyI%2BPCFFTlRJVFkgb2dvbiAiJiN4MkRCOyI%2BPCFFTlRJVFkgdGlsZGUgIiYjeDJEQzsiPjwhRU5USVRZIERpYWNyaXRpY2FsVGlsZGUgIiYjeDJEQzsiPjwhRU5USVRZIGRibGFjICImI3gyREQ7Ij48IUVOVE
lUWSBEaWFjcml0aWNhbERvdWJsZUFjdXRlICImI3gyREQ7Ij48IUVOVElUWSBEb3duQnJldmUgIiYjeDMxMTsiPjwhRU5USVRZIEFscGhhICImI3gzOTE7Ij48IUVOVElUWSBCZXRhICImI3gzOTI7Ij48IUVOVElUWSBHYW1tYSAiJiN4MzkzOyI%2BPCFFTlRJVFkgRGVsdGEgIiYjeDM5NDsiPjwhRU5USVRZIEVwc2lsb24gIiYjeDM5NTsiPjwhRU5USVRZIFpldGEgIiYjeDM5NjsiPjwhRU5USVRZIEV0YSAiJiN4Mzk3OyI%2BPCFFTlRJVFkgVGhldGEgIiYjeDM5ODsiPjwhRU5USVRZIElvdGEgIiYjeDM5OTsiPjwhRU5USVRZIEthcHBhICImI3gzOUE7Ij48IUVOVElUWSBMYW1iZGEgIiYjeDM5QjsiPjwhRU5USVRZIE11ICImI3gzOUM7Ij48IUVOVElUWSBOdSAiJiN4MzlEOyI%2BPCFFTlRJVFkgWGkgIiYjeDM5RTsiPjwhRU5USVRZIE9taWNyb24gIiYjeDM5RjsiPjwhRU5USVRZIFBpICImI3gzQTA7Ij48IUVOVElUWSBSaG8gIiYjeDNBMTsiPjwhRU5USVRZIFNpZ21hICImI3gzQTM7Ij48IUVOVElUWSBUYXUgIiYjeDNBNDsiPjwhRU5USVRZIFVwc2lsb24gIiYjeDNBNTsiPjwhRU5USVRZIFBoaSAiJiN4M0E2OyI%2BPCFFTlRJVFkgQ2hpICImI3gzQTc7Ij48IUVOVElUWSBQc2kgIiYjeDNBODsiPjwhRU5USVRZIE9tZWdhICImI3gzQTk7Ij48IUVOVElUWSBvaG0gIiYjeDNBOTsiPjwhRU5USVRZIGFscGhhICImI3gzQjE7Ij48IUVOVElUWSBiZXRhICImI3gzQjI7Ij48IUVOVElUWSBnYW1tYSAiJiN4M0IzOyI%2BPCFFTlRJVFkgZGVsdGEgIiYjeDNCNDsiPjwhRU5USVRZIGVwc2kgIiYjeDNCNTsiPjwhRU5USVRZIGVwc2lsb24gIiYjeDNCNTsiPjwhRU5USVRZIHpldGEgIiYjeDNCNjsiPjwhRU5USVRZIGV0YSAiJiN4M0I3OyI%2BPCFFTlRJVFkgdGhldGEgIiYjeDNCODsiPjwhRU5USVRZIGlvdGEgIiYjeDNCOTsiPjwhRU5USVRZIGthcHBhICImI3gzQkE7Ij48IUVOVElUWSBsYW1iZGEgIiYjeDNCQjsiPjwhRU5USVRZIG11ICImI3gzQkM7Ij48IUVOVElUWSBudSAiJiN4M0JEOyI%2BPCFFTlRJVFkgeGkgIiYjeDNCRTsiPjwhRU5USVRZIG9taWNyb24gIiYjeDNCRjsiPjwhRU5USVRZIHBpICImI3gzQzA7Ij48IUVOVElUWSByaG8gIiYjeDNDMTsiPjwhRU5USVRZIHNpZ21hdiAiJiN4M0MyOyI%2BPCFFTlRJVFkgdmFyc2lnbWEgIiYjeDNDMjsiPjwhRU5USVRZIHNpZ21hZiAiJiN4M0MyOyI%2BPCFFTlRJVFkgc2lnbWEgIiYjeDNDMzsiPjwhRU5USVRZIHRhdSAiJiN4M0M0OyI%2BPCFFTlRJVFkgdXBzaSAiJiN4M0M1OyI%2BPCFFTlRJVFkgdXBzaWxvbiAiJiN4M0M1OyI%2BPCFFTlRJVFkgcGhpICImI3gzQzY7Ij48IUVOVElUWSBjaGkgIiYjeDNDNzsiPjwhRU5USVRZIHBzaSAiJiN4M0M4OyI%2BPCFFTlRJVFkgb21lZ2EgIiYjeDNDOTsiPjwhRU5USVRZIHRoZXRhdiAiJiN4M0QxOyI%2BPCFFTlRJVFkgdmFydGhldGEgIiYjeDNEMTsiPjwhRU5USVRZIHRoZXRhc3ltICImI3gzRDE7Ij48IUVOVElUWSBVcHNpICImI3gzRDI7Ij48IUVOVElUWSB1cHNpaCAiJiN4M0QyOyI%2BPCFFTlRJVFkgc3RyYWlnaHRwaGkgIiYjeDNENTsiPjwhRU5USVRZIHBoaXYgIiYjeDNENTsiPjwhRU5USVRZIHZhcnBoaSAiJiN4M0Q1OyI%2BPCFFTlRJVFkgcGl2ICImI3gzRDY7Ij48IUVOVElUWSB2YXJwaSAiJiN4M0Q2OyI%2BPCFFTlRJVFkgR2FtbWFkICImI3gzREM7Ij48IUVOVElUWSBnYW1tYWQgIiYjeDNERDsiPjwhRU5USVRZIGRpZ2FtbWEgIiYjeDNERDsiPjwhRU5USVRZIGthcHBhdiAiJiN4M0YwOyI%2BPCFFTlRJVFkgdmFya2FwcGEgIiYjeDNGMDsiPjwhRU5USVRZIHJob3YgIiYjeDNGMTsiPjwhRU5USVRZIHZhcnJobyAiJiN4M0YxOyI%2BPCFFTlRJVFkgZXBzaXYgIiYjeDNGNTsiPjwhRU5USVRZIHN0cmFpZ2h0ZXBzaWxvbiAiJiN4M0Y1OyI%2BPCFFTlRJVFkgdmFyZXBzaWxvbiAiJiN4M0Y1OyI%2BPCFFTlRJVFkgYmVwc2kgIiYjeDNGNjsiPjwhRU5USVRZIGJhY2tlcHNpbG9uICImI3gzRjY7Ij48IUVOVElUWSBJT2N5ICImI3g0MDE7Ij48IUVOVElUWSBESmN5ICImI3g0MDI7Ij48IUVOVElUWSBHSmN5ICImI3g0MDM7Ij48IUVOVElUWSBKdWtjeSAiJiN4NDA0OyI%2BPCFFTlRJVFkgRFNjeSAiJiN4NDA1OyI%2BPCFFTlRJVFkgSXVrY3kgIiYjeDQwNjsiPjwhRU5USVRZIFlJY3kgIiYjeDQwNzsiPjwhRU5USVRZIEpzZXJjeSAiJiN4NDA4OyI%2BPCFFTlRJVFkgTEpjeSAiJiN4NDA5OyI%2BPCFFTlRJVFkgTkpjeSAiJiN4NDBBOyI%2BPCFFTlRJVFkgVFNIY3kgIiYjeDQwQjsiPjwhRU5USVRZIEtKY3kgIiYjeDQwQzsiPjwhRU5USVRZIFVicmN5ICImI3g0MEU7Ij48IUVOVElUWSBEWmN5ICImI3g0MEY7Ij48IUVOVElUWSBBY3kgIiYjeDQxMDsiPjwhRU5USVRZIEJjeSAiJiN4NDExOyI%2BPCFFTlRJVFkgVmN5ICImI3g0MTI7Ij48IUVOVElUWSBHY3kgIiYjeDQxMzsiPjwhRU5USVRZIERjeSAiJiN4NDE0OyI%2BPCFFTlRJVFkgSUVjeSAiJiN4NDE1OyI%2BPCFFTlRJVFkgWkhjeSAiJiN4NDE2OyI%2BPCFFTlRJVFkgWmN5ICImI3g0MTc7Ij48IUVOVElUWSBJY3kgIiYjeDQxODsiPjwhRU5USVRZIEpjeSAiJiN4NDE5OyI%2BPCFFTlRJVFkgS2N5ICImI3g0MUE7Ij48IUVOVElUWSBMY3kgIiYjeDQxQjsiPjwhRU5USVRZIE1jeSAiJiN4NDFDOyI%2BPCFFTlRJVFkgTmN5ICImI3g0MUQ7Ij48IUVOVElUWSBPY3kgIiYjeDQxRTsiPjwhRU5USVRZIFBjeSAiJiN4NDFGOyI%2BPCFFTlRJVFkgUmN5ICImI3g0MjA7Ij48IUVOVElUWSBTY3kgIiYjeDQyMTsiPjwhRU5USVRZIFRjeSAiJiN4NDIyOyI%2BPCFFTlRJVFkgVWN5ICImI3g0MjM7Ij48IUVOVElUWSBGY3kgIiYjeDQyNDsiPjwhRU5USVRZIEtIY3kgIiYjeDQyNTsiPjwhRU5USVRZIFRTY3kgIiYjeDQyNjsiPjwhRU5USVRZIENIY3kgIiYjeDQyNzsiPjwhRU5USVRZIFNIY3kgIiYjeDQyODsiPjwhRU5USVRZIFNIQ0hjeSAiJiN4NDI5OyI%2BPCFFTlRJVFkgSEFSRGN5ICImI3g0MkE7Ij48IUVOVElUWSBZY3kgIiYjeDQyQjsiPjwhRU5USVRZIFNPRlRjeSAiJiN4NDJDOyI%2BPCFFTlRJVFkgRWN5ICImI3g0MkQ7Ij48IUVOVElUWSBZVWN5ICImI3g0MkU7Ij48IUVOVElUWSBZQWN5ICImI3g0MkY7Ij48IUVOVElUWSBhY3kgIiYjeDQzMDsiPjwhRU5USVRZIGJjeSAiJiN4NDMxOyI%2BPCFFTlRJVFkgdmN5ICImI3g0MzI7Ij48IUVOVElUWSBnY3kgIiYjeDQzMzsiPjwhRU5USVRZIGRjeSAiJiN4NDM0OyI%2BPCFFTlRJVFkgaWVjeSAiJiN4NDM1OyI%2BPCFFTlRJVFkgemhjeSAiJiN4NDM2OyI%2BPCFFTlRJVFkgemN5ICImI3g0Mzc7Ij48IUVOVElUWSBpY3kgIiYjeDQzODsiPjwhRU5USVRZIGpjeSAiJiN4NDM5OyI%2BPCFFTlRJVFkga2N5ICImI3g0M0E7Ij48IUVOVElUWSBsY3kgIiYjeDQzQjsiPjwhRU5USVRZIG1jeSAiJiN4NDNDOyI%2BPCFFTlRJVFkgbmN5ICImI3g0M0Q7Ij48IUVOVElUWSBvY3kgIiYjeDQzRTsiPjwhRU5USVRZIHBjeSAiJiN4NDNGOyI%2BPCFFTlRJVFkgcmN5ICImI3g0NDA7Ij48IUVOVElUWSBzY3kgIiYjeDQ0MTsiPjwhRU5USVRZIHRjeSAiJiN4NDQyOyI%2BPCFFTlRJVFkgdWN5ICImI3g0NDM7Ij48IUVOVElUWSBmY3kgIiYjeDQ0NDsiPjwhRU5USVRZIGtoY3kgIiYjeDQ0NTsiPjwhRU5USVRZIHRzY3kgIiYjeDQ0NjsiPjwhRU5USVRZIGNoY3kgIiYjeDQ0NzsiPjwhRU5USVRZIHNoY3kgIiYjeDQ0ODsiPjwhRU5USVRZIHNoY2hjeSAiJiN4NDQ5OyI%2BPCFFTlRJVFkgaGFyZGN5ICImI3g0NEE7Ij48IUVOVElUWSB5Y3kgIiYjeDQ0QjsiPjwhRU5USVRZIHNvZnRjeSAiJiN4NDRDOyI%2BPCFFTlRJVFkgZWN5ICImI3g0NEQ7Ij48IUVOVElUWSB5dWN5ICImI3g0NEU7Ij48IUVOVElUWSB5YWN5ICImI3g0NEY7Ij48IUVOVElUWSBpb2N5ICImI3g0NTE7Ij48IUVOVElUWSBkamN5ICImI3g0NTI7Ij48IUVOVElUWSBnamN5ICImI3g0NTM7Ij48IUVOVElUWSBqdWtjeSAiJiN4NDU0OyI%2BPCFFTlRJVFkgZHNjeSAiJiN4NDU1OyI%2BPCFFTlRJVFkgaXVrY3kgIiYjeDQ1NjsiPjwhRU5USVRZIHlpY3kgIiYjeDQ1NzsiPjwhRU5USVRZIGpzZXJjeSAiJiN4NDU4OyI%2BPCFFTlRJVFkgbGpjeSAiJiN4NDU5OyI%2BPCFFTlRJVFkgbmpjeSAiJiN4NDVBOyI%2BPCFFTlRJVFkgdHNoY3kgIiYjeDQ1QjsiPjwhRU5USVRZIGtqY3kgIiYjeDQ1QzsiPjwhRU5USVRZIHVicmN5ICImI3g0NUU7Ij48IUVOVElUWSBkemN5ICImI3g0NUY7Ij48IUVOVElUWSBlbnNwICImI3gyMDAyOyI%2BPCFFTlRJVFkgZW1zcCAiJiN4MjAwMzsiPjwhRU5USVRZIGVtc3AxMyAiJiN4MjAwNDsiPjwhRU5USVRZIGVtc3AxNCAiJiN4MjAwNTsiPjwhRU5USVRZIG51bXNwICImI3gyMDA3OyI%2BPCFFTlRJVFkgcHVuY3NwICImI3gyMDA4OyI%2BPCFFTlRJVFkgdGhpbnNwICImI3gyMDA5OyI%2BPCFFTlRJVFkgVGhpblNwYWNlICImI3gyMDA5OyI%2BPCFFTlRJVFkgaGFpcnNwICImI3gyMDBBOyI%2BPCFFTlRJVFkgVmVyeVRoaW5TcGFjZSAiJiN4MjAwQTsiPjwhRU5USVRZIFplcm9XaWR0aFNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVWZXJ5VGhpblNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVUaGluU3BhY2UgIiYjeDIwMEI7Ij48IUVOVElUWSBOZWdhdGl2ZU1lZGl1bVNwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgTmVnYXRpdmVUaGlja1NwYWNlICImI3gyMDBCOyI%2BPCFFTlRJVFkgenduaiAiJiN4MjAwQzsiPjwhRU5USVRZIHp3aiAiJiN4MjAwRDsiPjwhRU5USVRZIGxybSAiJiN4MjAwRTsiPjwhRU5USVRZIHJsbSAiJiN4MjAwRjsiPjwhRU5USVRZIGh5cGhlbiAiJiN4MjAxMDsiPjwhRU5USVRZIGRhc2ggIiYjeDIwMTA7Ij48IUVOVElUWSBuZGFzaCAiJiN4MjAxMzsiPjwhRU5USVRZIG1kYXNoICImI3gyMDE0OyI%2BPCFFTlRJVFkgaG9yYmFyICImI3gyMDE1OyI%2BPCFFTlRJVFkgVmVyYmFyICImI3gyMDE2OyI%2BPCFFTlRJVFkgVmVydCAiJiN4MjAxNjsiPjwhRU5USVRZIGxzcXVvICImI3gyMDE4OyI%2BPCFFTlRJVFkgT3BlbkN1cmx5UXVvdGUgIiYjeDIwMTg7Ij48IUVOVElUWSByc3F1byAiJiN4MjAxOTsiPjwhRU5USVRZIHJzcXVvciAiJiN4MjAxOTsiPjwhRU5USVRZIENsb3NlQ3VybHlRdW90ZSAiJiN4MjAxOTsiPjwhRU5USVRZIGxzcXVvciAiJiN4MjAxQTsiPjwhRU5USVRZIHNicXVvICImI3gyMDFBOyI%2BPCFFTlRJVFkgbGRxdW8gIiYjeDIwMUM7Ij48IUVOVElUWSBPcGVuQ3VybHlEb3VibGVRdW90ZSAiJiN4MjAxQzsiPjwhRU5USVRZIHJkcXVvICImI3gyMDFEOyI%2BPCFFTlRJVFkgcmRxdW9yICImI3gyMDFEOyI%2BPCFFTlRJVFkgQ2xvc2VDdXJseURvdWJsZVF1b3RlICImI3gyMDFEOyI%2BPCFFTlRJVFkgbGRxdW9yICImI3gyMDFFOyI%2BPCFFTlRJVFkgYmRxdW8gIiYjeDIwMUU7Ij48IUVOVElUWSBkYWdnZXIgIiYjeDIwMjA7Ij48IUVOVElUWSBEYWdnZXIgIiYjeDIwMjE7Ij48IUVOVElUWSBkZGFnZ2VyICImI3gyMDIxOyI%2BPCFFTlRJVFkgYnVsbCAiJiN4MjAyMjsiPjwhRU5USVRZIGJ1bGxldCAiJiN4MjAyMjsiPjwhRU5USVRZIG5sZHIgIiYjeDIwMjU7Ij48IUVOVElUWSBoZWxsaXAgIiYjeDIwMjY7Ij48IUVOVElUWSBtbGRyICImI3gyMDI2OyI%2BPCFFTlRJVFkgcGVybWlsICImI3gyMDMwOyI%2BPCFFTlRJVFkgcGVydGVuayAiJiN4MjAzMTsiPjwhRU5USVRZIHByaW1lICImI3gyMDMyOyI%2BPCFFTlRJVFkgUHJpbWUgIiYjeDIwMzM7Ij48IUVOVElUWSB0cHJpbWUgIiYjeDIwMzQ7Ij48IUVOVElUWSBicHJpbWUgIiYjeDIwMzU7Ij48IUVOVElUWSBiYWNrcHJpbWUgIiYjeDIwMzU7Ij48IUVOVElUWSBsc2FxdW8gIiYjeDIwMzk7Ij48IUVOVElUWSByc2FxdW8gIiYjeDIwM0E7Ij48IUVOVElUWSBvbGluZSAiJiN4MjAzRTsiPjwhRU5USVRZIE92ZXJCYXIgIiYjeDIwM0U7Ij48IUVOVElUWSBjYXJldCAiJiN4MjA0MTsiPjwhRU5USVRZIGh5YnVsbCAiJiN4MjA0MzsiPjwhRU5USVRZIGZyYXNsICImI3gyMDQ0OyI%2BPCFFTlRJVFkgYnNlbWkgIiYjeDIwNEY7Ij48IUVOVElUWSBxcHJpbWUgIiYjeDIwNTc7Ij48IUVOVElUWSBNZWRpdW1TcGFjZSAiJiN4MjA1RjsiPjwhRU5USVRZIE5vQnJlYWsgIiYjeDIwNjA7Ij48IUVOVElUWSBBcHBseUZ1bmN0aW9uICImI3gyMDYxOyI%2BPCFFTlRJVFkgYWYgIiYjeDIwNjE7Ij48IUVOVElUWSBJbnZpc2libGVUaW1lcyAiJiN4MjA2MjsiPjwhRU5USVRZIGl0ICImI3gyMDYyOyI%2BPCFFTlRJVFkgSW52aXNpYmxlQ29tbWEgIiYjeDIwNjM7Ij48IUVOVElUWSBpYyAiJiN4MjA2MzsiPjwhRU5USVRZIGV1cm8gIiYjeDIwQUM7Ij48IUVOVElUWSB0ZG90ICImI3gyMERCOyI%2BPCFFTlRJVFkgVHJpcGxlRG90ICImI3gyMERCOyI%2BPCFFTlRJVFkgRG90RG90ICImI3gyMERDOyI%2BPCFFTlRJVFkgQ29wZiAiJiN4MjEwMjsiPjwhRU5USVRZIGNvbXBsZXhlcyAiJiN4MjEwMjsiPjwhRU5USVRZIGluY2FyZSAiJiN4MjEwNTsiPjwhRU5USVRZIGdzY3IgIiYjeDIxMEE7Ij48IUVOVElUWSBoYW1pbHQgIiYjeDIxMEI7Ij48IUVOVElUWSBIaWxiZXJ0U3BhY2UgIiYjeDIxMEI7Ij48IUVOVElUWSBIc2NyICImI3gyMTBCOyI%2BPCFFTlRJVFkgSGZyICImI3gyMTBDOyI%2BPCFFTlRJVFkgUG9pbmNhcmVwbGFuZSAiJiN4MjEwQzsiPjwhRU5USVRZIHF1YXRlcm5pb25zICImI3gyMTBEOyI%2BPCFFTlRJVFkgSG9wZiAiJiN4MjEwRDsiPjwhRU5USVRZIHBsYW5ja2ggIiYjeDIxMEU7Ij48IUVOVElUWSBwbGFuY2sgIiYjeDIxMEY7Ij48IUVOVElUWSBoYmFyICImI3gyMTBGOyI%2BPCFFTlRJVFkgcGxhbmt2ICImI3gyMTBGOyI%2BPCFFTlRJVFkgaHNsYXNoICImI3gyMTBGOyI%2BPCFFTlRJVFkgSXNjciAiJiN4MjExMDsiPjwhRU5USVRZIGltYWdsaW5lICImI3gyMTEwOyI%2BPCFFTlRJVFkgaW1hZ2UgIiYjeDIxMTE7Ij48IUVOVElUWSBJbSAiJiN4MjExMTsiPjwhRU5USVRZIGltYWdwYXJ0ICImI3gyMTExOyI%2BPCFFTlRJVFkgSWZyICImI3gyMTExOyI%2BPCFFTlRJVFkgTHNjciAiJiN4MjExMjsiPjwhRU5USVRZIGxhZ3JhbiAiJiN4MjExMjsiPjwhRU5USVRZIExhcGxhY2V0cmYgIiYjeDIxMTI7Ij48IUVOVElUWSBlbGwgIiYjeDIxMTM7Ij48IUVOVElUWSBOb3BmICImI3gyMTE1OyI%2BPCFFTlRJVFkgbmF0dXJhbHMgIiYjeDIxMTU7Ij48IUVOVElUWSBudW1lcm8gIiYjeDIxMTY7Ij48IUVOVElUWSBjb3B5c3IgIiYjeDIxMTc7Ij48IUVOVElUWSB3ZWllcnAgIiYjeDIxMTg7Ij48IUVOVElUWSB3cCAiJiN4MjExODsiPjwhRU5USVRZIFBvcGYgIiYjeDIxMTk7Ij48IUVOVElUWSBwcmltZXMgIiYjeDIxMTk7Ij48IUVOVElUWSByYXRpb25hbHMgIiYjeDIxMUE7Ij48IUVOVElUWSBRb3BmICImI3gyMTFBOyI%2BPCFFTlRJVFkgUnNjciAiJiN4MjExQjsiPjwhRU5USVRZIHJlYWxpbmUgIiYjeDIxMUI7Ij48IUVOVElUWSByZWFsICImI3gyMTFDOyI%2BPCFFTlRJVFkgUm
UgIiYjeDIxMUM7Ij48IUVOVElUWSByZWFscGFydCAiJiN4MjExQzsiPjwhRU5USVRZIFJmciAiJiN4MjExQzsiPjwhRU5USVRZIHJlYWxzICImI3gyMTFEOyI%2BPCFFTlRJVFkgUm9wZiAiJiN4MjExRDsiPjwhRU5USVRZIHJ4ICImI3gyMTFFOyI%2BPCFFTlRJVFkgdHJhZGUgIiYjeDIxMjI7Ij48IUVOVElUWSBUUkFERSAiJiN4MjEyMjsiPjwhRU5USVRZIGludGVnZXJzICImI3gyMTI0OyI%2BPCFFTlRJVFkgWm9wZiAiJiN4MjEyNDsiPjwhRU5USVRZIG1obyAiJiN4MjEyNzsiPjwhRU5USVRZIFpmciAiJiN4MjEyODsiPjwhRU5USVRZIHplZXRyZiAiJiN4MjEyODsiPjwhRU5USVRZIGlpb3RhICImI3gyMTI5OyI%2BPCFFTlRJVFkgYmVybm91ICImI3gyMTJDOyI%2BPCFFTlRJVFkgQmVybm91bGxpcyAiJiN4MjEyQzsiPjwhRU5USVRZIEJzY3IgIiYjeDIxMkM7Ij48IUVOVElUWSBDZnIgIiYjeDIxMkQ7Ij48IUVOVElUWSBDYXlsZXlzICImI3gyMTJEOyI%2BPCFFTlRJVFkgZXNjciAiJiN4MjEyRjsiPjwhRU5USVRZIEVzY3IgIiYjeDIxMzA7Ij48IUVOVElUWSBleHBlY3RhdGlvbiAiJiN4MjEzMDsiPjwhRU5USVRZIEZzY3IgIiYjeDIxMzE7Ij48IUVOVElUWSBGb3VyaWVydHJmICImI3gyMTMxOyI%2BPCFFTlRJVFkgcGhtbWF0ICImI3gyMTMzOyI%2BPCFFTlRJVFkgTWVsbGludHJmICImI3gyMTMzOyI%2BPCFFTlRJVFkgTXNjciAiJiN4MjEzMzsiPjwhRU5USVRZIG9yZGVyICImI3gyMTM0OyI%2BPCFFTlRJVFkgb3JkZXJvZiAiJiN4MjEzNDsiPjwhRU5USVRZIG9zY3IgIiYjeDIxMzQ7Ij48IUVOVElUWSBhbGVmc3ltICImI3gyMTM1OyI%2BPCFFTlRJVFkgYWxlcGggIiYjeDIxMzU7Ij48IUVOVElUWSBiZXRoICImI3gyMTM2OyI%2BPCFFTlRJVFkgZ2ltZWwgIiYjeDIxMzc7Ij48IUVOVElUWSBkYWxldGggIiYjeDIxMzg7Ij48IUVOVElUWSBDYXBpdGFsRGlmZmVyZW50aWFsRCAiJiN4MjE0NTsiPjwhRU5USVRZIEREICImI3gyMTQ1OyI%2BPCFFTlRJVFkgRGlmZmVyZW50aWFsRCAiJiN4MjE0NjsiPjwhRU5USVRZIGRkICImI3gyMTQ2OyI%2BPCFFTlRJVFkgRXhwb25lbnRpYWxFICImI3gyMTQ3OyI%2BPCFFTlRJVFkgZXhwb25lbnRpYWxlICImI3gyMTQ3OyI%2BPCFFTlRJVFkgZWUgIiYjeDIxNDc7Ij48IUVOVElUWSBJbWFnaW5hcnlJICImI3gyMTQ4OyI%2BPCFFTlRJVFkgaWkgIiYjeDIxNDg7Ij48IUVOVElUWSBmcmFjMTMgIiYjeDIxNTM7Ij48IUVOVElUWSBmcmFjMjMgIiYjeDIxNTQ7Ij48IUVOVElUWSBmcmFjMTUgIiYjeDIxNTU7Ij48IUVOVElUWSBmcmFjMjUgIiYjeDIxNTY7Ij48IUVOVElUWSBmcmFjMzUgIiYjeDIxNTc7Ij48IUVOVElUWSBmcmFjNDUgIiYjeDIxNTg7Ij48IUVOVElUWSBmcmFjMTYgIiYjeDIxNTk7Ij48IUVOVElUWSBmcmFjNTYgIiYjeDIxNUE7Ij48IUVOVElUWSBmcmFjMTggIiYjeDIxNUI7Ij48IUVOVElUWSBmcmFjMzggIiYjeDIxNUM7Ij48IUVOVElUWSBmcmFjNTggIiYjeDIxNUQ7Ij48IUVOVElUWSBmcmFjNzggIiYjeDIxNUU7Ij48IUVOVElUWSBsYXJyICImI3gyMTkwOyI%2BPCFFTlRJVFkgbGVmdGFycm93ICImI3gyMTkwOyI%2BPCFFTlRJVFkgTGVmdEFycm93ICImI3gyMTkwOyI%2BPCFFTlRJVFkgc2xhcnIgIiYjeDIxOTA7Ij48IUVOVElUWSBTaG9ydExlZnRBcnJvdyAiJiN4MjE5MDsiPjwhRU5USVRZIHVhcnIgIiYjeDIxOTE7Ij48IUVOVElUWSB1cGFycm93ICImI3gyMTkxOyI%2BPCFFTlRJVFkgVXBBcnJvdyAiJiN4MjE5MTsiPjwhRU5USVRZIFNob3J0VXBBcnJvdyAiJiN4MjE5MTsiPjwhRU5USVRZIHJhcnIgIiYjeDIxOTI7Ij48IUVOVElUWSByaWdodGFycm93ICImI3gyMTkyOyI%2BPCFFTlRJVFkgUmlnaHRBcnJvdyAiJiN4MjE5MjsiPjwhRU5USVRZIHNyYXJyICImI3gyMTkyOyI%2BPCFFTlRJVFkgU2hvcnRSaWdodEFycm93ICImI3gyMTkyOyI%2BPCFFTlRJVFkgZGFyciAiJiN4MjE5MzsiPjwhRU5USVRZIGRvd25hcnJvdyAiJiN4MjE5MzsiPjwhRU5USVRZIERvd25BcnJvdyAiJiN4MjE5MzsiPjwhRU5USVRZIFNob3J0RG93bkFycm93ICImI3gyMTkzOyI%2BPCFFTlRJVFkgaGFyciAiJiN4MjE5NDsiPjwhRU5USVRZIGxlZnRyaWdodGFycm93ICImI3gyMTk0OyI%2BPCFFTlRJVFkgTGVmdFJpZ2h0QXJyb3cgIiYjeDIxOTQ7Ij48IUVOVElUWSB2YXJyICImI3gyMTk1OyI%2BPCFFTlRJVFkgdXBkb3duYXJyb3cgIiYjeDIxOTU7Ij48IUVOVElUWSBVcERvd25BcnJvdyAiJiN4MjE5NTsiPjwhRU5USVRZIG53YXJyICImI3gyMTk2OyI%2BPCFFTlRJVFkgVXBwZXJMZWZ0QXJyb3cgIiYjeDIxOTY7Ij48IUVOVElUWSBud2Fycm93ICImI3gyMTk2OyI%2BPCFFTlRJVFkgbmVhcnIgIiYjeDIxOTc7Ij48IUVOVElUWSBVcHBlclJpZ2h0QXJyb3cgIiYjeDIxOTc7Ij48IUVOVElUWSBuZWFycm93ICImI3gyMTk3OyI%2BPCFFTlRJVFkgc2VhcnIgIiYjeDIxOTg7Ij48IUVOVElUWSBzZWFycm93ICImI3gyMTk4OyI%2BPCFFTlRJVFkgTG93ZXJSaWdodEFycm93ICImI3gyMTk4OyI%2BPCFFTlRJVFkgc3dhcnIgIiYjeDIxOTk7Ij48IUVOVElUWSBzd2Fycm93ICImI3gyMTk5OyI%2BPCFFTlRJVFkgTG93ZXJMZWZ0QXJyb3cgIiYjeDIxOTk7Ij48IUVOVElUWSBubGFyciAiJiN4MjE5QTsiPjwhRU5USVRZIG5sZWZ0YXJyb3cgIiYjeDIxOUE7Ij48IUVOVElUWSBucmFyciAiJiN4MjE5QjsiPjwhRU5USVRZIG5yaWdodGFycm93ICImI3gyMTlCOyI%2BPCFFTlRJVFkgcmFycncgIiYjeDIxOUQ7Ij48IUVOVElUWSByaWdodHNxdWlnYXJyb3cgIiYjeDIxOUQ7Ij48IUVOVElUWSBMYXJyICImI3gyMTlFOyI%2BPCFFTlRJVFkgdHdvaGVhZGxlZnRhcnJvdyAiJiN4MjE5RTsiPjwhRU5USVRZIFVhcnIgIiYjeDIxOUY7Ij48IUVOVElUWSBSYXJyICImI3gyMUEwOyI%2BPCFFTlRJVFkgdHdvaGVhZHJpZ2h0YXJyb3cgIiYjeDIxQTA7Ij48IUVOVElUWSBEYXJyICImI3gyMUExOyI%2BPCFFTlRJVFkgbGFycnRsICImI3gyMUEyOyI%2BPCFFTlRJVFkgbGVmdGFycm93dGFpbCAiJiN4MjFBMjsiPjwhRU5USVRZIHJhcnJ0bCAiJiN4MjFBMzsiPjwhRU5USVRZIHJpZ2h0YXJyb3d0YWlsICImI3gyMUEzOyI%2BPCFFTlRJVFkgTGVmdFRlZUFycm93ICImI3gyMUE0OyI%2BPCFFTlRJVFkgbWFwc3RvbGVmdCAiJiN4MjFBNDsiPjwhRU5USVRZIFVwVGVlQXJyb3cgIiYjeDIxQTU7Ij48IUVOVElUWSBtYXBzdG91cCAiJiN4MjFBNTsiPjwhRU5USVRZIG1hcCAiJiN4MjFBNjsiPjwhRU5USVRZIFJpZ2h0VGVlQXJyb3cgIiYjeDIxQTY7Ij48IUVOVElUWSBtYXBzdG8gIiYjeDIxQTY7Ij48IUVOVElUWSBEb3duVGVlQXJyb3cgIiYjeDIxQTc7Ij48IUVOVElUWSBtYXBzdG9kb3duICImI3gyMUE3OyI%2BPCFFTlRJVFkgbGFycmhrICImI3gyMUE5OyI%2BPCFFTlRJVFkgaG9va2xlZnRhcnJvdyAiJiN4MjFBOTsiPjwhRU5USVRZIHJhcnJoayAiJiN4MjFBQTsiPjwhRU5USVRZIGhvb2tyaWdodGFycm93ICImI3gyMUFBOyI%2BPCFFTlRJVFkgbGFycmxwICImI3gyMUFCOyI%2BPCFFTlRJVFkgbG9vcGFycm93bGVmdCAiJiN4MjFBQjsiPjwhRU5USVRZIHJhcnJscCAiJiN4MjFBQzsiPjwhRU5USVRZIGxvb3BhcnJvd3JpZ2h0ICImI3gyMUFDOyI%2BPCFFTlRJVFkgaGFycncgIiYjeDIxQUQ7Ij48IUVOVElUWSBsZWZ0cmlnaHRzcXVpZ2Fycm93ICImI3gyMUFEOyI%2BPCFFTlRJVFkgbmhhcnIgIiYjeDIxQUU7Ij48IUVOVElUWSBubGVmdHJpZ2h0YXJyb3cgIiYjeDIxQUU7Ij48IUVOVElUWSBsc2ggIiYjeDIxQjA7Ij48IUVOVElUWSBMc2ggIiYjeDIxQjA7Ij48IUVOVElUWSByc2ggIiYjeDIxQjE7Ij48IUVOVElUWSBSc2ggIiYjeDIxQjE7Ij48IUVOVElUWSBsZHNoICImI3gyMUIyOyI%2BPCFFTlRJVFkgcmRzaCAiJiN4MjFCMzsiPjwhRU5USVRZIGNyYXJyICImI3gyMUI1OyI%2BPCFFTlRJVFkgY3VsYXJyICImI3gyMUI2OyI%2BPCFFTlRJVFkgY3VydmVhcnJvd2xlZnQgIiYjeDIxQjY7Ij48IUVOVElUWSBjdXJhcnIgIiYjeDIxQjc7Ij48IUVOVElUWSBjdXJ2ZWFycm93cmlnaHQgIiYjeDIxQjc7Ij48IUVOVElUWSBvbGFyciAiJiN4MjFCQTsiPjwhRU5USVRZIGNpcmNsZWFycm93bGVmdCAiJiN4MjFCQTsiPjwhRU5USVRZIG9yYXJyICImI3gyMUJCOyI%2BPCFFTlRJVFkgY2lyY2xlYXJyb3dyaWdodCAiJiN4MjFCQjsiPjwhRU5USVRZIGxoYXJ1ICImI3gyMUJDOyI%2BPCFFTlRJVFkgTGVmdFZlY3RvciAiJiN4MjFCQzsiPjwhRU5USVRZIGxlZnRoYXJwb29udXAgIiYjeDIxQkM7Ij48IUVOVElUWSBsaGFyZCAiJiN4MjFCRDsiPjwhRU5USVRZIGxlZnRoYXJwb29uZG93biAiJiN4MjFCRDsiPjwhRU5USVRZIERvd25MZWZ0VmVjdG9yICImI3gyMUJEOyI%2BPCFFTlRJVFkgdWhhcnIgIiYjeDIxQkU7Ij48IUVOVElUWSB1cGhhcnBvb25yaWdodCAiJiN4MjFCRTsiPjwhRU5USVRZIFJpZ2h0VXBWZWN0b3IgIiYjeDIxQkU7Ij48IUVOVElUWSB1aGFybCAiJiN4MjFCRjsiPjwhRU5USVRZIHVwaGFycG9vbmxlZnQgIiYjeDIxQkY7Ij48IUVOVElUWSBMZWZ0VXBWZWN0b3IgIiYjeDIxQkY7Ij48IUVOVElUWSByaGFydSAiJiN4MjFDMDsiPjwhRU5USVRZIFJpZ2h0VmVjdG9yICImI3gyMUMwOyI%2BPCFFTlRJVFkgcmlnaHRoYXJwb29udXAgIiYjeDIxQzA7Ij48IUVOVElUWSByaGFyZCAiJiN4MjFDMTsiPjwhRU5USVRZIHJpZ2h0aGFycG9vbmRvd24gIiYjeDIxQzE7Ij48IUVOVElUWSBEb3duUmlnaHRWZWN0b3IgIiYjeDIxQzE7Ij48IUVOVElUWSBkaGFyciAiJiN4MjFDMjsiPjwhRU5USVRZIFJpZ2h0RG93blZlY3RvciAiJiN4MjFDMjsiPjwhRU5USVRZIGRvd25oYXJwb29ucmlnaHQgIiYjeDIxQzI7Ij48IUVOVElUWSBkaGFybCAiJiN4MjFDMzsiPjwhRU5USVRZIExlZnREb3duVmVjdG9yICImI3gyMUMzOyI%2BPCFFTlRJVFkgZG93bmhhcnBvb25sZWZ0ICImI3gyMUMzOyI%2BPCFFTlRJVFkgcmxhcnIgIiYjeDIxQzQ7Ij48IUVOVElUWSByaWdodGxlZnRhcnJvd3MgIiYjeDIxQzQ7Ij48IUVOVElUWSBSaWdodEFycm93TGVmdEFycm93ICImI3gyMUM0OyI%2BPCFFTlRJVFkgdWRhcnIgIiYjeDIxQzU7Ij48IUVOVElUWSBVcEFycm93RG93bkFycm93ICImI3gyMUM1OyI%2BPCFFTlRJVFkgbHJhcnIgIiYjeDIxQzY7Ij48IUVOVElUWSBsZWZ0cmlnaHRhcnJvd3MgIiYjeDIxQzY7Ij48IUVOVElUWSBMZWZ0QXJyb3dSaWdodEFycm93ICImI3gyMUM2OyI%2BPCFFTlRJVFkgbGxhcnIgIiYjeDIxQzc7Ij48IUVOVElUWSBsZWZ0bGVmdGFycm93cyAiJiN4MjFDNzsiPjwhRU5USVRZIHV1YXJyICImI3gyMUM4OyI%2BPCFFTlRJVFkgdXB1cGFycm93cyAiJiN4MjFDODsiPjwhRU5USVRZIHJyYXJyICImI3gyMUM5OyI%2BPCFFTlRJVFkgcmlnaHRyaWdodGFycm93cyAiJiN4MjFDOTsiPjwhRU5USVRZIGRkYXJyICImI3gyMUNBOyI%2BPCFFTlRJVFkgZG93bmRvd25hcnJvd3MgIiYjeDIxQ0E7Ij48IUVOVElUWSBscmhhciAiJiN4MjFDQjsiPjwhRU5USVRZIFJldmVyc2VFcXVpbGlicml1bSAiJiN4MjFDQjsiPjwhRU5USVRZIGxlZnRyaWdodGhhcnBvb25zICImI3gyMUNCOyI%2BPCFFTlRJVFkgcmxoYXIgIiYjeDIxQ0M7Ij48IUVOVElUWSByaWdodGxlZnRoYXJwb29ucyAiJiN4MjFDQzsiPjwhRU5USVRZIEVxdWlsaWJyaXVtICImI3gyMUNDOyI%2BPCFFTlRJVFkgbmxBcnIgIiYjeDIxQ0Q7Ij48IUVOVElUWSBuTGVmdGFycm93ICImI3gyMUNEOyI%2BPCFFTlRJVFkgbmhBcnIgIiYjeDIxQ0U7Ij48IUVOVElUWSBuTGVmdHJpZ2h0YXJyb3cgIiYjeDIxQ0U7Ij48IUVOVElUWSBuckFyciAiJiN4MjFDRjsiPjwhRU5USVRZIG5SaWdodGFycm93ICImI3gyMUNGOyI%2BPCFFTlRJVFkgbEFyciAiJiN4MjFEMDsiPjwhRU5USVRZIExlZnRhcnJvdyAiJiN4MjFEMDsiPjwhRU5USVRZIERvdWJsZUxlZnRBcnJvdyAiJiN4MjFEMDsiPjwhRU5USVRZIHVBcnIgIiYjeDIxRDE7Ij48IUVOVElUWSBVcGFycm93ICImI3gyMUQxOyI%2BPCFFTlRJVFkgRG91YmxlVXBBcnJvdyAiJiN4MjFEMTsiPjwhRU5USVRZIHJBcnIgIiYjeDIxRDI7Ij48IUVOVElUWSBSaWdodGFycm93ICImI3gyMUQyOyI%2BPCFFTlRJVFkgSW1wbGllcyAiJiN4MjFEMjsiPjwhRU5USVRZIERvdWJsZVJpZ2h0QXJyb3cgIiYjeDIxRDI7Ij48IUVOVElUWSBkQXJyICImI3gyMUQzOyI%2BPCFFTlRJVFkgRG93bmFycm93ICImI3gyMUQzOyI%2BPCFFTlRJVFkgRG91YmxlRG93bkFycm93ICImI3gyMUQzOyI%2BPCFFTlRJVFkgaEFyciAiJiN4MjFENDsiPjwhRU5USVRZIExlZnRyaWdodGFycm93ICImI3gyMUQ0OyI%2BPCFFTlRJVFkgRG91YmxlTGVmdFJpZ2h0QXJyb3cgIiYjeDIxRDQ7Ij48IUVOVElUWSBpZmYgIiYjeDIxRDQ7Ij48IUVOVElUWSB2QXJyICImI3gyMUQ1OyI%2BPCFFTlRJVFkgVXBkb3duYXJyb3cgIiYjeDIxRDU7Ij48IUVOVElUWSBEb3VibGVVcERvd25BcnJvdyAiJiN4MjFENTsiPjwhRU5USVRZIG53QXJyICImI3gyMUQ2OyI%2BPCFFTlRJVFkgbmVBcnIgIiYjeDIxRDc7Ij48IUVOVElUWSBzZUFyciAiJiN4MjFEODsiPjwhRU5USVRZIHN3QXJyICImI3gyMUQ5OyI%2BPCFFTlRJVFkgbEFhcnIgIiYjeDIxREE7Ij48IUVOVElUWSBMbGVmdGFycm93ICImI3gyMURBOyI%2BPCFFTlRJVFkgckFhcnIgIiYjeDIxREI7Ij48IUVOVElUWSBScmlnaHRhcnJvdyAiJiN4MjFEQjsiPjwhRU5USVRZIHppZ3JhcnIgIiYjeDIxREQ7Ij48IUVOVElUWSBsYXJyYiAiJiN4MjFFNDsiPjwhRU5USVRZIExlZnRBcnJvd0JhciAiJiN4MjFFNDsiPjwhRU5USVRZIHJhcnJiICImI3gyMUU1OyI%2BPCFFTlRJVFkgUmlnaHRBcnJvd0JhciAiJiN4MjFFNTsiPjwhRU5USVRZIGR1YXJyICImI3gyMUY1OyI%2BPCFFTlRJVFkgRG93bkFycm93VXBBcnJvdyAiJiN4MjFGNTsiPjwhRU5USVRZIGxvYXJyICImI3gyMUZEOyI%2BPCFFTlRJVFkgcm9hcnIgIiYjeDIxRkU7Ij48IUVOVElUWSBob2FyciAiJiN4MjFGRjsiPjwhRU5USVRZIGZvcmFsbCAiJiN4MjIwMDsiPjwhRU5USVRZIEZvckFsbCAiJiN4MjIwMDsiPjwhRU5USVRZIGNvbXAgIiYjeDIyMDE7Ij48IUVOVElUWSBjb21wbGVtZW50ICImI3gyMjAxOyI%2BPCFFTlRJVFkgcGFydCAiJiN4MjIwMjsiPjwhRU5USVRZIFBhcnRpYWxEICImI3gyMjAyOyI%2BPCFFTlRJVFkgZXhpc3QgIiYjeDIyMDM7Ij48IUVOVElUWSBFeGlzdHMgIiYjeDIyMDM7Ij48IUVOVElUWSBuZXhpc3QgIiYjeDIyMDQ7Ij48IUVOVElUWSBOb3RFeGlzdHMgIiYjeDIyMDQ7Ij48IUVOVElUWSBuZXhpc3RzICImI3gyMjA0OyI%2BPCFFTlRJVFkgZW1wdHkgIiYjeDIyMDU7Ij48IUVOVElUWSBlbXB0eXNldCAiJiN4MjIwNTsiPjwhRU5USVRZIGVtcHR5diAiJiN4MjIwNTsiPjwhRU5USVRZIHZhcm5vdGhpbmcgIiYjeDIyMDU7Ij48IUVOVElUWSBuYWJsYSAiJiN4MjIwNzsiPjwhRU5USVRZIERlbCAiJiN4MjIwNzsiPjwhRU5USVRZIGlzaW4gIiYjeDIyMDg7Ij48IUVOVElU
WSBpc2ludiAiJiN4MjIwODsiPjwhRU5USVRZIEVsZW1lbnQgIiYjeDIyMDg7Ij48IUVOVElUWSBpbiAiJiN4MjIwODsiPjwhRU5USVRZIG5vdGluICImI3gyMjA5OyI%2BPCFFTlRJVFkgTm90RWxlbWVudCAiJiN4MjIwOTsiPjwhRU5USVRZIG5vdGludmEgIiYjeDIyMDk7Ij48IUVOVElUWSBuaXYgIiYjeDIyMEI7Ij48IUVOVElUWSBSZXZlcnNlRWxlbWVudCAiJiN4MjIwQjsiPjwhRU5USVRZIG5pICImI3gyMjBCOyI%2BPCFFTlRJVFkgU3VjaFRoYXQgIiYjeDIyMEI7Ij48IUVOVElUWSBub3RuaSAiJiN4MjIwQzsiPjwhRU5USVRZIG5vdG5pdmEgIiYjeDIyMEM7Ij48IUVOVElUWSBOb3RSZXZlcnNlRWxlbWVudCAiJiN4MjIwQzsiPjwhRU5USVRZIHByb2QgIiYjeDIyMEY7Ij48IUVOVElUWSBQcm9kdWN0ICImI3gyMjBGOyI%2BPCFFTlRJVFkgY29wcm9kICImI3gyMjEwOyI%2BPCFFTlRJVFkgQ29wcm9kdWN0ICImI3gyMjEwOyI%2BPCFFTlRJVFkgc3VtICImI3gyMjExOyI%2BPCFFTlRJVFkgU3VtICImI3gyMjExOyI%2BPCFFTlRJVFkgbWludXMgIiYjeDIyMTI7Ij48IUVOVElUWSBtbnBsdXMgIiYjeDIyMTM7Ij48IUVOVElUWSBtcCAiJiN4MjIxMzsiPjwhRU5USVRZIE1pbnVzUGx1cyAiJiN4MjIxMzsiPjwhRU5USVRZIHBsdXNkbyAiJiN4MjIxNDsiPjwhRU5USVRZIGRvdHBsdXMgIiYjeDIyMTQ7Ij48IUVOVElUWSBzZXRtbiAiJiN4MjIxNjsiPjwhRU5USVRZIHNldG1pbnVzICImI3gyMjE2OyI%2BPCFFTlRJVFkgQmFja3NsYXNoICImI3gyMjE2OyI%2BPCFFTlRJVFkgc3NldG1uICImI3gyMjE2OyI%2BPCFFTlRJVFkgc21hbGxzZXRtaW51cyAiJiN4MjIxNjsiPjwhRU5USVRZIGxvd2FzdCAiJiN4MjIxNzsiPjwhRU5USVRZIGNvbXBmbiAiJiN4MjIxODsiPjwhRU5USVRZIFNtYWxsQ2lyY2xlICImI3gyMjE4OyI%2BPCFFTlRJVFkgcmFkaWMgIiYjeDIyMUE7Ij48IUVOVElUWSBTcXJ0ICImI3gyMjFBOyI%2BPCFFTlRJVFkgcHJvcCAiJiN4MjIxRDsiPjwhRU5USVRZIHByb3B0byAiJiN4MjIxRDsiPjwhRU5USVRZIFByb3BvcnRpb25hbCAiJiN4MjIxRDsiPjwhRU5USVRZIHZwcm9wICImI3gyMjFEOyI%2BPCFFTlRJVFkgdmFycHJvcHRvICImI3gyMjFEOyI%2BPCFFTlRJVFkgaW5maW4gIiYjeDIyMUU7Ij48IUVOVElUWSBhbmdydCAiJiN4MjIxRjsiPjwhRU5USVRZIGFuZyAiJiN4MjIyMDsiPjwhRU5USVRZIGFuZ2xlICImI3gyMjIwOyI%2BPCFFTlRJVFkgYW5nbXNkICImI3gyMjIxOyI%2BPCFFTlRJVFkgbWVhc3VyZWRhbmdsZSAiJiN4MjIyMTsiPjwhRU5USVRZIGFuZ3NwaCAiJiN4MjIyMjsiPjwhRU5USVRZIG1pZCAiJiN4MjIyMzsiPjwhRU5USVRZIFZlcnRpY2FsQmFyICImI3gyMjIzOyI%2BPCFFTlRJVFkgc21pZCAiJiN4MjIyMzsiPjwhRU5USVRZIHNob3J0bWlkICImI3gyMjIzOyI%2BPCFFTlRJVFkgbm1pZCAiJiN4MjIyNDsiPjwhRU5USVRZIE5vdFZlcnRpY2FsQmFyICImI3gyMjI0OyI%2BPCFFTlRJVFkgbnNtaWQgIiYjeDIyMjQ7Ij48IUVOVElUWSBuc2hvcnRtaWQgIiYjeDIyMjQ7Ij48IUVOVElUWSBwYXIgIiYjeDIyMjU7Ij48IUVOVElUWSBwYXJhbGxlbCAiJiN4MjIyNTsiPjwhRU5USVRZIERvdWJsZVZlcnRpY2FsQmFyICImI3gyMjI1OyI%2BPCFFTlRJVFkgc3BhciAiJiN4MjIyNTsiPjwhRU5USVRZIHNob3J0cGFyYWxsZWwgIiYjeDIyMjU7Ij48IUVOVElUWSBucGFyICImI3gyMjI2OyI%2BPCFFTlRJVFkgbnBhcmFsbGVsICImI3gyMjI2OyI%2BPCFFTlRJVFkgTm90RG91YmxlVmVydGljYWxCYXIgIiYjeDIyMjY7Ij48IUVOVElUWSBuc3BhciAiJiN4MjIyNjsiPjwhRU5USVRZIG5zaG9ydHBhcmFsbGVsICImI3gyMjI2OyI%2BPCFFTlRJVFkgYW5kICImI3gyMjI3OyI%2BPCFFTlRJVFkgd2VkZ2UgIiYjeDIyMjc7Ij48IUVOVElUWSBvciAiJiN4MjIyODsiPjwhRU5USVRZIHZlZSAiJiN4MjIyODsiPjwhRU5USVRZIGNhcCAiJiN4MjIyOTsiPjwhRU5USVRZIGN1cCAiJiN4MjIyQTsiPjwhRU5USVRZIGludCAiJiN4MjIyQjsiPjwhRU5USVRZIEludGVncmFsICImI3gyMjJCOyI%2BPCFFTlRJVFkgSW50ICImI3gyMjJDOyI%2BPCFFTlRJVFkgdGludCAiJiN4MjIyRDsiPjwhRU5USVRZIGlpaW50ICImI3gyMjJEOyI%2BPCFFTlRJVFkgY29uaW50ICImI3gyMjJFOyI%2BPCFFTlRJVFkgb2ludCAiJiN4MjIyRTsiPjwhRU5USVRZIENvbnRvdXJJbnRlZ3JhbCAiJiN4MjIyRTsiPjwhRU5USVRZIENvbmludCAiJiN4MjIyRjsiPjwhRU5USVRZIERvdWJsZUNvbnRvdXJJbnRlZ3JhbCAiJiN4MjIyRjsiPjwhRU5USVRZIENjb25pbnQgIiYjeDIyMzA7Ij48IUVOVElUWSBjd2ludCAiJiN4MjIzMTsiPjwhRU5USVRZIGN3Y29uaW50ICImI3gyMjMyOyI%2BPCFFTlRJVFkgQ2xvY2t3aXNlQ29udG91ckludGVncmFsICImI3gyMjMyOyI%2BPCFFTlRJVFkgYXdjb25pbnQgIiYjeDIyMzM7Ij48IUVOVElUWSBDb3VudGVyQ2xvY2t3aXNlQ29udG91ckludGVncmFsICImI3gyMjMzOyI%2BPCFFTlRJVFkgdGhlcmU0ICImI3gyMjM0OyI%2BPCFFTlRJVFkgdGhlcmVmb3JlICImI3gyMjM0OyI%2BPCFFTlRJVFkgVGhlcmVmb3JlICImI3gyMjM0OyI%2BPCFFTlRJVFkgYmVjYXVzICImI3gyMjM1OyI%2BPCFFTlRJVFkgYmVjYXVzZSAiJiN4MjIzNTsiPjwhRU5USVRZIEJlY2F1c2UgIiYjeDIyMzU7Ij48IUVOVElUWSByYXRpbyAiJiN4MjIzNjsiPjwhRU5USVRZIENvbG9uICImI3gyMjM3OyI%2BPCFFTlRJVFkgUHJvcG9ydGlvbiAiJiN4MjIzNzsiPjwhRU5USVRZIG1pbnVzZCAiJiN4MjIzODsiPjwhRU5USVRZIGRvdG1pbnVzICImI3gyMjM4OyI%2BPCFFTlRJVFkgbUREb3QgIiYjeDIyM0E7Ij48IUVOVElUWSBob210aHQgIiYjeDIyM0I7Ij48IUVOVElUWSBzaW0gIiYjeDIyM0M7Ij48IUVOVElUWSBUaWxkZSAiJiN4MjIzQzsiPjwhRU5USVRZIHRoa3NpbSAiJiN4MjIzQzsiPjwhRU5USVRZIHRoaWNrc2ltICImI3gyMjNDOyI%2BPCFFTlRJVFkgYnNpbSAiJiN4MjIzRDsiPjwhRU5USVRZIGJhY2tzaW0gIiYjeDIyM0Q7Ij48IUVOVElUWSBhYyAiJiN4MjIzRTsiPjwhRU5USVRZIG1zdHBvcyAiJiN4MjIzRTsiPjwhRU5USVRZIGFjZCAiJiN4MjIzRjsiPjwhRU5USVRZIHdyZWF0aCAiJiN4MjI0MDsiPjwhRU5USVRZIFZlcnRpY2FsVGlsZGUgIiYjeDIyNDA7Ij48IUVOVElUWSB3ciAiJiN4MjI0MDsiPjwhRU5USVRZIG5zaW0gIiYjeDIyNDE7Ij48IUVOVElUWSBOb3RUaWxkZSAiJiN4MjI0MTsiPjwhRU5USVRZIGVzaW0gIiYjeDIyNDI7Ij48IUVOVElUWSBFcXVhbFRpbGRlICImI3gyMjQyOyI%2BPCFFTlRJVFkgZXFzaW0gIiYjeDIyNDI7Ij48IUVOVElUWSBzaW1lICImI3gyMjQzOyI%2BPCFFTlRJVFkgVGlsZGVFcXVhbCAiJiN4MjI0MzsiPjwhRU5USVRZIHNpbWVxICImI3gyMjQzOyI%2BPCFFTlRJVFkgbnNpbWUgIiYjeDIyNDQ7Ij48IUVOVElUWSBuc2ltZXEgIiYjeDIyNDQ7Ij48IUVOVElUWSBOb3RUaWxkZUVxdWFsICImI3gyMjQ0OyI%2BPCFFTlRJVFkgY29uZyAiJiN4MjI0NTsiPjwhRU5USVRZIFRpbGRlRnVsbEVxdWFsICImI3gyMjQ1OyI%2BPCFFTlRJVFkgc2ltbmUgIiYjeDIyNDY7Ij48IUVOVElUWSBuY29uZyAiJiN4MjI0NzsiPjwhRU5USVRZIE5vdFRpbGRlRnVsbEVxdWFsICImI3gyMjQ3OyI%2BPCFFTlRJVFkgYXN5bXAgIiYjeDIyNDg7Ij48IUVOVElUWSBhcCAiJiN4MjI0ODsiPjwhRU5USVRZIFRpbGRlVGlsZGUgIiYjeDIyNDg7Ij48IUVOVElUWSBhcHByb3ggIiYjeDIyNDg7Ij48IUVOVElUWSB0aGthcCAiJiN4MjI0ODsiPjwhRU5USVRZIHRoaWNrYXBwcm94ICImI3gyMjQ4OyI%2BPCFFTlRJVFkgbmFwICImI3gyMjQ5OyI%2BPCFFTlRJVFkgTm90VGlsZGVUaWxkZSAiJiN4MjI0OTsiPjwhRU5USVRZIG5hcHByb3ggIiYjeDIyNDk7Ij48IUVOVElUWSBhcGUgIiYjeDIyNEE7Ij48IUVOVElUWSBhcHByb3hlcSAiJiN4MjI0QTsiPjwhRU5USVRZIGFwaWQgIiYjeDIyNEI7Ij48IUVOVElUWSBiY29uZyAiJiN4MjI0QzsiPjwhRU5USVRZIGJhY2tjb25nICImI3gyMjRDOyI%2BPCFFTlRJVFkgYXN5bXBlcSAiJiN4MjI0RDsiPjwhRU5USVRZIEN1cENhcCAiJiN4MjI0RDsiPjwhRU5USVRZIGJ1bXAgIiYjeDIyNEU7Ij48IUVOVElUWSBIdW1wRG93bkh1bXAgIiYjeDIyNEU7Ij48IUVOVElUWSBCdW1wZXEgIiYjeDIyNEU7Ij48IUVOVElUWSBidW1wZSAiJiN4MjI0RjsiPjwhRU5USVRZIEh1bXBFcXVhbCAiJiN4MjI0RjsiPjwhRU5USVRZIGJ1bXBlcSAiJiN4MjI0RjsiPjwhRU5USVRZIGVzZG90ICImI3gyMjUwOyI%2BPCFFTlRJVFkgRG90RXF1YWwgIiYjeDIyNTA7Ij48IUVOVElUWSBkb3RlcSAiJiN4MjI1MDsiPjwhRU5USVRZIGVEb3QgIiYjeDIyNTE7Ij48IUVOVElUWSBkb3RlcWRvdCAiJiN4MjI1MTsiPjwhRU5USVRZIGVmRG90ICImI3gyMjUyOyI%2BPCFFTlRJVFkgZmFsbGluZ2RvdHNlcSAiJiN4MjI1MjsiPjwhRU5USVRZIGVyRG90ICImI3gyMjUzOyI%2BPCFFTlRJVFkgcmlzaW5nZG90c2VxICImI3gyMjUzOyI%2BPCFFTlRJVFkgY29sb25lICImI3gyMjU0OyI%2BPCFFTlRJVFkgY29sb25lcSAiJiN4MjI1NDsiPjwhRU5USVRZIEFzc2lnbiAiJiN4MjI1NDsiPjwhRU5USVRZIGVjb2xvbiAiJiN4MjI1NTsiPjwhRU5USVRZIGVxY29sb24gIiYjeDIyNTU7Ij48IUVOVElUWSBlY2lyICImI3gyMjU2OyI%2BPCFFTlRJVFkgZXFjaXJjICImI3gyMjU2OyI%2BPCFFTlRJVFkgY2lyZSAiJiN4MjI1NzsiPjwhRU5USVRZIGNpcmNlcSAiJiN4MjI1NzsiPjwhRU5USVRZIHdlZGdlcSAiJiN4MjI1OTsiPjwhRU5USVRZIHZlZWVxICImI3gyMjVBOyI%2BPCFFTlRJVFkgdHJpZSAiJiN4MjI1QzsiPjwhRU5USVRZIHRyaWFuZ2xlcSAiJiN4MjI1QzsiPjwhRU5USVRZIGVxdWVzdCAiJiN4MjI1RjsiPjwhRU5USVRZIHF1ZXN0ZXEgIiYjeDIyNUY7Ij48IUVOVElUWSBuZSAiJiN4MjI2MDsiPjwhRU5USVRZIE5vdEVxdWFsICImI3gyMjYwOyI%2BPCFFTlRJVFkgZXF1aXYgIiYjeDIyNjE7Ij48IUVOVElUWSBDb25ncnVlbnQgIiYjeDIyNjE7Ij48IUVOVElUWSBuZXF1aXYgIiYjeDIyNjI7Ij48IUVOVElUWSBOb3RDb25ncnVlbnQgIiYjeDIyNjI7Ij48IUVOVElUWSBsZSAiJiN4MjI2NDsiPjwhRU5USVRZIGxlcSAiJiN4MjI2NDsiPjwhRU5USVRZIGdlICImI3gyMjY1OyI%2BPCFFTlRJVFkgR3JlYXRlckVxdWFsICImI3gyMjY1OyI%2BPCFFTlRJVFkgZ2VxICImI3gyMjY1OyI%2BPCFFTlRJVFkgbEUgIiYjeDIyNjY7Ij48IUVOVElUWSBMZXNzRnVsbEVxdWFsICImI3gyMjY2OyI%2BPCFFTlRJVFkgbGVxcSAiJiN4MjI2NjsiPjwhRU5USVRZIGdFICImI3gyMjY3OyI%2BPCFFTlRJVFkgR3JlYXRlckZ1bGxFcXVhbCAiJiN4MjI2NzsiPjwhRU5USVRZIGdlcXEgIiYjeDIyNjc7Ij48IUVOVElUWSBsbkUgIiYjeDIyNjg7Ij48IUVOVElUWSBsbmVxcSAiJiN4MjI2ODsiPjwhRU5USVRZIGduRSAiJiN4MjI2OTsiPjwhRU5USVRZIGduZXFxICImI3gyMjY5OyI%2BPCFFTlRJVFkgTHQgIiYjeDIyNkE7Ij48IUVOVElUWSBOZXN0ZWRMZXNzTGVzcyAiJiN4MjI2QTsiPjwhRU5USVRZIGxsICImI3gyMjZBOyI%2BPCFFTlRJVFkgR3QgIiYjeDIyNkI7Ij48IUVOVElUWSBOZXN0ZWRHcmVhdGVyR3JlYXRlciAiJiN4MjI2QjsiPjwhRU5USVRZIGdnICImI3gyMjZCOyI%2BPCFFTlRJVFkgdHdpeHQgIiYjeDIyNkM7Ij48IUVOVElUWSBiZXR3ZWVuICImI3gyMjZDOyI%2BPCFFTlRJVFkgTm90Q3VwQ2FwICImI3gyMjZEOyI%2BPCFFTlRJVFkgbmx0ICImI3gyMjZFOyI%2BPCFFTlRJVFkgTm90TGVzcyAiJiN4MjI2RTsiPjwhRU5USVRZIG5sZXNzICImI3gyMjZFOyI%2BPCFFTlRJVFkgbmd0ICImI3gyMjZGOyI%2BPCFFTlRJVFkgTm90R3JlYXRlciAiJiN4MjI2RjsiPjwhRU5USVRZIG5ndHIgIiYjeDIyNkY7Ij48IUVOVElUWSBubGUgIiYjeDIyNzA7Ij48IUVOVElUWSBOb3RMZXNzRXF1YWwgIiYjeDIyNzA7Ij48IUVOVElUWSBubGVxICImI3gyMjcwOyI%2BPCFFTlRJVFkgbmdlICImI3gyMjcxOyI%2BPCFFTlRJVFkgTm90R3JlYXRlckVxdWFsICImI3gyMjcxOyI%2BPCFFTlRJVFkgbmdlcSAiJiN4MjI3MTsiPjwhRU5USVRZIGxzaW0gIiYjeDIyNzI7Ij48IUVOVElUWSBMZXNzVGlsZGUgIiYjeDIyNzI7Ij48IUVOVElUWSBsZXNzc2ltICImI3gyMjcyOyI%2BPCFFTlRJVFkgZ3NpbSAiJiN4MjI3MzsiPjwhRU5USVRZIGd0cnNpbSAiJiN4MjI3MzsiPjwhRU5USVRZIEdyZWF0ZXJUaWxkZSAiJiN4MjI3MzsiPjwhRU5USVRZIG5sc2ltICImI3gyMjc0OyI%2BPCFFTlRJVFkgTm90TGVzc1RpbGRlICImI3gyMjc0OyI%2BPCFFTlRJVFkgbmdzaW0gIiYjeDIyNzU7Ij48IUVOVElUWSBOb3RHcmVhdGVyVGlsZGUgIiYjeDIyNzU7Ij48IUVOVElUWSBsZyAiJiN4MjI3NjsiPjwhRU5USVRZIGxlc3NndHIgIiYjeDIyNzY7Ij48IUVOVElUWSBMZXNzR3JlYXRlciAiJiN4MjI3NjsiPjwhRU5USVRZIGdsICImI3gyMjc3OyI%2BPCFFTlRJVFkgZ3RybGVzcyAiJiN4MjI3NzsiPjwhRU5USVRZIEdyZWF0ZXJMZXNzICImI3gyMjc3OyI%2BPCFFTlRJVFkgbnRsZyAiJiN4MjI3ODsiPjwhRU5USVRZIE5vdExlc3NHcmVhdGVyICImI3gyMjc4OyI%2BPCFFTlRJVFkgbnRnbCAiJiN4MjI3OTsiPjwhRU5USVRZIE5vdEdyZWF0ZXJMZXNzICImI3gyMjc5OyI%2BPCFFTlRJVFkgcHIgIiYjeDIyN0E7Ij48IUVOVElUWSBQcmVjZWRlcyAiJiN4MjI3QTsiPjwhRU5USVRZIHByZWMgIiYjeDIyN0E7Ij48IUVOVElUWSBzYyAiJiN4MjI3QjsiPjwhRU5USVRZIFN1Y2NlZWRzICImI3gyMjdCOyI%2BPCFFTlRJVFkgc3VjYyAiJiN4MjI3QjsiPjwhRU5USVRZIHByY3VlICImI3gyMjdDOyI%2BPCFFTlRJVFkgUHJlY2VkZXNTbGFudEVxdWFsICImI3gyMjdDOyI%2BPCFFTlRJVFkgcHJlY2N1cmx5ZXEgIiYjeDIyN0M7Ij48IUVOVElUWSBzY2N1ZSAiJiN4MjI3RDsiPjwhRU5USVRZIFN1Y2NlZWRzU2xhbnRFcXVhbCAiJiN4MjI3RDsiPjwhRU5USVRZIHN1Y2NjdXJseWVxICImI3gyMjdEOyI%2BPCFFTlRJVFkgcHJzaW0gIiYjeDIyN0U7Ij48IUVOVElUWSBwcmVjc2ltICImI3gyMjdFOyI%2BPCFFTlRJVFkgUHJlY2VkZXNUaWxkZSAiJiN4MjI3RTsiPjwhRU5USVRZIHNjc2ltICImI3gyMjdGOyI%2BPCFFTlRJVFkgc3VjY3NpbSAiJiN4MjI3RjsiPjwhRU5USVRZIFN1Y2NlZWRzVGlsZGUgIiYjeDIyN0Y7Ij48IUVOVElUWSBucHIgIiYjeDIyODA7Ij48IUVOVElUWSBucHJlYyAiJiN4MjI4MDsiPjwhRU5USVRZIE5vdFByZWNlZGVzICImI3gyMjgwOyI%2BPCFFTlRJVFkgbnNjICImI3gyMjgxOyI%2BPCFFTlRJVFkgbnN1Y2MgIiYjeDIyODE7Ij48IUVOVElUWSBOb3RTdWNjZWVkcyAiJiN4MjI4MTsiPjwhRU5USVRZIHN1YiAiJiN4MjI4MjsiPjwhRU5USVRZIHN1YnNldCAiJiN4MjI4MjsiPjwhRU5USVRZIHN1cCAiJiN4MjI4MzsiPjwhRU5USVRZIHN1cHNldCAiJiN4MjI4MzsiPjwhRU
5USVRZIFN1cGVyc2V0ICImI3gyMjgzOyI%2BPCFFTlRJVFkgbnN1YiAiJiN4MjI4NDsiPjwhRU5USVRZIG5zdXAgIiYjeDIyODU7Ij48IUVOVElUWSBzdWJlICImI3gyMjg2OyI%2BPCFFTlRJVFkgU3Vic2V0RXF1YWwgIiYjeDIyODY7Ij48IUVOVElUWSBzdWJzZXRlcSAiJiN4MjI4NjsiPjwhRU5USVRZIHN1cGUgIiYjeDIyODc7Ij48IUVOVElUWSBzdXBzZXRlcSAiJiN4MjI4NzsiPjwhRU5USVRZIFN1cGVyc2V0RXF1YWwgIiYjeDIyODc7Ij48IUVOVElUWSBuc3ViZSAiJiN4MjI4ODsiPjwhRU5USVRZIG5zdWJzZXRlcSAiJiN4MjI4ODsiPjwhRU5USVRZIE5vdFN1YnNldEVxdWFsICImI3gyMjg4OyI%2BPCFFTlRJVFkgbnN1cGUgIiYjeDIyODk7Ij48IUVOVElUWSBuc3Vwc2V0ZXEgIiYjeDIyODk7Ij48IUVOVElUWSBOb3RTdXBlcnNldEVxdWFsICImI3gyMjg5OyI%2BPCFFTlRJVFkgc3VibmUgIiYjeDIyOEE7Ij48IUVOVElUWSBzdWJzZXRuZXEgIiYjeDIyOEE7Ij48IUVOVElUWSBzdXBuZSAiJiN4MjI4QjsiPjwhRU5USVRZIHN1cHNldG5lcSAiJiN4MjI4QjsiPjwhRU5USVRZIGN1cGRvdCAiJiN4MjI4RDsiPjwhRU5USVRZIHVwbHVzICImI3gyMjhFOyI%2BPCFFTlRJVFkgVW5pb25QbHVzICImI3gyMjhFOyI%2BPCFFTlRJVFkgc3FzdWIgIiYjeDIyOEY7Ij48IUVOVElUWSBTcXVhcmVTdWJzZXQgIiYjeDIyOEY7Ij48IUVOVElUWSBzcXN1YnNldCAiJiN4MjI4RjsiPjwhRU5USVRZIHNxc3VwICImI3gyMjkwOyI%2BPCFFTlRJVFkgU3F1YXJlU3VwZXJzZXQgIiYjeDIyOTA7Ij48IUVOVElUWSBzcXN1cHNldCAiJiN4MjI5MDsiPjwhRU5USVRZIHNxc3ViZSAiJiN4MjI5MTsiPjwhRU5USVRZIFNxdWFyZVN1YnNldEVxdWFsICImI3gyMjkxOyI%2BPCFFTlRJVFkgc3FzdWJzZXRlcSAiJiN4MjI5MTsiPjwhRU5USVRZIHNxc3VwZSAiJiN4MjI5MjsiPjwhRU5USVRZIFNxdWFyZVN1cGVyc2V0RXF1YWwgIiYjeDIyOTI7Ij48IUVOVElUWSBzcXN1cHNldGVxICImI3gyMjkyOyI%2BPCFFTlRJVFkgc3FjYXAgIiYjeDIyOTM7Ij48IUVOVElUWSBTcXVhcmVJbnRlcnNlY3Rpb24gIiYjeDIyOTM7Ij48IUVOVElUWSBzcWN1cCAiJiN4MjI5NDsiPjwhRU5USVRZIFNxdWFyZVVuaW9uICImI3gyMjk0OyI%2BPCFFTlRJVFkgb3BsdXMgIiYjeDIyOTU7Ij48IUVOVElUWSBDaXJjbGVQbHVzICImI3gyMjk1OyI%2BPCFFTlRJVFkgb21pbnVzICImI3gyMjk2OyI%2BPCFFTlRJVFkgQ2lyY2xlTWludXMgIiYjeDIyOTY7Ij48IUVOVElUWSBvdGltZXMgIiYjeDIyOTc7Ij48IUVOVElUWSBDaXJjbGVUaW1lcyAiJiN4MjI5NzsiPjwhRU5USVRZIG9zb2wgIiYjeDIyOTg7Ij48IUVOVElUWSBvZG90ICImI3gyMjk5OyI%2BPCFFTlRJVFkgQ2lyY2xlRG90ICImI3gyMjk5OyI%2BPCFFTlRJVFkgb2NpciAiJiN4MjI5QTsiPjwhRU5USVRZIGNpcmNsZWRjaXJjICImI3gyMjlBOyI%2BPCFFTlRJVFkgb2FzdCAiJiN4MjI5QjsiPjwhRU5USVRZIGNpcmNsZWRhc3QgIiYjeDIyOUI7Ij48IUVOVElUWSBvZGFzaCAiJiN4MjI5RDsiPjwhRU5USVRZIGNpcmNsZWRkYXNoICImI3gyMjlEOyI%2BPCFFTlRJVFkgcGx1c2IgIiYjeDIyOUU7Ij48IUVOVElUWSBib3hwbHVzICImI3gyMjlFOyI%2BPCFFTlRJVFkgbWludXNiICImI3gyMjlGOyI%2BPCFFTlRJVFkgYm94bWludXMgIiYjeDIyOUY7Ij48IUVOVElUWSB0aW1lc2IgIiYjeDIyQTA7Ij48IUVOVElUWSBib3h0aW1lcyAiJiN4MjJBMDsiPjwhRU5USVRZIHNkb3RiICImI3gyMkExOyI%2BPCFFTlRJVFkgZG90c3F1YXJlICImI3gyMkExOyI%2BPCFFTlRJVFkgdmRhc2ggIiYjeDIyQTI7Ij48IUVOVElUWSBSaWdodFRlZSAiJiN4MjJBMjsiPjwhRU5USVRZIGRhc2h2ICImI3gyMkEzOyI%2BPCFFTlRJVFkgTGVmdFRlZSAiJiN4MjJBMzsiPjwhRU5USVRZIHRvcCAiJiN4MjJBNDsiPjwhRU5USVRZIERvd25UZWUgIiYjeDIyQTQ7Ij48IUVOVElUWSBib3R0b20gIiYjeDIyQTU7Ij48IUVOVElUWSBib3QgIiYjeDIyQTU7Ij48IUVOVElUWSBwZXJwICImI3gyMkE1OyI%2BPCFFTlRJVFkgVXBUZWUgIiYjeDIyQTU7Ij48IUVOVElUWSBtb2RlbHMgIiYjeDIyQTc7Ij48IUVOVElUWSB2RGFzaCAiJiN4MjJBODsiPjwhRU5USVRZIERvdWJsZVJpZ2h0VGVlICImI3gyMkE4OyI%2BPCFFTlRJVFkgVmRhc2ggIiYjeDIyQTk7Ij48IUVOVElUWSBWdmRhc2ggIiYjeDIyQUE7Ij48IUVOVElUWSBWRGFzaCAiJiN4MjJBQjsiPjwhRU5USVRZIG52ZGFzaCAiJiN4MjJBQzsiPjwhRU5USVRZIG52RGFzaCAiJiN4MjJBRDsiPjwhRU5USVRZIG5WZGFzaCAiJiN4MjJBRTsiPjwhRU5USVRZIG5WRGFzaCAiJiN4MjJBRjsiPjwhRU5USVRZIHBydXJlbCAiJiN4MjJCMDsiPjwhRU5USVRZIHZsdHJpICImI3gyMkIyOyI%2BPCFFTlRJVFkgdmFydHJpYW5nbGVsZWZ0ICImI3gyMkIyOyI%2BPCFFTlRJVFkgTGVmdFRyaWFuZ2xlICImI3gyMkIyOyI%2BPCFFTlRJVFkgdnJ0cmkgIiYjeDIyQjM7Ij48IUVOVElUWSB2YXJ0cmlhbmdsZXJpZ2h0ICImI3gyMkIzOyI%2BPCFFTlRJVFkgUmlnaHRUcmlhbmdsZSAiJiN4MjJCMzsiPjwhRU5USVRZIGx0cmllICImI3gyMkI0OyI%2BPCFFTlRJVFkgdHJpYW5nbGVsZWZ0ZXEgIiYjeDIyQjQ7Ij48IUVOVElUWSBMZWZ0VHJpYW5nbGVFcXVhbCAiJiN4MjJCNDsiPjwhRU5USVRZIHJ0cmllICImI3gyMkI1OyI%2BPCFFTlRJVFkgdHJpYW5nbGVyaWdodGVxICImI3gyMkI1OyI%2BPCFFTlRJVFkgUmlnaHRUcmlhbmdsZUVxdWFsICImI3gyMkI1OyI%2BPCFFTlRJVFkgb3JpZ29mICImI3gyMkI2OyI%2BPCFFTlRJVFkgaW1vZiAiJiN4MjJCNzsiPjwhRU5USVRZIG11bWFwICImI3gyMkI4OyI%2BPCFFTlRJVFkgbXVsdGltYXAgIiYjeDIyQjg7Ij48IUVOVElUWSBoZXJjb24gIiYjeDIyQjk7Ij48IUVOVElUWSBpbnRjYWwgIiYjeDIyQkE7Ij48IUVOVElUWSBpbnRlcmNhbCAiJiN4MjJCQTsiPjwhRU5USVRZIHZlZWJhciAiJiN4MjJCQjsiPjwhRU5USVRZIGJhcnZlZSAiJiN4MjJCRDsiPjwhRU5USVRZIGFuZ3J0dmIgIiYjeDIyQkU7Ij48IUVOVElUWSBscnRyaSAiJiN4MjJCRjsiPjwhRU5USVRZIHh3ZWRnZSAiJiN4MjJDMDsiPjwhRU5USVRZIFdlZGdlICImI3gyMkMwOyI%2BPCFFTlRJVFkgYmlnd2VkZ2UgIiYjeDIyQzA7Ij48IUVOVElUWSB4dmVlICImI3gyMkMxOyI%2BPCFFTlRJVFkgVmVlICImI3gyMkMxOyI%2BPCFFTlRJVFkgYmlndmVlICImI3gyMkMxOyI%2BPCFFTlRJVFkgeGNhcCAiJiN4MjJDMjsiPjwhRU5USVRZIEludGVyc2VjdGlvbiAiJiN4MjJDMjsiPjwhRU5USVRZIGJpZ2NhcCAiJiN4MjJDMjsiPjwhRU5USVRZIHhjdXAgIiYjeDIyQzM7Ij48IUVOVElUWSBVbmlvbiAiJiN4MjJDMzsiPjwhRU5USVRZIGJpZ2N1cCAiJiN4MjJDMzsiPjwhRU5USVRZIGRpYW0gIiYjeDIyQzQ7Ij48IUVOVElUWSBkaWFtb25kICImI3gyMkM0OyI%2BPCFFTlRJVFkgRGlhbW9uZCAiJiN4MjJDNDsiPjwhRU5USVRZIHNkb3QgIiYjeDIyQzU7Ij48IUVOVElUWSBzc3RhcmYgIiYjeDIyQzY7Ij48IUVOVElUWSBTdGFyICImI3gyMkM2OyI%2BPCFFTlRJVFkgZGl2b254ICImI3gyMkM3OyI%2BPCFFTlRJVFkgZGl2aWRlb250aW1lcyAiJiN4MjJDNzsiPjwhRU5USVRZIGJvd3RpZSAiJiN4MjJDODsiPjwhRU5USVRZIGx0aW1lcyAiJiN4MjJDOTsiPjwhRU5USVRZIHJ0aW1lcyAiJiN4MjJDQTsiPjwhRU5USVRZIGx0aHJlZSAiJiN4MjJDQjsiPjwhRU5USVRZIGxlZnR0aHJlZXRpbWVzICImI3gyMkNCOyI%2BPCFFTlRJVFkgcnRocmVlICImI3gyMkNDOyI%2BPCFFTlRJVFkgcmlnaHR0aHJlZXRpbWVzICImI3gyMkNDOyI%2BPCFFTlRJVFkgYnNpbWUgIiYjeDIyQ0Q7Ij48IUVOVElUWSBiYWNrc2ltZXEgIiYjeDIyQ0Q7Ij48IUVOVElUWSBjdXZlZSAiJiN4MjJDRTsiPjwhRU5USVRZIGN1cmx5dmVlICImI3gyMkNFOyI%2BPCFFTlRJVFkgY3V3ZWQgIiYjeDIyQ0Y7Ij48IUVOVElUWSBjdXJseXdlZGdlICImI3gyMkNGOyI%2BPCFFTlRJVFkgU3ViICImI3gyMkQwOyI%2BPCFFTlRJVFkgU3Vic2V0ICImI3gyMkQwOyI%2BPCFFTlRJVFkgU3VwICImI3gyMkQxOyI%2BPCFFTlRJVFkgU3Vwc2V0ICImI3gyMkQxOyI%2BPCFFTlRJVFkgQ2FwICImI3gyMkQyOyI%2BPCFFTlRJVFkgQ3VwICImI3gyMkQzOyI%2BPCFFTlRJVFkgZm9yayAiJiN4MjJENDsiPjwhRU5USVRZIHBpdGNoZm9yayAiJiN4MjJENDsiPjwhRU5USVRZIGVwYXIgIiYjeDIyRDU7Ij48IUVOVElUWSBsdGRvdCAiJiN4MjJENjsiPjwhRU5USVRZIGxlc3Nkb3QgIiYjeDIyRDY7Ij48IUVOVElUWSBndGRvdCAiJiN4MjJENzsiPjwhRU5USVRZIGd0cmRvdCAiJiN4MjJENzsiPjwhRU5USVRZIExsICImI3gyMkQ4OyI%2BPCFFTlRJVFkgR2cgIiYjeDIyRDk7Ij48IUVOVElUWSBnZ2cgIiYjeDIyRDk7Ij48IUVOVElUWSBsZWcgIiYjeDIyREE7Ij48IUVOVElUWSBMZXNzRXF1YWxHcmVhdGVyICImI3gyMkRBOyI%2BPCFFTlRJVFkgbGVzc2VxZ3RyICImI3gyMkRBOyI%2BPCFFTlRJVFkgZ2VsICImI3gyMkRCOyI%2BPCFFTlRJVFkgZ3RyZXFsZXNzICImI3gyMkRCOyI%2BPCFFTlRJVFkgR3JlYXRlckVxdWFsTGVzcyAiJiN4MjJEQjsiPjwhRU5USVRZIGN1ZXByICImI3gyMkRFOyI%2BPCFFTlRJVFkgY3VybHllcXByZWMgIiYjeDIyREU7Ij48IUVOVElUWSBjdWVzYyAiJiN4MjJERjsiPjwhRU5USVRZIGN1cmx5ZXFzdWNjICImI3gyMkRGOyI%2BPCFFTlRJVFkgbnByY3VlICImI3gyMkUwOyI%2BPCFFTlRJVFkgTm90UHJlY2VkZXNTbGFudEVxdWFsICImI3gyMkUwOyI%2BPCFFTlRJVFkgbnNjY3VlICImI3gyMkUxOyI%2BPCFFTlRJVFkgTm90U3VjY2VlZHNTbGFudEVxdWFsICImI3gyMkUxOyI%2BPCFFTlRJVFkgbnNxc3ViZSAiJiN4MjJFMjsiPjwhRU5USVRZIE5vdFNxdWFyZVN1YnNldEVxdWFsICImI3gyMkUyOyI%2BPCFFTlRJVFkgbnNxc3VwZSAiJiN4MjJFMzsiPjwhRU5USVRZIE5vdFNxdWFyZVN1cGVyc2V0RXF1YWwgIiYjeDIyRTM7Ij48IUVOVElUWSBsbnNpbSAiJiN4MjJFNjsiPjwhRU5USVRZIGduc2ltICImI3gyMkU3OyI%2BPCFFTlRJVFkgcHJuc2ltICImI3gyMkU4OyI%2BPCFFTlRJVFkgcHJlY25zaW0gIiYjeDIyRTg7Ij48IUVOVElUWSBzY25zaW0gIiYjeDIyRTk7Ij48IUVOVElUWSBzdWNjbnNpbSAiJiN4MjJFOTsiPjwhRU5USVRZIG5sdHJpICImI3gyMkVBOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlbGVmdCAiJiN4MjJFQTsiPjwhRU5USVRZIE5vdExlZnRUcmlhbmdsZSAiJiN4MjJFQTsiPjwhRU5USVRZIG5ydHJpICImI3gyMkVCOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlcmlnaHQgIiYjeDIyRUI7Ij48IUVOVElUWSBOb3RSaWdodFRyaWFuZ2xlICImI3gyMkVCOyI%2BPCFFTlRJVFkgbmx0cmllICImI3gyMkVDOyI%2BPCFFTlRJVFkgbnRyaWFuZ2xlbGVmdGVxICImI3gyMkVDOyI%2BPCFFTlRJVFkgTm90TGVmdFRyaWFuZ2xlRXF1YWwgIiYjeDIyRUM7Ij48IUVOVElUWSBucnRyaWUgIiYjeDIyRUQ7Ij48IUVOVElUWSBudHJpYW5nbGVyaWdodGVxICImI3gyMkVEOyI%2BPCFFTlRJVFkgTm90UmlnaHRUcmlhbmdsZUVxdWFsICImI3gyMkVEOyI%2BPCFFTlRJVFkgdmVsbGlwICImI3gyMkVFOyI%2BPCFFTlRJVFkgY3Rkb3QgIiYjeDIyRUY7Ij48IUVOVElUWSB1dGRvdCAiJiN4MjJGMDsiPjwhRU5USVRZIGR0ZG90ICImI3gyMkYxOyI%2BPCFFTlRJVFkgZGlzaW4gIiYjeDIyRjI7Ij48IUVOVElUWSBpc2luc3YgIiYjeDIyRjM7Ij48IUVOVElUWSBpc2lucyAiJiN4MjJGNDsiPjwhRU5USVRZIGlzaW5kb3QgIiYjeDIyRjU7Ij48IUVOVElUWSBub3RpbnZjICImI3gyMkY2OyI%2BPCFFTlRJVFkgbm90aW52YiAiJiN4MjJGNzsiPjwhRU5USVRZIGlzaW5FICImI3gyMkY5OyI%2BPCFFTlRJVFkgbmlzZCAiJiN4MjJGQTsiPjwhRU5USVRZIHhuaXMgIiYjeDIyRkI7Ij48IUVOVElUWSBuaXMgIiYjeDIyRkM7Ij48IUVOVElUWSBub3RuaXZjICImI3gyMkZEOyI%2BPCFFTlRJVFkgbm90bml2YiAiJiN4MjJGRTsiPjwhRU5USVRZIGJhcndlZCAiJiN4MjMwNTsiPjwhRU5USVRZIGJhcndlZGdlICImI3gyMzA1OyI%2BPCFFTlRJVFkgQmFyd2VkICImI3gyMzA2OyI%2BPCFFTlRJVFkgZG91YmxlYmFyd2VkZ2UgIiYjeDIzMDY7Ij48IUVOVElUWSBsY2VpbCAiJiN4MjMwODsiPjwhRU5USVRZIExlZnRDZWlsaW5nICImI3gyMzA4OyI%2BPCFFTlRJVFkgcmNlaWwgIiYjeDIzMDk7Ij48IUVOVElUWSBSaWdodENlaWxpbmcgIiYjeDIzMDk7Ij48IUVOVElUWSBsZmxvb3IgIiYjeDIzMEE7Ij48IUVOVElUWSBMZWZ0Rmxvb3IgIiYjeDIzMEE7Ij48IUVOVElUWSByZmxvb3IgIiYjeDIzMEI7Ij48IUVOVElUWSBSaWdodEZsb29yICImI3gyMzBCOyI%2BPCFFTlRJVFkgZHJjcm9wICImI3gyMzBDOyI%2BPCFFTlRJVFkgZGxjcm9wICImI3gyMzBEOyI%2BPCFFTlRJVFkgdXJjcm9wICImI3gyMzBFOyI%2BPCFFTlRJVFkgdWxjcm9wICImI3gyMzBGOyI%2BPCFFTlRJVFkgYm5vdCAiJiN4MjMxMDsiPjwhRU5USVRZIHByb2ZsaW5lICImI3gyMzEyOyI%2BPCFFTlRJVFkgcHJvZnN1cmYgIiYjeDIzMTM7Ij48IUVOVElUWSB0ZWxyZWMgIiYjeDIzMTU7Ij48IUVOVElUWSB0YXJnZXQgIiYjeDIzMTY7Ij48IUVOVElUWSB1bGNvcm4gIiYjeDIzMUM7Ij48IUVOVElUWSB1bGNvcm5lciAiJiN4MjMxQzsiPjwhRU5USVRZIHVyY29ybiAiJiN4MjMxRDsiPjwhRU5USVRZIHVyY29ybmVyICImI3gyMzFEOyI%2BPCFFTlRJVFkgZGxjb3JuICImI3gyMzFFOyI%2BPCFFTlRJVFkgbGxjb3JuZXIgIiYjeDIzMUU7Ij48IUVOVElUWSBkcmNvcm4gIiYjeDIzMUY7Ij48IUVOVElUWSBscmNvcm5lciAiJiN4MjMxRjsiPjwhRU5USVRZIGZyb3duICImI3gyMzIyOyI%2BPCFFTlRJVFkgc2Zyb3duICImI3gyMzIyOyI%2BPCFFTlRJVFkgc21pbGUgIiYjeDIzMjM7Ij48IUVOVElUWSBzc21pbGUgIiYjeDIzMjM7Ij48IUVOVElUWSBjeWxjdHkgIiYjeDIzMkQ7Ij48IUVOVElUWSBwcm9mYWxhciAiJiN4MjMyRTsiPjwhRU5USVRZIHRvcGJvdCAiJiN4MjMzNjsiPjwhRU5USVRZIG92YmFyICImI3gyMzNEOyI%2BPCFFTlRJVFkgc29sYmFyICImI3gyMzNGOyI%2BPCFFTlRJVFkgYW5nemFyciAiJiN4MjM3QzsiPjwhRU5USVRZIGxtb3VzdCAiJiN4MjNCMDsiPjwhRU5USVRZIGxtb3VzdGFjaGUgIiYjeDIzQjA7Ij48IUVOVElUWSBybW91c3QgIiYjeDIzQjE7Ij48IUVOVElUWSBybW91c3RhY2hlICImI3gyM0IxOyI%2BPCFFTlRJVFkgdGJyayAiJiN4MjNCNDsiPjwhRU5USVRZIE92ZXJCcmFja2V0ICImI3gyM0I0OyI%2BPCFFTlRJVFkgYmJyayAiJiN4MjNCNTsiPjwhRU5USVRZIFVuZGVyQnJhY2tldCAiJiN4MjNCNTsiPjwhRU5USVRZIGJicmt0YnJrICImI3gyM0I2OyI%2BPCFFTlRJVFkgT3ZlclBhcmVudGhlc2lzICImI3gyM0RDOyI%2BPCFFTlRJVFkgVW5kZXJQYXJlbnRoZXNpcyAiJiN4MjNERDsiPjwhRU5USVRZIE92ZXJCcmFjZS
AiJiN4MjNERTsiPjwhRU5USVRZIFVuZGVyQnJhY2UgIiYjeDIzREY7Ij48IUVOVElUWSB0cnBleml1bSAiJiN4MjNFMjsiPjwhRU5USVRZIGVsaW50ZXJzICImI3gyM0U3OyI%2BPCFFTlRJVFkgYmxhbmsgIiYjeDI0MjM7Ij48IUVOVElUWSBvUyAiJiN4MjRDODsiPjwhRU5USVRZIGNpcmNsZWRTICImI3gyNEM4OyI%2BPCFFTlRJVFkgYm94aCAiJiN4MjUwMDsiPjwhRU5USVRZIEhvcml6b250YWxMaW5lICImI3gyNTAwOyI%2BPCFFTlRJVFkgYm94diAiJiN4MjUwMjsiPjwhRU5USVRZIGJveGRyICImI3gyNTBDOyI%2BPCFFTlRJVFkgYm94ZGwgIiYjeDI1MTA7Ij48IUVOVElUWSBib3h1ciAiJiN4MjUxNDsiPjwhRU5USVRZIGJveHVsICImI3gyNTE4OyI%2BPCFFTlRJVFkgYm94dnIgIiYjeDI1MUM7Ij48IUVOVElUWSBib3h2bCAiJiN4MjUyNDsiPjwhRU5USVRZIGJveGhkICImI3gyNTJDOyI%2BPCFFTlRJVFkgYm94aHUgIiYjeDI1MzQ7Ij48IUVOVElUWSBib3h2aCAiJiN4MjUzQzsiPjwhRU5USVRZIGJveEggIiYjeDI1NTA7Ij48IUVOVElUWSBib3hWICImI3gyNTUxOyI%2BPCFFTlRJVFkgYm94ZFIgIiYjeDI1NTI7Ij48IUVOVElUWSBib3hEciAiJiN4MjU1MzsiPjwhRU5USVRZIGJveERSICImI3gyNTU0OyI%2BPCFFTlRJVFkgYm94ZEwgIiYjeDI1NTU7Ij48IUVOVElUWSBib3hEbCAiJiN4MjU1NjsiPjwhRU5USVRZIGJveERMICImI3gyNTU3OyI%2BPCFFTlRJVFkgYm94dVIgIiYjeDI1NTg7Ij48IUVOVElUWSBib3hVciAiJiN4MjU1OTsiPjwhRU5USVRZIGJveFVSICImI3gyNTVBOyI%2BPCFFTlRJVFkgYm94dUwgIiYjeDI1NUI7Ij48IUVOVElUWSBib3hVbCAiJiN4MjU1QzsiPjwhRU5USVRZIGJveFVMICImI3gyNTVEOyI%2BPCFFTlRJVFkgYm94dlIgIiYjeDI1NUU7Ij48IUVOVElUWSBib3hWciAiJiN4MjU1RjsiPjwhRU5USVRZIGJveFZSICImI3gyNTYwOyI%2BPCFFTlRJVFkgYm94dkwgIiYjeDI1NjE7Ij48IUVOVElUWSBib3hWbCAiJiN4MjU2MjsiPjwhRU5USVRZIGJveFZMICImI3gyNTYzOyI%2BPCFFTlRJVFkgYm94SGQgIiYjeDI1NjQ7Ij48IUVOVElUWSBib3hoRCAiJiN4MjU2NTsiPjwhRU5USVRZIGJveEhEICImI3gyNTY2OyI%2BPCFFTlRJVFkgYm94SHUgIiYjeDI1Njc7Ij48IUVOVElUWSBib3hoVSAiJiN4MjU2ODsiPjwhRU5USVRZIGJveEhVICImI3gyNTY5OyI%2BPCFFTlRJVFkgYm94dkggIiYjeDI1NkE7Ij48IUVOVElUWSBib3hWaCAiJiN4MjU2QjsiPjwhRU5USVRZIGJveFZIICImI3gyNTZDOyI%2BPCFFTlRJVFkgdWhibGsgIiYjeDI1ODA7Ij48IUVOVElUWSBsaGJsayAiJiN4MjU4NDsiPjwhRU5USVRZIGJsb2NrICImI3gyNTg4OyI%2BPCFFTlRJVFkgYmxrMTQgIiYjeDI1OTE7Ij48IUVOVElUWSBibGsxMiAiJiN4MjU5MjsiPjwhRU5USVRZIGJsazM0ICImI3gyNTkzOyI%2BPCFFTlRJVFkgc3F1ICImI3gyNUExOyI%2BPCFFTlRJVFkgc3F1YXJlICImI3gyNUExOyI%2BPCFFTlRJVFkgU3F1YXJlICImI3gyNUExOyI%2BPCFFTlRJVFkgc3F1ZiAiJiN4MjVBQTsiPjwhRU5USVRZIHNxdWFyZiAiJiN4MjVBQTsiPjwhRU5USVRZIGJsYWNrc3F1YXJlICImI3gyNUFBOyI%2BPCFFTlRJVFkgRmlsbGVkVmVyeVNtYWxsU3F1YXJlICImI3gyNUFBOyI%2BPCFFTlRJVFkgRW1wdHlWZXJ5U21hbGxTcXVhcmUgIiYjeDI1QUI7Ij48IUVOVElUWSByZWN0ICImI3gyNUFEOyI%2BPCFFTlRJVFkgbWFya2VyICImI3gyNUFFOyI%2BPCFFTlRJVFkgZmx0bnMgIiYjeDI1QjE7Ij48IUVOVElUWSB4dXRyaSAiJiN4MjVCMzsiPjwhRU5USVRZIGJpZ3RyaWFuZ2xldXAgIiYjeDI1QjM7Ij48IUVOVElUWSB1dHJpZiAiJiN4MjVCNDsiPjwhRU5USVRZIGJsYWNrdHJpYW5nbGUgIiYjeDI1QjQ7Ij48IUVOVElUWSB1dHJpICImI3gyNUI1OyI%2BPCFFTlRJVFkgdHJpYW5nbGUgIiYjeDI1QjU7Ij48IUVOVElUWSBydHJpZiAiJiN4MjVCODsiPjwhRU5USVRZIGJsYWNrdHJpYW5nbGVyaWdodCAiJiN4MjVCODsiPjwhRU5USVRZIHJ0cmkgIiYjeDI1Qjk7Ij48IUVOVElUWSB0cmlhbmdsZXJpZ2h0ICImI3gyNUI5OyI%2BPCFFTlRJVFkgeGR0cmkgIiYjeDI1QkQ7Ij48IUVOVElUWSBiaWd0cmlhbmdsZWRvd24gIiYjeDI1QkQ7Ij48IUVOVElUWSBkdHJpZiAiJiN4MjVCRTsiPjwhRU5USVRZIGJsYWNrdHJpYW5nbGVkb3duICImI3gyNUJFOyI%2BPCFFTlRJVFkgZHRyaSAiJiN4MjVCRjsiPjwhRU5USVRZIHRyaWFuZ2xlZG93biAiJiN4MjVCRjsiPjwhRU5USVRZIGx0cmlmICImI3gyNUMyOyI%2BPCFFTlRJVFkgYmxhY2t0cmlhbmdsZWxlZnQgIiYjeDI1QzI7Ij48IUVOVElUWSBsdHJpICImI3gyNUMzOyI%2BPCFFTlRJVFkgdHJpYW5nbGVsZWZ0ICImI3gyNUMzOyI%2BPCFFTlRJVFkgbG96ICImI3gyNUNBOyI%2BPCFFTlRJVFkgbG96ZW5nZSAiJiN4MjVDQTsiPjwhRU5USVRZIGNpciAiJiN4MjVDQjsiPjwhRU5USVRZIHRyaWRvdCAiJiN4MjVFQzsiPjwhRU5USVRZIHhjaXJjICImI3gyNUVGOyI%2BPCFFTlRJVFkgYmlnY2lyYyAiJiN4MjVFRjsiPjwhRU5USVRZIHVsdHJpICImI3gyNUY4OyI%2BPCFFTlRJVFkgdXJ0cmkgIiYjeDI1Rjk7Ij48IUVOVElUWSBsbHRyaSAiJiN4MjVGQTsiPjwhRU5USVRZIEVtcHR5U21hbGxTcXVhcmUgIiYjeDI1RkI7Ij48IUVOVElUWSBGaWxsZWRTbWFsbFNxdWFyZSAiJiN4MjVGQzsiPjwhRU5USVRZIHN0YXJmICImI3gyNjA1OyI%2BPCFFTlRJVFkgYmlnc3RhciAiJiN4MjYwNTsiPjwhRU5USVRZIHN0YXIgIiYjeDI2MDY7Ij48IUVOVElUWSBwaG9uZSAiJiN4MjYwRTsiPjwhRU5USVRZIGZlbWFsZSAiJiN4MjY0MDsiPjwhRU5USVRZIG1hbGUgIiYjeDI2NDI7Ij48IUVOVElUWSBzcGFkZXMgIiYjeDI2NjA7Ij48IUVOVElUWSBzcGFkZXN1aXQgIiYjeDI2NjA7Ij48IUVOVElUWSBjbHVicyAiJiN4MjY2MzsiPjwhRU5USVRZIGNsdWJzdWl0ICImI3gyNjYzOyI%2BPCFFTlRJVFkgaGVhcnRzICImI3gyNjY1OyI%2BPCFFTlRJVFkgaGVhcnRzdWl0ICImI3gyNjY1OyI%2BPCFFTlRJVFkgZGlhbXMgIiYjeDI2NjY7Ij48IUVOVElUWSBkaWFtb25kc3VpdCAiJiN4MjY2NjsiPjwhRU5USVRZIHN1bmcgIiYjeDI2NkE7Ij48IUVOVElUWSBmbGF0ICImI3gyNjZEOyI%2BPCFFTlRJVFkgbmF0dXIgIiYjeDI2NkU7Ij48IUVOVElUWSBuYXR1cmFsICImI3gyNjZFOyI%2BPCFFTlRJVFkgc2hhcnAgIiYjeDI2NkY7Ij48IUVOVElUWSBjaGVjayAiJiN4MjcxMzsiPjwhRU5USVRZIGNoZWNrbWFyayAiJiN4MjcxMzsiPjwhRU5USVRZIGNyb3NzICImI3gyNzE3OyI%2BPCFFTlRJVFkgbWFsdCAiJiN4MjcyMDsiPjwhRU5USVRZIG1hbHRlc2UgIiYjeDI3MjA7Ij48IUVOVElUWSBzZXh0ICImI3gyNzM2OyI%2BPCFFTlRJVFkgVmVydGljYWxTZXBhcmF0b3IgIiYjeDI3NTg7Ij48IUVOVElUWSBsYmJyayAiJiN4Mjc3MjsiPjwhRU5USVRZIHJiYnJrICImI3gyNzczOyI%2BPCFFTlRJVFkgYnNvbGhzdWIgIiYjeDI3Qzg7Ij48IUVOVElUWSBzdXBoc29sICImI3gyN0M5OyI%2BPCFFTlRJVFkgbG9icmsgIiYjeDI3RTY7Ij48IUVOVElUWSBMZWZ0RG91YmxlQnJhY2tldCAiJiN4MjdFNjsiPjwhRU5USVRZIHJvYnJrICImI3gyN0U3OyI%2BPCFFTlRJVFkgUmlnaHREb3VibGVCcmFja2V0ICImI3gyN0U3OyI%2BPCFFTlRJVFkgbGFuZyAiJiN4MjdFODsiPjwhRU5USVRZIExlZnRBbmdsZUJyYWNrZXQgIiYjeDI3RTg7Ij48IUVOVElUWSBsYW5nbGUgIiYjeDI3RTg7Ij48IUVOVElUWSByYW5nICImI3gyN0U5OyI%2BPCFFTlRJVFkgUmlnaHRBbmdsZUJyYWNrZXQgIiYjeDI3RTk7Ij48IUVOVElUWSByYW5nbGUgIiYjeDI3RTk7Ij48IUVOVElUWSBMYW5nICImI3gyN0VBOyI%2BPCFFTlRJVFkgUmFuZyAiJiN4MjdFQjsiPjwhRU5USVRZIGxvYW5nICImI3gyN0VDOyI%2BPCFFTlRJVFkgcm9hbmcgIiYjeDI3RUQ7Ij48IUVOVElUWSB4bGFyciAiJiN4MjdGNTsiPjwhRU5USVRZIGxvbmdsZWZ0YXJyb3cgIiYjeDI3RjU7Ij48IUVOVElUWSBMb25nTGVmdEFycm93ICImI3gyN0Y1OyI%2BPCFFTlRJVFkgeHJhcnIgIiYjeDI3RjY7Ij48IUVOVElUWSBsb25ncmlnaHRhcnJvdyAiJiN4MjdGNjsiPjwhRU5USVRZIExvbmdSaWdodEFycm93ICImI3gyN0Y2OyI%2BPCFFTlRJVFkgeGhhcnIgIiYjeDI3Rjc7Ij48IUVOVElUWSBsb25nbGVmdHJpZ2h0YXJyb3cgIiYjeDI3Rjc7Ij48IUVOVElUWSBMb25nTGVmdFJpZ2h0QXJyb3cgIiYjeDI3Rjc7Ij48IUVOVElUWSB4bEFyciAiJiN4MjdGODsiPjwhRU5USVRZIExvbmdsZWZ0YXJyb3cgIiYjeDI3Rjg7Ij48IUVOVElUWSBEb3VibGVMb25nTGVmdEFycm93ICImI3gyN0Y4OyI%2BPCFFTlRJVFkgeHJBcnIgIiYjeDI3Rjk7Ij48IUVOVElUWSBMb25ncmlnaHRhcnJvdyAiJiN4MjdGOTsiPjwhRU5USVRZIERvdWJsZUxvbmdSaWdodEFycm93ICImI3gyN0Y5OyI%2BPCFFTlRJVFkgeGhBcnIgIiYjeDI3RkE7Ij48IUVOVElUWSBMb25nbGVmdHJpZ2h0YXJyb3cgIiYjeDI3RkE7Ij48IUVOVElUWSBEb3VibGVMb25nTGVmdFJpZ2h0QXJyb3cgIiYjeDI3RkE7Ij48IUVOVElUWSB4bWFwICImI3gyN0ZDOyI%2BPCFFTlRJVFkgbG9uZ21hcHN0byAiJiN4MjdGQzsiPjwhRU5USVRZIGR6aWdyYXJyICImI3gyN0ZGOyI%2BPCFFTlRJVFkgbnZsQXJyICImI3gyOTAyOyI%2BPCFFTlRJVFkgbnZyQXJyICImI3gyOTAzOyI%2BPCFFTlRJVFkgbnZIYXJyICImI3gyOTA0OyI%2BPCFFTlRJVFkgTWFwICImI3gyOTA1OyI%2BPCFFTlRJVFkgbGJhcnIgIiYjeDI5MEM7Ij48IUVOVElUWSByYmFyciAiJiN4MjkwRDsiPjwhRU5USVRZIGJrYXJvdyAiJiN4MjkwRDsiPjwhRU5USVRZIGxCYXJyICImI3gyOTBFOyI%2BPCFFTlRJVFkgckJhcnIgIiYjeDI5MEY7Ij48IUVOVElUWSBkYmthcm93ICImI3gyOTBGOyI%2BPCFFTlRJVFkgUkJhcnIgIiYjeDI5MTA7Ij48IUVOVElUWSBkcmJrYXJvdyAiJiN4MjkxMDsiPjwhRU5USVRZIEREb3RyYWhkICImI3gyOTExOyI%2BPCFFTlRJVFkgVXBBcnJvd0JhciAiJiN4MjkxMjsiPjwhRU5USVRZIERvd25BcnJvd0JhciAiJiN4MjkxMzsiPjwhRU5USVRZIFJhcnJ0bCAiJiN4MjkxNjsiPjwhRU5USVRZIGxhdGFpbCAiJiN4MjkxOTsiPjwhRU5USVRZIHJhdGFpbCAiJiN4MjkxQTsiPjwhRU5USVRZIGxBdGFpbCAiJiN4MjkxQjsiPjwhRU5USVRZIHJBdGFpbCAiJiN4MjkxQzsiPjwhRU5USVRZIGxhcnJmcyAiJiN4MjkxRDsiPjwhRU5USVRZIHJhcnJmcyAiJiN4MjkxRTsiPjwhRU5USVRZIGxhcnJiZnMgIiYjeDI5MUY7Ij48IUVOVElUWSByYXJyYmZzICImI3gyOTIwOyI%2BPCFFTlRJVFkgbndhcmhrICImI3gyOTIzOyI%2BPCFFTlRJVFkgbmVhcmhrICImI3gyOTI0OyI%2BPCFFTlRJVFkgc2VhcmhrICImI3gyOTI1OyI%2BPCFFTlRJVFkgaGtzZWFyb3cgIiYjeDI5MjU7Ij48IUVOVElUWSBzd2FyaGsgIiYjeDI5MjY7Ij48IUVOVElUWSBoa3N3YXJvdyAiJiN4MjkyNjsiPjwhRU5USVRZIG53bmVhciAiJiN4MjkyNzsiPjwhRU5USVRZIG5lc2VhciAiJiN4MjkyODsiPjwhRU5USVRZIHRvZWEgIiYjeDI5Mjg7Ij48IUVOVElUWSBzZXN3YXIgIiYjeDI5Mjk7Ij48IUVOVElUWSB0b3NhICImI3gyOTI5OyI%2BPCFFTlRJVFkgc3dud2FyICImI3gyOTJBOyI%2BPCFFTlRJVFkgcmFycmMgIiYjeDI5MzM7Ij48IUVOVElUWSBjdWRhcnJyICImI3gyOTM1OyI%2BPCFFTlRJVFkgbGRjYSAiJiN4MjkzNjsiPjwhRU5USVRZIHJkY2EgIiYjeDI5Mzc7Ij48IUVOVElUWSBjdWRhcnJsICImI3gyOTM4OyI%2BPCFFTlRJVFkgbGFycnBsICImI3gyOTM5OyI%2BPCFFTlRJVFkgY3VyYXJybSAiJiN4MjkzQzsiPjwhRU5USVRZIGN1bGFycnAgIiYjeDI5M0Q7Ij48IUVOVElUWSByYXJycGwgIiYjeDI5NDU7Ij48IUVOVElUWSBoYXJyY2lyICImI3gyOTQ4OyI%2BPCFFTlRJVFkgVWFycm9jaXIgIiYjeDI5NDk7Ij48IUVOVElUWSBsdXJkc2hhciAiJiN4Mjk0QTsiPjwhRU5USVRZIGxkcnVzaGFyICImI3gyOTRCOyI%2BPCFFTlRJVFkgTGVmdFJpZ2h0VmVjdG9yICImI3gyOTRFOyI%2BPCFFTlRJVFkgUmlnaHRVcERvd25WZWN0b3IgIiYjeDI5NEY7Ij48IUVOVElUWSBEb3duTGVmdFJpZ2h0VmVjdG9yICImI3gyOTUwOyI%2BPCFFTlRJVFkgTGVmdFVwRG93blZlY3RvciAiJiN4Mjk1MTsiPjwhRU5USVRZIExlZnRWZWN0b3JCYXIgIiYjeDI5NTI7Ij48IUVOVElUWSBSaWdodFZlY3RvckJhciAiJiN4Mjk1MzsiPjwhRU5USVRZIFJpZ2h0VXBWZWN0b3JCYXIgIiYjeDI5NTQ7Ij48IUVOVElUWSBSaWdodERvd25WZWN0b3JCYXIgIiYjeDI5NTU7Ij48IUVOVElUWSBEb3duTGVmdFZlY3RvckJhciAiJiN4Mjk1NjsiPjwhRU5USVRZIERvd25SaWdodFZlY3RvckJhciAiJiN4Mjk1NzsiPjwhRU5USVRZIExlZnRVcFZlY3RvckJhciAiJiN4Mjk1ODsiPjwhRU5USVRZIExlZnREb3duVmVjdG9yQmFyICImI3gyOTU5OyI%2BPCFFTlRJVFkgTGVmdFRlZVZlY3RvciAiJiN4Mjk1QTsiPjwhRU5USVRZIFJpZ2h0VGVlVmVjdG9yICImI3gyOTVCOyI%2BPCFFTlRJVFkgUmlnaHRVcFRlZVZlY3RvciAiJiN4Mjk1QzsiPjwhRU5USVRZIFJpZ2h0RG93blRlZVZlY3RvciAiJiN4Mjk1RDsiPjwhRU5USVRZIERvd25MZWZ0VGVlVmVjdG9yICImI3gyOTVFOyI%2BPCFFTlRJVFkgRG93blJpZ2h0VGVlVmVjdG9yICImI3gyOTVGOyI%2BPCFFTlRJVFkgTGVmdFVwVGVlVmVjdG9yICImI3gyOTYwOyI%2BPCFFTlRJVFkgTGVmdERvd25UZWVWZWN0b3IgIiYjeDI5NjE7Ij48IUVOVElUWSBsSGFyICImI3gyOTYyOyI%2BPCFFTlRJVFkgdUhhciAiJiN4Mjk2MzsiPjwhRU5USVRZIHJIYXIgIiYjeDI5NjQ7Ij48IUVOVElUWSBkSGFyICImI3gyOTY1OyI%2BPCFFTlRJVFkgbHVydWhhciAiJiN4Mjk2NjsiPjwhRU5USVRZIGxkcmRoYXIgIiYjeDI5Njc7Ij48IUVOVElUWSBydWx1aGFyICImI3gyOTY4OyI%2BPCFFTlRJVFkgcmRsZGhhciAiJiN4Mjk2OTsiPjwhRU5USVRZIGxoYXJ1bCAiJiN4Mjk2QTsiPjwhRU5USVRZIGxsaGFyZCAiJiN4Mjk2QjsiPjwhRU5USVRZIHJoYXJ1bCAiJiN4Mjk2QzsiPjwhRU5USVRZIGxyaGFyZCAiJiN4Mjk2RDsiPjwhRU5USVRZIHVkaGFyICImI3gyOTZFOyI%2BPCFFTlRJVFkgVXBFcXVpbGlicml1bSAiJiN4Mjk2RTsiPjwhRU5USVRZIGR1aGFyICImI3gyOTZGOyI%2BPCFFTlRJVFkgUmV2ZXJzZVVwRXF1aWxpYnJpdW0gIiYjeDI5NkY7Ij48IUVOVElUWSBSb3VuZEltcGxpZXMgIiYjeDI5NzA7Ij48IUVOVElUWSBlcmFyciAiJiN4Mjk3MTsiPjwhRU5USVRZIHNpbXJhcnIgIiYjeDI5NzI7Ij48IUVOVElUWSBsYXJyc2ltICImI3gyOTczOyI%2BPCFFTlRJVFkgcmFycnNpbSAiJiN4Mjk3NDsiPjwhRU5USVRZIHJhcnJhcCAiJiN4Mjk3NTsiPjwhRU5USVRZIGx0bGFyciAiJiN4Mjk3NjsiPjwhRU5USVRZIGd0cmFyciAiJiN4Mjk3ODsiPjwhRU5USVRZIHN1YnJhcnIgIiYjeDI5Nzk7Ij48IUVOVElUWSBzdXBsYXJyICImI3gyOTdCOy
I%2BPCFFTlRJVFkgbGZpc2h0ICImI3gyOTdDOyI%2BPCFFTlRJVFkgcmZpc2h0ICImI3gyOTdEOyI%2BPCFFTlRJVFkgdWZpc2h0ICImI3gyOTdFOyI%2BPCFFTlRJVFkgZGZpc2h0ICImI3gyOTdGOyI%2BPCFFTlRJVFkgbG9wYXIgIiYjeDI5ODU7Ij48IUVOVElUWSByb3BhciAiJiN4Mjk4NjsiPjwhRU5USVRZIGxicmtlICImI3gyOThCOyI%2BPCFFTlRJVFkgcmJya2UgIiYjeDI5OEM7Ij48IUVOVElUWSBsYnJrc2x1ICImI3gyOThEOyI%2BPCFFTlRJVFkgcmJya3NsZCAiJiN4Mjk4RTsiPjwhRU5USVRZIGxicmtzbGQgIiYjeDI5OEY7Ij48IUVOVElUWSByYnJrc2x1ICImI3gyOTkwOyI%2BPCFFTlRJVFkgbGFuZ2QgIiYjeDI5OTE7Ij48IUVOVElUWSByYW5nZCAiJiN4Mjk5MjsiPjwhRU5USVRZIGxwYXJsdCAiJiN4Mjk5MzsiPjwhRU5USVRZIHJwYXJndCAiJiN4Mjk5NDsiPjwhRU5USVRZIGd0bFBhciAiJiN4Mjk5NTsiPjwhRU5USVRZIGx0clBhciAiJiN4Mjk5NjsiPjwhRU5USVRZIHZ6aWd6YWcgIiYjeDI5OUE7Ij48IUVOVElUWSB2YW5ncnQgIiYjeDI5OUM7Ij48IUVOVElUWSBhbmdydHZiZCAiJiN4Mjk5RDsiPjwhRU5USVRZIGFuZ2UgIiYjeDI5QTQ7Ij48IUVOVElUWSByYW5nZSAiJiN4MjlBNTsiPjwhRU5USVRZIGR3YW5nbGUgIiYjeDI5QTY7Ij48IUVOVElUWSB1d2FuZ2xlICImI3gyOUE3OyI%2BPCFFTlRJVFkgYW5nbXNkYWEgIiYjeDI5QTg7Ij48IUVOVElUWSBhbmdtc2RhYiAiJiN4MjlBOTsiPjwhRU5USVRZIGFuZ21zZGFjICImI3gyOUFBOyI%2BPCFFTlRJVFkgYW5nbXNkYWQgIiYjeDI5QUI7Ij48IUVOVElUWSBhbmdtc2RhZSAiJiN4MjlBQzsiPjwhRU5USVRZIGFuZ21zZGFmICImI3gyOUFEOyI%2BPCFFTlRJVFkgYW5nbXNkYWcgIiYjeDI5QUU7Ij48IUVOVElUWSBhbmdtc2RhaCAiJiN4MjlBRjsiPjwhRU5USVRZIGJlbXB0eXYgIiYjeDI5QjA7Ij48IUVOVElUWSBkZW1wdHl2ICImI3gyOUIxOyI%2BPCFFTlRJVFkgY2VtcHR5diAiJiN4MjlCMjsiPjwhRU5USVRZIHJhZW1wdHl2ICImI3gyOUIzOyI%2BPCFFTlRJVFkgbGFlbXB0eXYgIiYjeDI5QjQ7Ij48IUVOVElUWSBvaGJhciAiJiN4MjlCNTsiPjwhRU5USVRZIG9taWQgIiYjeDI5QjY7Ij48IUVOVElUWSBvcGFyICImI3gyOUI3OyI%2BPCFFTlRJVFkgb3BlcnAgIiYjeDI5Qjk7Ij48IUVOVElUWSBvbGNyb3NzICImI3gyOUJCOyI%2BPCFFTlRJVFkgb2Rzb2xkICImI3gyOUJDOyI%2BPCFFTlRJVFkgb2xjaXIgIiYjeDI5QkU7Ij48IUVOVElUWSBvZmNpciAiJiN4MjlCRjsiPjwhRU5USVRZIG9sdCAiJiN4MjlDMDsiPjwhRU5USVRZIG9ndCAiJiN4MjlDMTsiPjwhRU5USVRZIGNpcnNjaXIgIiYjeDI5QzI7Ij48IUVOVElUWSBjaXJFICImI3gyOUMzOyI%2BPCFFTlRJVFkgc29sYiAiJiN4MjlDNDsiPjwhRU5USVRZIGJzb2xiICImI3gyOUM1OyI%2BPCFFTlRJVFkgYm94Ym94ICImI3gyOUM5OyI%2BPCFFTlRJVFkgdHJpc2IgIiYjeDI5Q0Q7Ij48IUVOVElUWSBydHJpbHRyaSAiJiN4MjlDRTsiPjwhRU5USVRZIExlZnRUcmlhbmdsZUJhciAiJiN4MjlDRjsiPjwhRU5USVRZIFJpZ2h0VHJpYW5nbGVCYXIgIiYjeDI5RDA7Ij48IUVOVElUWSBpaW5maW4gIiYjeDI5REM7Ij48IUVOVElUWSBpbmZpbnRpZSAiJiN4MjlERDsiPjwhRU5USVRZIG52aW5maW4gIiYjeDI5REU7Ij48IUVOVElUWSBlcGFyc2wgIiYjeDI5RTM7Ij48IUVOVElUWSBzbWVwYXJzbCAiJiN4MjlFNDsiPjwhRU5USVRZIGVxdnBhcnNsICImI3gyOUU1OyI%2BPCFFTlRJVFkgbG96ZiAiJiN4MjlFQjsiPjwhRU5USVRZIGJsYWNrbG96ZW5nZSAiJiN4MjlFQjsiPjwhRU5USVRZIFJ1bGVEZWxheWVkICImI3gyOUY0OyI%2BPCFFTlRJVFkgZHNvbCAiJiN4MjlGNjsiPjwhRU5USVRZIHhvZG90ICImI3gyQTAwOyI%2BPCFFTlRJVFkgYmlnb2RvdCAiJiN4MkEwMDsiPjwhRU5USVRZIHhvcGx1cyAiJiN4MkEwMTsiPjwhRU5USVRZIGJpZ29wbHVzICImI3gyQTAxOyI%2BPCFFTlRJVFkgeG90aW1lICImI3gyQTAyOyI%2BPCFFTlRJVFkgYmlnb3RpbWVzICImI3gyQTAyOyI%2BPCFFTlRJVFkgeHVwbHVzICImI3gyQTA0OyI%2BPCFFTlRJVFkgYmlndXBsdXMgIiYjeDJBMDQ7Ij48IUVOVElUWSB4c3FjdXAgIiYjeDJBMDY7Ij48IUVOVElUWSBiaWdzcWN1cCAiJiN4MkEwNjsiPjwhRU5USVRZIHFpbnQgIiYjeDJBMEM7Ij48IUVOVElUWSBpaWlpbnQgIiYjeDJBMEM7Ij48IUVOVElUWSBmcGFydGludCAiJiN4MkEwRDsiPjwhRU5USVRZIGNpcmZuaW50ICImI3gyQTEwOyI%2BPCFFTlRJVFkgYXdpbnQgIiYjeDJBMTE7Ij48IUVOVElUWSBycHBvbGludCAiJiN4MkExMjsiPjwhRU5USVRZIHNjcG9saW50ICImI3gyQTEzOyI%2BPCFFTlRJVFkgbnBvbGludCAiJiN4MkExNDsiPjwhRU5USVRZIHBvaW50aW50ICImI3gyQTE1OyI%2BPCFFTlRJVFkgcXVhdGludCAiJiN4MkExNjsiPjwhRU5USVRZIGludGxhcmhrICImI3gyQTE3OyI%2BPCFFTlRJVFkgcGx1c2NpciAiJiN4MkEyMjsiPjwhRU5USVRZIHBsdXNhY2lyICImI3gyQTIzOyI%2BPCFFTlRJVFkgc2ltcGx1cyAiJiN4MkEyNDsiPjwhRU5USVRZIHBsdXNkdSAiJiN4MkEyNTsiPjwhRU5USVRZIHBsdXNzaW0gIiYjeDJBMjY7Ij48IUVOVElUWSBwbHVzdHdvICImI3gyQTI3OyI%2BPCFFTlRJVFkgbWNvbW1hICImI3gyQTI5OyI%2BPCFFTlRJVFkgbWludXNkdSAiJiN4MkEyQTsiPjwhRU5USVRZIGxvcGx1cyAiJiN4MkEyRDsiPjwhRU5USVRZIHJvcGx1cyAiJiN4MkEyRTsiPjwhRU5USVRZIENyb3NzICImI3gyQTJGOyI%2BPCFFTlRJVFkgdGltZXNkICImI3gyQTMwOyI%2BPCFFTlRJVFkgdGltZXNiYXIgIiYjeDJBMzE7Ij48IUVOVElUWSBzbWFzaHAgIiYjeDJBMzM7Ij48IUVOVElUWSBsb3RpbWVzICImI3gyQTM0OyI%2BPCFFTlRJVFkgcm90aW1lcyAiJiN4MkEzNTsiPjwhRU5USVRZIG90aW1lc2FzICImI3gyQTM2OyI%2BPCFFTlRJVFkgT3RpbWVzICImI3gyQTM3OyI%2BPCFFTlRJVFkgb2RpdiAiJiN4MkEzODsiPjwhRU5USVRZIHRyaXBsdXMgIiYjeDJBMzk7Ij48IUVOVElUWSB0cmltaW51cyAiJiN4MkEzQTsiPjwhRU5USVRZIHRyaXRpbWUgIiYjeDJBM0I7Ij48IUVOVElUWSBpcHJvZCAiJiN4MkEzQzsiPjwhRU5USVRZIGludHByb2QgIiYjeDJBM0M7Ij48IUVOVElUWSBhbWFsZyAiJiN4MkEzRjsiPjwhRU5USVRZIGNhcGRvdCAiJiN4MkE0MDsiPjwhRU5USVRZIG5jdXAgIiYjeDJBNDI7Ij48IUVOVElUWSBuY2FwICImI3gyQTQzOyI%2BPCFFTlRJVFkgY2FwYW5kICImI3gyQTQ0OyI%2BPCFFTlRJVFkgY3Vwb3IgIiYjeDJBNDU7Ij48IUVOVElUWSBjdXBjYXAgIiYjeDJBNDY7Ij48IUVOVElUWSBjYXBjdXAgIiYjeDJBNDc7Ij48IUVOVElUWSBjdXBicmNhcCAiJiN4MkE0ODsiPjwhRU5USVRZIGNhcGJyY3VwICImI3gyQTQ5OyI%2BPCFFTlRJVFkgY3VwY3VwICImI3gyQTRBOyI%2BPCFFTlRJVFkgY2FwY2FwICImI3gyQTRCOyI%2BPCFFTlRJVFkgY2N1cHMgIiYjeDJBNEM7Ij48IUVOVElUWSBjY2FwcyAiJiN4MkE0RDsiPjwhRU5USVRZIGNjdXBzc20gIiYjeDJBNTA7Ij48IUVOVElUWSBBbmQgIiYjeDJBNTM7Ij48IUVOVElUWSBPciAiJiN4MkE1NDsiPjwhRU5USVRZIGFuZGFuZCAiJiN4MkE1NTsiPjwhRU5USVRZIG9yb3IgIiYjeDJBNTY7Ij48IUVOVElUWSBvcnNsb3BlICImI3gyQTU3OyI%2BPCFFTlRJVFkgYW5kc2xvcGUgIiYjeDJBNTg7Ij48IUVOVElUWSBhbmR2ICImI3gyQTVBOyI%2BPCFFTlRJVFkgb3J2ICImI3gyQTVCOyI%2BPCFFTlRJVFkgYW5kZCAiJiN4MkE1QzsiPjwhRU5USVRZIG9yZCAiJiN4MkE1RDsiPjwhRU5USVRZIHdlZGJhciAiJiN4MkE1RjsiPjwhRU5USVRZIHNkb3RlICImI3gyQTY2OyI%2BPCFFTlRJVFkgc2ltZG90ICImI3gyQTZBOyI%2BPCFFTlRJVFkgY29uZ2RvdCAiJiN4MkE2RDsiPjwhRU5USVRZIGVhc3RlciAiJiN4MkE2RTsiPjwhRU5USVRZIGFwYWNpciAiJiN4MkE2RjsiPjwhRU5USVRZIGFwRSAiJiN4MkE3MDsiPjwhRU5USVRZIGVwbHVzICImI3gyQTcxOyI%2BPCFFTlRJVFkgcGx1c2UgIiYjeDJBNzI7Ij48IUVOVElUWSBFc2ltICImI3gyQTczOyI%2BPCFFTlRJVFkgQ29sb25lICImI3gyQTc0OyI%2BPCFFTlRJVFkgRXF1YWwgIiYjeDJBNzU7Ij48IUVOVElUWSBlRERvdCAiJiN4MkE3NzsiPjwhRU5USVRZIGRkb3RzZXEgIiYjeDJBNzc7Ij48IUVOVElUWSBlcXVpdkREICImI3gyQTc4OyI%2BPCFFTlRJVFkgbHRjaXIgIiYjeDJBNzk7Ij48IUVOVElUWSBndGNpciAiJiN4MkE3QTsiPjwhRU5USVRZIGx0cXVlc3QgIiYjeDJBN0I7Ij48IUVOVElUWSBndHF1ZXN0ICImI3gyQTdDOyI%2BPCFFTlRJVFkgbGVzICImI3gyQTdEOyI%2BPCFFTlRJVFkgTGVzc1NsYW50RXF1YWwgIiYjeDJBN0Q7Ij48IUVOVElUWSBsZXFzbGFudCAiJiN4MkE3RDsiPjwhRU5USVRZIGdlcyAiJiN4MkE3RTsiPjwhRU5USVRZIEdyZWF0ZXJTbGFudEVxdWFsICImI3gyQTdFOyI%2BPCFFTlRJVFkgZ2Vxc2xhbnQgIiYjeDJBN0U7Ij48IUVOVElUWSBsZXNkb3QgIiYjeDJBN0Y7Ij48IUVOVElUWSBnZXNkb3QgIiYjeDJBODA7Ij48IUVOVElUWSBsZXNkb3RvICImI3gyQTgxOyI%2BPCFFTlRJVFkgZ2VzZG90byAiJiN4MkE4MjsiPjwhRU5USVRZIGxlc2RvdG9yICImI3gyQTgzOyI%2BPCFFTlRJVFkgZ2VzZG90b2wgIiYjeDJBODQ7Ij48IUVOVElUWSBsYXAgIiYjeDJBODU7Ij48IUVOVElUWSBsZXNzYXBwcm94ICImI3gyQTg1OyI%2BPCFFTlRJVFkgZ2FwICImI3gyQTg2OyI%2BPCFFTlRJVFkgZ3RyYXBwcm94ICImI3gyQTg2OyI%2BPCFFTlRJVFkgbG5lICImI3gyQTg3OyI%2BPCFFTlRJVFkgbG5lcSAiJiN4MkE4NzsiPjwhRU5USVRZIGduZSAiJiN4MkE4ODsiPjwhRU5USVRZIGduZXEgIiYjeDJBODg7Ij48IUVOVElUWSBsbmFwICImI3gyQTg5OyI%2BPCFFTlRJVFkgbG5hcHByb3ggIiYjeDJBODk7Ij48IUVOVElUWSBnbmFwICImI3gyQThBOyI%2BPCFFTlRJVFkgZ25hcHByb3ggIiYjeDJBOEE7Ij48IUVOVElUWSBsRWcgIiYjeDJBOEI7Ij48IUVOVElUWSBsZXNzZXFxZ3RyICImI3gyQThCOyI%2BPCFFTlRJVFkgZ0VsICImI3gyQThDOyI%2BPCFFTlRJVFkgZ3RyZXFxbGVzcyAiJiN4MkE4QzsiPjwhRU5USVRZIGxzaW1lICImI3gyQThEOyI%2BPCFFTlRJVFkgZ3NpbWUgIiYjeDJBOEU7Ij48IUVOVElUWSBsc2ltZyAiJiN4MkE4RjsiPjwhRU5USVRZIGdzaW1sICImI3gyQTkwOyI%2BPCFFTlRJVFkgbGdFICImI3gyQTkxOyI%2BPCFFTlRJVFkgZ2xFICImI3gyQTkyOyI%2BPCFFTlRJVFkgbGVzZ2VzICImI3gyQTkzOyI%2BPCFFTlRJVFkgZ2VzbGVzICImI3gyQTk0OyI%2BPCFFTlRJVFkgZWxzICImI3gyQTk1OyI%2BPCFFTlRJVFkgZXFzbGFudGxlc3MgIiYjeDJBOTU7Ij48IUVOVElUWSBlZ3MgIiYjeDJBOTY7Ij48IUVOVElUWSBlcXNsYW50Z3RyICImI3gyQTk2OyI%2BPCFFTlRJVFkgZWxzZG90ICImI3gyQTk3OyI%2BPCFFTlRJVFkgZWdzZG90ICImI3gyQTk4OyI%2BPCFFTlRJVFkgZWwgIiYjeDJBOTk7Ij48IUVOVElUWSBlZyAiJiN4MkE5QTsiPjwhRU5USVRZIHNpbWwgIiYjeDJBOUQ7Ij48IUVOVElUWSBzaW1nICImI3gyQTlFOyI%2BPCFFTlRJVFkgc2ltbEUgIiYjeDJBOUY7Ij48IUVOVElUWSBzaW1nRSAiJiN4MkFBMDsiPjwhRU5USVRZIExlc3NMZXNzICImI3gyQUExOyI%2BPCFFTlRJVFkgR3JlYXRlckdyZWF0ZXIgIiYjeDJBQTI7Ij48IUVOVElUWSBnbGogIiYjeDJBQTQ7Ij48IUVOVElUWSBnbGEgIiYjeDJBQTU7Ij48IUVOVElUWSBsdGNjICImI3gyQUE2OyI%2BPCFFTlRJVFkgZ3RjYyAiJiN4MkFBNzsiPjwhRU5USVRZIGxlc2NjICImI3gyQUE4OyI%2BPCFFTlRJVFkgZ2VzY2MgIiYjeDJBQTk7Ij48IUVOVElUWSBzbXQgIiYjeDJBQUE7Ij48IUVOVElUWSBsYXQgIiYjeDJBQUI7Ij48IUVOVElUWSBzbXRlICImI3gyQUFDOyI%2BPCFFTlRJVFkgbGF0ZSAiJiN4MkFBRDsiPjwhRU5USVRZIGJ1bXBFICImI3gyQUFFOyI%2BPCFFTlRJVFkgcHJlICImI3gyQUFGOyI%2BPCFFTlRJVFkgcHJlY2VxICImI3gyQUFGOyI%2BPCFFTlRJVFkgUHJlY2VkZXNFcXVhbCAiJiN4MkFBRjsiPjwhRU5USVRZIHNjZSAiJiN4MkFCMDsiPjwhRU5USVRZIHN1Y2NlcSAiJiN4MkFCMDsiPjwhRU5USVRZIFN1Y2NlZWRzRXF1YWwgIiYjeDJBQjA7Ij48IUVOVElUWSBwckUgIiYjeDJBQjM7Ij48IUVOVElUWSBzY0UgIiYjeDJBQjQ7Ij48IUVOVElUWSBwcm5FICImI3gyQUI1OyI%2BPCFFTlRJVFkgcHJlY25lcXEgIiYjeDJBQjU7Ij48IUVOVElUWSBzY25FICImI3gyQUI2OyI%2BPCFFTlRJVFkgc3VjY25lcXEgIiYjeDJBQjY7Ij48IUVOVElUWSBwcmFwICImI3gyQUI3OyI%2BPCFFTlRJVFkgcHJlY2FwcHJveCAiJiN4MkFCNzsiPjwhRU5USVRZIHNjYXAgIiYjeDJBQjg7Ij48IUVOVElUWSBzdWNjYXBwcm94ICImI3gyQUI4OyI%2BPCFFTlRJVFkgcHJuYXAgIiYjeDJBQjk7Ij48IUVOVElUWSBwcmVjbmFwcHJveCAiJiN4MkFCOTsiPjwhRU5USVRZIHNjbmFwICImI3gyQUJBOyI%2BPCFFTlRJVFkgc3VjY25hcHByb3ggIiYjeDJBQkE7Ij48IUVOVElUWSBQciAiJiN4MkFCQjsiPjwhRU5USVRZIFNjICImI3gyQUJDOyI%2BPCFFTlRJVFkgc3ViZG90ICImI3gyQUJEOyI%2BPCFFTlRJVFkgc3VwZG90ICImI3gyQUJFOyI%2BPCFFTlRJVFkgc3VicGx1cyAiJiN4MkFCRjsiPjwhRU5USVRZIHN1cHBsdXMgIiYjeDJBQzA7Ij48IUVOVElUWSBzdWJtdWx0ICImI3gyQUMxOyI%2BPCFFTlRJVFkgc3VwbXVsdCAiJiN4MkFDMjsiPjwhRU5USVRZIHN1YmVkb3QgIiYjeDJBQzM7Ij48IUVOVElUWSBzdXBlZG90ICImI3gyQUM0OyI%2BPCFFTlRJVFkgc3ViRSAiJiN4MkFDNTsiPjwhRU5USVRZIHN1YnNldGVxcSAiJiN4MkFDNTsiPjwhRU5USVRZIHN1cEUgIiYjeDJBQzY7Ij48IUVOVElUWSBzdXBzZXRlcXEgIiYjeDJBQzY7Ij48IUVOVElUWSBzdWJzaW0gIiYjeDJBQzc7Ij48IUVOVElUWSBzdXBzaW0gIiYjeDJBQzg7Ij48IUVOVElUWSBzdWJuRSAiJiN4MkFDQjsiPjwhRU5USVRZIHN1YnNldG5lcXEgIiYjeDJBQ0I7Ij48IUVOVElUWSBzdXBuRSAiJiN4MkFDQzsiPjwhRU5USVRZIHN1cHNldG5lcXEgIiYjeDJBQ0M7Ij48IUVOVElUWSBjc3ViICImI3gyQUNGOyI%2BPCFFTlRJVFkgY3N1cCAiJiN4MkFEMDsiPjwhRU5USVRZIGNzdWJlICImI3gyQUQxOyI%2BPCFFTlRJVFkgY3N1cGUgIiYjeDJBRDI7Ij48IUVOVElUWSBzdWJzdXAgIiYjeDJBRDM7Ij48IUVOVElUWSBzdXBzdWIgIiYjeDJBRDQ7Ij48IUVOVElUWSBzdWJzdWIgIiYjeDJBRDU7Ij48IUVOVElUWSBzdXBzdXAgIiYjeDJBRDY7Ij48IUVOVElUWSBzdXBoc3ViICImI3gyQUQ3OyI%2BPCFFTlRJVFkgc3VwZHN1YiAiJiN4MkFEODsiPjwhRU5USVRZIGZvcmt2ICImI3gyQUQ5OyI%2BPCFFTlRJVFkgdG9wZm9yayAiJiN4MkFEQTsiPjwhRU5USVRZIG1sY3AgIiYjeDJBREI7Ij48IUVOVElUWSBEYXNodiAiJiN4
MkFFNDsiPjwhRU5USVRZIERvdWJsZUxlZnRUZWUgIiYjeDJBRTQ7Ij48IUVOVElUWSBWZGFzaGwgIiYjeDJBRTY7Ij48IUVOVElUWSBCYXJ2ICImI3gyQUU3OyI%2BPCFFTlRJVFkgdkJhciAiJiN4MkFFODsiPjwhRU5USVRZIHZCYXJ2ICImI3gyQUU5OyI%2BPCFFTlRJVFkgVmJhciAiJiN4MkFFQjsiPjwhRU5USVRZIE5vdCAiJiN4MkFFQzsiPjwhRU5USVRZIGJOb3QgIiYjeDJBRUQ7Ij48IUVOVElUWSBybm1pZCAiJiN4MkFFRTsiPjwhRU5USVRZIGNpcm1pZCAiJiN4MkFFRjsiPjwhRU5USVRZIG1pZGNpciAiJiN4MkFGMDsiPjwhRU5USVRZIHRvcGNpciAiJiN4MkFGMTsiPjwhRU5USVRZIG5ocGFyICImI3gyQUYyOyI%2BPCFFTlRJVFkgcGFyc2ltICImI3gyQUYzOyI%2BPCFFTlRJVFkgcGFyc2wgIiYjeDJBRkQ7Ij48IUVOVElUWSBmZmxpZyAiJiN4RkIwMDsiPjwhRU5USVRZIGZpbGlnICImI3hGQjAxOyI%2BPCFFTlRJVFkgZmxsaWcgIiYjeEZCMDI7Ij48IUVOVElUWSBmZmlsaWcgIiYjeEZCMDM7Ij48IUVOVElUWSBmZmxsaWcgIiYjeEZCMDQ7Ij48IUVOVElUWSBBc2NyICImI3gxRDQ5QzsiPjwhRU5USVRZIENzY3IgIiYjeDFENDlFOyI%2BPCFFTlRJVFkgRHNjciAiJiN4MUQ0OUY7Ij48IUVOVElUWSBHc2NyICImI3gxRDRBMjsiPjwhRU5USVRZIEpzY3IgIiYjeDFENEE1OyI%2BPCFFTlRJVFkgS3NjciAiJiN4MUQ0QTY7Ij48IUVOVElUWSBOc2NyICImI3gxRDRBOTsiPjwhRU5USVRZIE9zY3IgIiYjeDFENEFBOyI%2BPCFFTlRJVFkgUHNjciAiJiN4MUQ0QUI7Ij48IUVOVElUWSBRc2NyICImI3gxRDRBQzsiPjwhRU5USVRZIFNzY3IgIiYjeDFENEFFOyI%2BPCFFTlRJVFkgVHNjciAiJiN4MUQ0QUY7Ij48IUVOVElUWSBVc2NyICImI3gxRDRCMDsiPjwhRU5USVRZIFZzY3IgIiYjeDFENEIxOyI%2BPCFFTlRJVFkgV3NjciAiJiN4MUQ0QjI7Ij48IUVOVElUWSBYc2NyICImI3gxRDRCMzsiPjwhRU5USVRZIFlzY3IgIiYjeDFENEI0OyI%2BPCFFTlRJVFkgWnNjciAiJiN4MUQ0QjU7Ij48IUVOVElUWSBhc2NyICImI3gxRDRCNjsiPjwhRU5USVRZIGJzY3IgIiYjeDFENEI3OyI%2BPCFFTlRJVFkgY3NjciAiJiN4MUQ0Qjg7Ij48IUVOVElUWSBkc2NyICImI3gxRDRCOTsiPjwhRU5USVRZIGZzY3IgIiYjeDFENEJCOyI%2BPCFFTlRJVFkgaHNjciAiJiN4MUQ0QkQ7Ij48IUVOVElUWSBpc2NyICImI3gxRDRCRTsiPjwhRU5USVRZIGpzY3IgIiYjeDFENEJGOyI%2BPCFFTlRJVFkga3NjciAiJiN4MUQ0QzA7Ij48IUVOVElUWSBsc2NyICImI3gxRDRDMTsiPjwhRU5USVRZIG1zY3IgIiYjeDFENEMyOyI%2BPCFFTlRJVFkgbnNjciAiJiN4MUQ0QzM7Ij48IUVOVElUWSBwc2NyICImI3gxRDRDNTsiPjwhRU5USVRZIHFzY3IgIiYjeDFENEM2OyI%2BPCFFTlRJVFkgcnNjciAiJiN4MUQ0Qzc7Ij48IUVOVElUWSBzc2NyICImI3gxRDRDODsiPjwhRU5USVRZIHRzY3IgIiYjeDFENEM5OyI%2BPCFFTlRJVFkgdXNjciAiJiN4MUQ0Q0E7Ij48IUVOVElUWSB2c2NyICImI3gxRDRDQjsiPjwhRU5USVRZIHdzY3IgIiYjeDFENENDOyI%2BPCFFTlRJVFkgeHNjciAiJiN4MUQ0Q0Q7Ij48IUVOVElUWSB5c2NyICImI3gxRDRDRTsiPjwhRU5USVRZIHpzY3IgIiYjeDFENENGOyI%2BPCFFTlRJVFkgQWZyICImI3gxRDUwNDsiPjwhRU5USVRZIEJmciAiJiN4MUQ1MDU7Ij48IUVOVElUWSBEZnIgIiYjeDFENTA3OyI%2BPCFFTlRJVFkgRWZyICImI3gxRDUwODsiPjwhRU5USVRZIEZmciAiJiN4MUQ1MDk7Ij48IUVOVElUWSBHZnIgIiYjeDFENTBBOyI%2BPCFFTlRJVFkgSmZyICImI3gxRDUwRDsiPjwhRU5USVRZIEtmciAiJiN4MUQ1MEU7Ij48IUVOVElUWSBMZnIgIiYjeDFENTBGOyI%2BPCFFTlRJVFkgTWZyICImI3gxRDUxMDsiPjwhRU5USVRZIE5mciAiJiN4MUQ1MTE7Ij48IUVOVElUWSBPZnIgIiYjeDFENTEyOyI%2BPCFFTlRJVFkgUGZyICImI3gxRDUxMzsiPjwhRU5USVRZIFFmciAiJiN4MUQ1MTQ7Ij48IUVOVElUWSBTZnIgIiYjeDFENTE2OyI%2BPCFFTlRJVFkgVGZyICImI3gxRDUxNzsiPjwhRU5USVRZIFVmciAiJiN4MUQ1MTg7Ij48IUVOVElUWSBWZnIgIiYjeDFENTE5OyI%2BPCFFTlRJVFkgV2ZyICImI3gxRDUxQTsiPjwhRU5USVRZIFhmciAiJiN4MUQ1MUI7Ij48IUVOVElUWSBZZnIgIiYjeDFENTFDOyI%2BPCFFTlRJVFkgYWZyICImI3gxRDUxRTsiPjwhRU5USVRZIGJmciAiJiN4MUQ1MUY7Ij48IUVOVElUWSBjZnIgIiYjeDFENTIwOyI%2BPCFFTlRJVFkgZGZyICImI3gxRDUyMTsiPjwhRU5USVRZIGVmciAiJiN4MUQ1MjI7Ij48IUVOVElUWSBmZnIgIiYjeDFENTIzOyI%2BPCFFTlRJVFkgZ2ZyICImI3gxRDUyNDsiPjwhRU5USVRZIGhmciAiJiN4MUQ1MjU7Ij48IUVOVElUWSBpZnIgIiYjeDFENTI2OyI%2BPCFFTlRJVFkgamZyICImI3gxRDUyNzsiPjwhRU5USVRZIGtmciAiJiN4MUQ1Mjg7Ij48IUVOVElUWSBsZnIgIiYjeDFENTI5OyI%2BPCFFTlRJVFkgbWZyICImI3gxRDUyQTsiPjwhRU5USVRZIG5mciAiJiN4MUQ1MkI7Ij48IUVOVElUWSBvZnIgIiYjeDFENTJDOyI%2BPCFFTlRJVFkgcGZyICImI3gxRDUyRDsiPjwhRU5USVRZIHFmciAiJiN4MUQ1MkU7Ij48IUVOVElUWSByZnIgIiYjeDFENTJGOyI%2BPCFFTlRJVFkgc2ZyICImI3gxRDUzMDsiPjwhRU5USVRZIHRmciAiJiN4MUQ1MzE7Ij48IUVOVElUWSB1ZnIgIiYjeDFENTMyOyI%2BPCFFTlRJVFkgdmZyICImI3gxRDUzMzsiPjwhRU5USVRZIHdmciAiJiN4MUQ1MzQ7Ij48IUVOVElUWSB4ZnIgIiYjeDFENTM1OyI%2BPCFFTlRJVFkgeWZyICImI3gxRDUzNjsiPjwhRU5USVRZIHpmciAiJiN4MUQ1Mzc7Ij48IUVOVElUWSBBb3BmICImI3gxRDUzODsiPjwhRU5USVRZIEJvcGYgIiYjeDFENTM5OyI%2BPCFFTlRJVFkgRG9wZiAiJiN4MUQ1M0I7Ij48IUVOVElUWSBFb3BmICImI3gxRDUzQzsiPjwhRU5USVRZIEZvcGYgIiYjeDFENTNEOyI%2BPCFFTlRJVFkgR29wZiAiJiN4MUQ1M0U7Ij48IUVOVElUWSBJb3BmICImI3gxRDU0MDsiPjwhRU5USVRZIEpvcGYgIiYjeDFENTQxOyI%2BPCFFTlRJVFkgS29wZiAiJiN4MUQ1NDI7Ij48IUVOVElUWSBMb3BmICImI3gxRDU0MzsiPjwhRU5USVRZIE1vcGYgIiYjeDFENTQ0OyI%2BPCFFTlRJVFkgT29wZiAiJiN4MUQ1NDY7Ij48IUVOVElUWSBTb3BmICImI3gxRDU0QTsiPjwhRU5USVRZIFRvcGYgIiYjeDFENTRCOyI%2BPCFFTlRJVFkgVW9wZiAiJiN4MUQ1NEM7Ij48IUVOVElUWSBWb3BmICImI3gxRDU0RDsiPjwhRU5USVRZIFdvcGYgIiYjeDFENTRFOyI%2BPCFFTlRJVFkgWG9wZiAiJiN4MUQ1NEY7Ij48IUVOVElUWSBZb3BmICImI3gxRDU1MDsiPjwhRU5USVRZIGFvcGYgIiYjeDFENTUyOyI%2BPCFFTlRJVFkgYm9wZiAiJiN4MUQ1NTM7Ij48IUVOVElUWSBjb3BmICImI3gxRDU1NDsiPjwhRU5USVRZIGRvcGYgIiYjeDFENTU1OyI%2BPCFFTlRJVFkgZW9wZiAiJiN4MUQ1NTY7Ij48IUVOVElUWSBmb3BmICImI3gxRDU1NzsiPjwhRU5USVRZIGdvcGYgIiYjeDFENTU4OyI%2BPCFFTlRJVFkgaG9wZiAiJiN4MUQ1NTk7Ij48IUVOVElUWSBpb3BmICImI3gxRDU1QTsiPjwhRU5USVRZIGpvcGYgIiYjeDFENTVCOyI%2BPCFFTlRJVFkga29wZiAiJiN4MUQ1NUM7Ij48IUVOVElUWSBsb3BmICImI3gxRDU1RDsiPjwhRU5USVRZIG1vcGYgIiYjeDFENTVFOyI%2BPCFFTlRJVFkgbm9wZiAiJiN4MUQ1NUY7Ij48IUVOVElUWSBvb3BmICImI3gxRDU2MDsiPjwhRU5USVRZIHBvcGYgIiYjeDFENTYxOyI%2BPCFFTlRJVFkgcW9wZiAiJiN4MUQ1NjI7Ij48IUVOVElUWSByb3BmICImI3gxRDU2MzsiPjwhRU5USVRZIHNvcGYgIiYjeDFENTY0OyI%2BPCFFTlRJVFkgdG9wZiAiJiN4MUQ1NjU7Ij48IUVOVElUWSB1b3BmICImI3gxRDU2NjsiPjwhRU5USVRZIHZvcGYgIiYjeDFENTY3OyI%2BPCFFTlRJVFkgd29wZiAiJiN4MUQ1Njg7Ij48IUVOVElUWSB4b3BmICImI3gxRDU2OTsiPjwhRU5USVRZIHlvcGYgIiYjeDFENTZBOyI%2BPCFFTlRJVFkgem9wZiAiJiN4MUQ1NkI7Ij4%3D

When an XML parserp669 creates a scriptp129 element, it must be marked as being "parser-inserted"p131. If the parser
was originally created for the XML fragment parsing algorithmp671, then the element must be marked as "already
started"p130 also. When the element's end tag is parsed, the user agent must runp131 the scriptp129 element. If this
causes there to be a pending parsing-blocking scriptp132, then the user agent must run the following steps:

1. Block this instance of the XML parserp669, such that the event loopp516 will not run tasksp517 that invoke it.

2. Spin the event loopp518 until there is no style sheet blocking scriptsp129 and the pending parsing-blocking
scriptp132 's "ready to be parser-executed"p131 flag is set.

3. Unblock this instance of the XML parserp669, such that tasksp517 that invoke it can again be run.

4. Executep133 the pending parsing-blocking scriptp132.

5. There is no longer a pending parsing-blocking scriptp132.

Note: Since the document.write()p107 API is not available for XML documentsp75, much of the
complexity in the HTML parserp584 is not needed in the XML parserp669.

Certain algorithms in this specification spoon-feed the parser characters one string at a time. In such cases, the
XML parserp669 must act as it would have if faced with a single string consisting of the concatenation of all those
characters.

When an XML parserp669 reaches the end of its input, it must stop parsingp653, following the same rules as the HTML
parserp584.

For the purposes of conformance checkers, if a resource is determined to be in the XHTML syntaxp669, then it is an XML
documentp75.

11.3 Serializing XHTML fragments

The XML fragment serialization algorithm for a Documentp33 or Elementp33 node either returns a fragment of XML
that represents that node or raises an exception.

For Documentp33s, the algorithm must return a string in the form of a document entity, if none of the error cases below
apply.

For Elementp33s, the algorithm must return a string in the form of an internal general parsed entity, if none of the error
cases below apply.

In both cases, the string returned must be XML namespace-well-formed and must be an isomorphic serialization of all
of that node's child nodes, in tree orderp29. User agents may adjust prefixes and namespace declarations in the
serialization (and indeed might be forced to do so in some cases to obtain namespace-well-formed XML). User agents
may use a combination of regular text, character references, and CDATA sections to represent text nodesp29 in the
DOM (and indeed might be forced to use representations that don't match the DOM's, e.g. if a CDATASectionp33 node
contains the string "]]>").

For Elementp33s, if any of the elements in the serialization are in no namespace, the default namespace in scope for
those elements must be explicitly declared as the empty string. (This doesn't apply in the Documentp33 case.) [XML]p743

[XMLNS]p743

For the purposes of this section, an internal general parsed entity is considered XML namespace-well-formed if a
document consisting of an element with no namespace declarations whose contents are the internal general parsed
entity would itself be XML namespace-well-formed.

If any of the following error cases are found in the DOM subtree being serialized, then the algorithm must raise an
INVALID_STATE_ERRp74 exception instead of returning a string:

• A Documentp33 node with no child element nodes.

• A DocumentTypep33 node that has an external subset public identifier that contains characters that are not
matched by the XML PubidChar production. [XML]p743

• A DocumentTypep33 node that has an external subset system identifier that contains both a U+0022
QUOTATION MARK (") and a U+0027 APOSTROPHE (') or that contains characters that are not matched by
the XML Char production. [XML]p743

670

http://www.w3.org/TR/xml/#sec-well-formed
http://www.w3.org/TR/xml/#wf-entities

• A node with a local name containing a U+003A COLON (:).

• A node with a local name that does not match the XML Name production. [XML]p743

• An Attrp33 node with no namespace whose local name is the lowercase string "xmlns". [XMLNS]p743

• An Elementp33 node with two or more attributes with the same local name and namespace.

• An Attrp33 node, Textp33 node, CDATASectionp33 node, Commentp33 node, or ProcessingInstructionp33 node
whose data contains characters that are not matched by the XML Char production. [XML]p743

• A Commentp33 node whose data contains two adjacent U+002D HYPHEN-MINUS characters (-) or ends with
such a character.

• A ProcessingInstructionp33 node whose target name is an ASCII case-insensitivep35 match for the string
"xml".

• A ProcessingInstructionp33 node whose target name contains a U+003A COLON (:).

• A ProcessingInstructionp33 node whose data contains the string "?>".

Note: These are the only ways to make a DOM unserializable. The DOM enforces all the other XML
constraints; for example, trying to append two elements to a Documentp33 node will raise a
HIERARCHY_REQUEST_ERRp74 exception.

11.4 Parsing XHTML fragments

The XML fragment parsing algorithm for either returns a Documentp33 or raises a SYNTAX_ERRp74 exception. Given a
string input and an optional context element context, the algorithm is as follows:

1. Create a new XML parserp669.

2. If there is a context element, feed the parserp670 just created the string corresponding to the start tag of that
element, declaring all the namespace prefixes that are in scope on that element in the DOM, as well as
declaring the default namespace (if any) that is in scope on that element in the DOM.

A namespace prefix is in scope if the DOM Core lookupNamespaceURI() method on the element would
return a non-null value for that prefix.

The default namespace is the namespace for which the DOM Core isDefaultNamespace() method on the
element would return true.

Note: If there is a context element, no DOCTYPE is passed to the parser, and therefore no
external subset is referenced, and therefore no entities will be recognized.

3. Feed the parserp670 just created the string input.

4. If there is a context element, feed the parserp670 just created the string corresponding to the end tag of that
element.

5. If there is an XML well-formedness or XML namespace well-formedness error, then raise a SYNTAX_ERRp74

exception and abort these steps.

6. If there is a context element, then return the child nodes of the root element of the resulting Documentp33, in
tree orderp29.

Otherwise, return the children of the Documentp33 object, in tree orderp29.

671

12 Rendering

User agents are not required to present HTML documents in any particular way. However, this section provides a set of
suggestions for rendering HTML documents that, if followed, are likely to lead to a user experience that closely
resembles the experience intended by the documents' authors. So as to avoid confusion regarding the normativity of
this section, RFC2119 terms have not been used. Instead, the term "expected" is used to indicate behavior that will
lead to this experience.

12.1 Introduction

In general, user agents are expected to support CSS, and many of the suggestions in this section are expressed in CSS
terms. User agents that use other presentation mechanisms can derive their expected behavior by translating from
the CSS rules given in this section.

In the absence of style-layer rules to the contrary (e.g. author style sheets), user agents are expected to render an
element so that it conveys to the user the meaning that the element represents, as described by this specification.

The suggestions in this section generally assume a visual output medium with a resolution of 96dpi or greater, but
HTML is intended to apply to multiple media (it is a media-independent language). User agents are encouraged to
adapt the suggestions in this section to their target media.

An element is being rendered if it is in a Documentp29, either its parent node is itself being renderedp672 or it is the
Documentp33 node, and it is not explicitly excluded from the rendering using either:

• the CSS 'display' property's 'none' value, or
• the 'visibility' property's 'collapse' value unless it is being treated as equivalent to the 'hidden' value, or
• some equivalent in other styling languages.

Note: Just being off-screen does not mean the element is not being renderedp672. The presence of
the hiddenp536 attribute normally means the element is not being renderedp672, though this might
be overriden by the style sheets.

12.2 The CSS user agent style sheet and presentational hints

The CSS rules given in these subsections are, except where otherwise specified, expected to be used as part of the
user-agent level style sheet defaults for all documents that contain HTML elementsp28.

Some rules are intended for the author-level zero-specificity presentational hints part of the CSS cascade; these are
explicitly called out as presentational hints.

Some of the rules regarding left and right margins are given here as appropriate for elements whose 'direction'
property is 'ltr', and are expected to be flipped around on elements whose 'direction' property is 'rtl'. These are marked
"LTR-specific".

For the purpose of the rules marked "case-sensitive", user agents are expected to use case-sensitive matching of
attribute values rather than case-insensitive matching, regardless of whether a case-insensitive matching is normally
required for the given attribute.

Similarly, for the purpose of the rules marked "case-insensitive", user agents are expected to use ASCII case-
insensitivep35 matching of attribute values rather than case-sensitive matching, even for attributes in XHTML
documents.

Note: These markings only affect the handling of attribute values, not attribute names or element
names.

When the text below says that an attribute attribute on an element element maps to the pixel length property (or
properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value using
the rules for parsing non-negative integersp37 doesn't generate an error, then the user agent is expected to use the
parsed value as a pixel length for a presentational hintp672 for properties.

12.2.1 Introduction

672

When the text below says that an attribute attribute on an element element maps to the dimension property (or
properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value using
the rules for parsing dimension valuesp40 doesn't generate an error, then the user agent is expected to use the parsed
dimension as the value for a presentational hintp672 for properties, with the value given as a pixel length if the
dimension was an integer, and with the value given as a percentage if the dimension was a percentage.

@namespace url(http://www.w3.org/1999/xhtml);

[hidden], area, base, basefont, command, datalist, head,
input[type=hidden], link, menu[type=context], meta, noembed, noframes,
param, rp, script, source, style, title { /* case-insensitive */

display: none;
}

address, article, aside, blockquote, body, center, dd, dir, div, dl,
dt, figure, figcaption, footer, form, h1, h2, h3, h4, h5, h6, header,
hgroup, hr, html, legend, listing, menu, nav, ol, p, plaintext, pre,
section, summary, ul, xmp { display: block; }

table { display: table; }
caption { display: table-caption; }
colgroup { display: table-column-group; }
col { display: table-column; }
thead { display: table-header-group; }
tbody { display: table-row-group; }
tfoot { display: table-footer-group; }
tr { display: table-row; }
td, th { display: table-cell; }

li { display: list-item; }

ruby { display: ruby; }
rt { display: ruby-text; }

For the purposes of the CSS table model, the colp294 element is expected to be treated as if it was present as many
times as its spanp294 attribute specifiesp37.

For the purposes of the CSS table model, the colgroupp293 element, if it contains no colp294 element, is expected to be
treated as if it had as many such children as its spanp294 attribute specifiesp37.

For the purposes of the CSS table model, the colspanp300 and rowspanp300 attributes on tdp298 and thp298 elements are
expected to providep37 the special knowledge regarding cells spanning rows and columns.

For the purposes of the CSS ruby model, runs of children of rubyp188 elements that are not rtp189 or rpp189 elements are
expected to be wrapped in anonymous boxes whose 'display' property has the value 'ruby-base'.

User agents that do not support correct ruby rendering are expected to render parentheses around the text of rtp189

elements in the absence of rpp189 elements.

The brp191 element is expected to render as if its contents were a single U+000A LINE FEED (LF) character and its
'white-space' property was 'pre'. User agents are expected to support the 'clear' property on inline elements (in order
to render brp191 elements with clearp700 attributes) in the manner described in the non-normative note to this effect in
CSS2.1.

The user agent is expected to hide noscriptp136 elements for whom scripting is enabledp514, irrespective of CSS rules.

In HTML documentsp75, the user agent is expected to hide formp314 elements that are children of tablep286, theadp295,
tbodyp294, tfootp296, or trp296 elements, irrespective of CSS rules.

@namespace url(http://www.w3.org/1999/xhtml);

12.2.2 Display types

12.2.3 Margins and padding

673

blockquote, dir, dl, figure, listing, menu, ol, p, plaintext,
pre, ul, xmp {

margin-top: 1em; margin-bottom: 1em;
}

dir dir, dir dl, dir menu, dir ol, dir ul,
dl dir, dl dl, dl menu, dl ol, dl ul,
menu dir, menu dl, menu menu, menu ol, menu ul,
ol dir, ol dl, ol menu, ol ol, ol ul,
ul dir, ul dl, ul menu, ul ol, ul ul {

margin-top: 0; margin-bottom: 0;
}

h1 { margin-top: 0.67em; margin-bottom; 0.67em; }
h2 { margin-top: 0.83em; margin-bottom; 0.83em; }
h3 { margin-top: 1.00em; margin-bottom; 1.00em; }
h4 { margin-top: 1.33em; margin-bottom; 1.33em; }
h5 { margin-top: 1.67em; margin-bottom; 1.67em; }
h6 { margin-top: 2.33em; margin-bottom; 2.33em; }

dd { margin-left: 40px; } /* LTR-specific: use 'margin-right' for rtl elements */
dir, menu, ol, ul { padding-left: 40px; } /* LTR-specific: use 'padding-right' for rtl
elements */
blockquote, figure { margin-left: 40px; margin-right: 40px; }

table { border-spacing: 2px; border-collapse: separate; }
td, th { padding: 1px; }

The articlep144, asidep145, navp142, and sectionp140 elements are expected to affect the margins of h1p147 elements,
based on the nesting depth. If x is a selector that matches elements that are either articlep144, asidep145, navp142, or
sectionp140 elements, then the following rules capture what is expected:

@namespace url(http://www.w3.org/1999/xhtml);

x h1 { margin-top: 0.83em; margin-bottom: 0.83em; }
x x h1 { margin-top: 1.00em; margin-bottom: 1.00em; }
x x x h1 { margin-top: 1.33em; margin-bottom: 1.33em; }
x x x x h1 { margin-top: 1.67em; margin-bottom: 1.67em; }
x x x x x h1 { margin-top: 2.33em; margin-bottom: 2.33em; }

For each property in the table below, given a bodyp138 element, the first attribute that exists maps to the pixel length
propertyp672 on the bodyp138 element. If none of the attributes for a property are found, or if the value of the attribute
that was found cannot be parsed successfully, then a default value of 8px is expected to be used for that property
instead.

Property Source

bodyp138 element's marginheightp700 attribute
The bodyp138 element's container frame elementp674 's marginheightp700 attribute

'margin-top'

bodyp138 element's topmargin attribute
bodyp138 element's marginwidthp700 attribute
The bodyp138 element's container frame elementp674 's marginwidthp700 attribute

'margin-right'

bodyp138 element's rightmargin attribute
bodyp138 element's marginheightp700 attribute
The bodyp138 element's container frame elementp674 's marginheightp700 attribute

'margin-bottom'

bodyp138 element's topmargin attribute
bodyp138 element's marginwidthp700 attribute
The bodyp138 element's container frame elementp674 's marginwidthp700 attribute

'margin-left'

bodyp138 element's rightmargin attribute

If the bodyp138 element's Documentp33 's browsing contextp463 is a nested browsing contextp463, and the browsing context
containerp463 of that nested browsing contextp463 is a framep705 or iframep211 element, then the container frame

674

element of the bodyp138 element is that framep705 or iframep211 element. Otherwise, there is no container frame
elementp674.

⚠Warning! The above requirements imply that a page can change the margins of another page (including
one from another originp474) using, for example, an iframep211. This is potentially a security risk, as it
might in some cases allow an attack to contrive a situation in which a page is rendered not as the author
intended, possibly for the purposes of phishing or otherwise misleading the user.

If the Documentp33 has a root elementp29, and the Documentp33 's browsing contextp463 is a nested browsing contextp463,
and the browsing context containerp463 of that nested browsing contextp463 is a framep705 or iframep211 element, and
that element has a scrolling attribute, then the user agent is expected to compare the value of the attribute in an
ASCII case-insensitivep35 manner to the values in the first column of the following table, and if one of them matches,
then the user agent is expected to treat that attribute as a presentational hintp672 for the aforementioned root
element's 'overflow' property, setting it to the value given in the corresponding cell on the same row in the second
column:

Attribute value 'overflow' value

on 'scroll'
scroll 'scroll'
yes 'scroll'
off 'hidden'
noscroll 'hidden'
no 'hidden'
auto 'auto'

The tablep286 element's cellspacingp701 attribute maps to the pixel length propertyp672 'border-spacing' on the
element.

The tablep286 element's cellpaddingp701 attribute maps to the pixel length propertiesp672 'padding-top', 'padding-
right', 'padding-bottom', and 'padding-left' of any tdp298 and thp298 elements that have corresponding cellsp301 in the
tablep301 corresponding to the tablep286 element.

The tablep286 element's hspace attribute maps to the dimension propertiesp673 'margin-left' and 'margin-right' on the
tablep286 element.

The tablep286 element's vspace attribute maps to the dimension propertiesp673 'margin-top' and 'margin-bottom' on
the tablep286 element.

The tablep286 element's height attribute maps to the dimension propertyp673 'height' on the tablep286 element.

The tablep286 element's widthp701 attribute maps to the dimension propertyp673 'width' on the tablep286 element.

The colp294 element's widthp700 attribute maps to the dimension propertyp673 'width' on the colp294 element.

The trp296 element's height attribute maps to the dimension propertyp673 'height' on the trp296 element.

The tdp298 and thp298 elements' heightp701 attributes map to the dimension propertyp673 'height' on the element.

The tdp298 and thp298 elements' widthp701 attributes map to the dimension propertyp673 'width' on the element.

In quirks modep79, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

form { margin-bottom: 1em; }

When a Documentp33 is in quirks modep79, margins on HTML elementsp28 at the top or bottom of bodyp138, tdp298, or
thp298 elements are expected to be collapsed to zero.

@namespace url(http://www.w3.org/1999/xhtml);

thead, tbody, tfoot, table > tr { vertical-align: middle; }

12.2.4 Alignment

675

tr, td, th { vertical-align: inherit; }
sub { vertical-align: sub; }
sup { vertical-align: super; }
th { text-align: center; }

The following rules are also expected to apply, as presentational hintsp672:

@namespace url(http://www.w3.org/1999/xhtml);

table[align=left] { float: left; } /* case-insensitive */
table[align=right] { float: right; } /* case-insensitive */
table[align=center], table[align=abscenter],
table[align=absmiddle], table[align=middle] { /* case-insensitive */

margin-left: auto; margin-right: auto;
}

caption[align=bottom] { caption-side: bottom; } /* case-insensitive */
p[align=left], h1[align=left], h2[align=left], h3[align=left],
h4[align=left], h5[align=left], h6[align=left] { /* case-insensitive */

text-align: left;
}
p[align=right], h1[align=right], h2[align=right], h3[align=right],
h4[align=right], h5[align=right], h6[align=right] { /* case-insensitive */

text-align: right;
}
p[align=center], h1[align=center], h2[align=center], h3[align=center],
h4[align=center], h5[align=center], h6[align=center] { /* case-insensitive */

text-align: center;
}
p[align=justify], h1[align=justify], h2[align=justify], h3[align=justify],
h4[align=justify], h5[align=justify], h6[align=justify] { /* case-insensitive */

text-align: justify;
}
col[valign=top], thead[valign=top], tbody[valign=top],
tfoot[valign=top], tr[valign=top], td[valign=top], th[valign=top] { /* case-insensitive */

vertical-align: top;
}
col[valign=middle], thead[valign=middle], tbody[valign=middle],
tfoot[valign=middle], tr[valign=middle], td[valign=middle], th[valign=middle] { /*
case-insensitive */

vertical-align: middle;
}
col[valign=bottom], thead[valign=bottom], tbody[valign=bottom],
tfoot[valign=bottom], tr[valign=bottom], td[valign=bottom], th[valign=bottom] { /*
case-insensitive */

vertical-align: bottom;
}
col[valign=baseline], thead[valign=baseline], tbody[valign=baseline],
tfoot[valign=baseline], tr[valign=baseline], td[valign=baseline], th[valign=baseline] { /*
case-insensitive */

vertical-align: baseline;
}

The centerp697 element, the captionp292 element unless specified otherwise below, and the divp168, theadp295,
tbodyp294, tfootp296, trp296, tdp298, and thp298 elements when they have an alignp700 attribute whose value is an ASCII
case-insensitivep35 match for the string "center", are expected to center text within themselves, as if they had their
'text-align' property set to 'center' in a presentational hintp672, and to align descendantsp677 to the center.

The divp168, captionp292, theadp295, tbodyp294, tfootp296, trp296, tdp298, and thp298 elements, when they have an align
attribute whose value is an ASCII case-insensitivep35 match for the string "left", are expected to left-align text within
themselves, as if they had their 'text-align' property set to 'left' in a presentational hintp672, and to align
descendantsp677 to the left.

676

The divp168, captionp292, theadp295, tbodyp294, tfootp296, trp296, tdp298, and thp298 elements, when they have an align
attribute whose value is an ASCII case-insensitivep35 match for the string "right", are expected to right-align text
within themselves, as if they had their 'text-align' property set to 'right' in a presentational hintp672, and to align
descendantsp677 to the right.

The divp168, captionp292, theadp295, tbodyp294, tfootp296, trp296, tdp298, and thp298 elements, when they have an align
attribute whose value is an ASCII case-insensitivep35 match for the string "justify", are expected to full-justify text
within themselves, as if they had their 'text-align' property set to 'justify' in a presentational hintp672, and to align
descendantsp677 to the left.

When a user agent is to align descendants of a node, the user agent is expected to align only those descendants
that have both their 'margin-left' and 'margin-right' properties computing to a value other than 'auto', that are over-
constrained and that have one of those two margins with a used value forced to a greater value, and that do not
themselves have an applicable align attribute. When multiple elements are to alignp677 a particular descendant, the
most deeply nested such element is expected to override the others.

@namespace url(http://www.w3.org/1999/xhtml);

address, cite, dfn, em, i, var { font-style: italic; }
b, strong, th { font-weight: bold; }
code, kbd, listing, plaintext, pre, samp, tt, xmp { font-family: monospace; }
h1 { font-size: 2.00em; font-weight: bold; }
h2 { font-size: 1.50em; font-weight: bold; }
h3 { font-size: 1.17em; font-weight: bold; }
h4 { font-size: 1.00em; font-weight: bold; }
h5 { font-size: 0.83em; font-weight: bold; }
h6 { font-size: 0.67em; font-weight: bold; }
big { font-size: larger; }
small, sub, sup { font-size: smaller; }
sub, sup { line-height: normal; }

:link { color: blue; }
:visited { color: purple; }
mark { background: yellow; color: black; }

table, td, th { border-color: gray; }
thead, tbody, tfoot, tr { border-color: inherit; }
table[rules=none], table[rules=groups], table[rules=rows],
table[rules=cols], table[rules=all], table[frame=void],
table[frame=above], table[frame=below], table[frame=hsides],
table[frame=lhs], table[frame=rhs], table[frame=vsides],
table[frame=box], table[frame=border],
table[rules=none] > tr > td, table[rules=none] > tr > th,
table[rules=groups] > tr > td, table[rules=groups] > tr > th,
table[rules=rows] > tr > td, table[rules=rows] > tr > th,
table[rules=cols] > tr > td, table[rules=cols] > tr > th,
table[rules=all] > tr > td, table[rules=all] > tr > th,
table[rules=none] > thead > tr > td, table[rules=none] > thead > tr > th,
table[rules=groups] > thead > tr > td, table[rules=groups] > thead > tr > th,
table[rules=rows] > thead > tr > td, table[rules=rows] > thead > tr > th,
table[rules=cols] > thead > tr > td, table[rules=cols] > thead > tr > th,
table[rules=all] > thead > tr > td, table[rules=all] > thead > tr > th,
table[rules=none] > tbody > tr > td, table[rules=none] > tbody > tr > th,
table[rules=groups] > tbody > tr > td, table[rules=groups] > tbody > tr > th,
table[rules=rows] > tbody > tr > td, table[rules=rows] > tbody > tr > th,
table[rules=cols] > tbody > tr > td, table[rules=cols] > tbody > tr > th,
table[rules=all] > tbody > tr > td, table[rules=all] > tbody > tr > th,
table[rules=none] > tfoot > tr > td, table[rules=none] > tfoot > tr > th,
table[rules=groups] > tfoot > tr > td, table[rules=groups] > tfoot > tr > th,
table[rules=rows] > tfoot > tr > td, table[rules=rows] > tfoot > tr > th,
table[rules=cols] > tfoot > tr > td, table[rules=cols] > tfoot > tr > th,
table[rules=all] > tfoot > tr > td, table[rules=all] > tfoot > tr > th { /*
case-insensitive */

12.2.5 Fonts and colors

677

border-color: black;
}

The initial value for the 'color' property is expected to be black. The initial value for the 'background-color' property is
expected to be 'transparent'. The canvas's background is expected to be white.

The articlep144, asidep145, navp142, and sectionp140 elements are expected to affect the font size of h1p147 elements,
based on the nesting depth. If x is a selector that matches elements that are either articlep144, asidep145, navp142, or
sectionp140 elements, then the following rules capture what is expected:

@namespace url(http://www.w3.org/1999/xhtml);

x h1 { font-size: 1.50em; }
x x h1 { font-size: 1.17em; }
x x x h1 { font-size: 1.00em; }
x x x x h1 { font-size: 0.83em; }
x x x x x h1 { font-size: 0.67em; }

When a bodyp138, tablep286, theadp295, tbodyp294, tfootp296, trp296, tdp298, or thp298 element has a backgroundp701

attribute set to a non-empty value, the new value is expected to be resolvedp55 relative to the element, and if this is
successful, the user agent is expected to treat the attribute as a presentational hintp672 setting the element's
'background-image' property to the resulting absolute URLp55.

When a bodyp138, tablep286, theadp295, tbodyp294, tfootp296, trp296, tdp298, or thp298 element has a bgcolor attribute set,
the new value is expected to be parsed using the rules for parsing a legacy color valuep51, and if that does not return
an error, the user agent is expected to treat the attribute as a presentational hintp672 setting the element's
'background-color' property to the resulting color.

When a bodyp138 element has a textp700 attribute, its value is expected to be parsed using the rules for parsing a
legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hintp672 setting the element's 'color' property to the resulting color.

When a bodyp138 element has a linkp700 attribute, its value is expected to be parsed using the rules for parsing a
legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hintp672 setting the 'color' property of any element in the Documentp33 matching the ':link' pseudo-class
to the resulting color.

When a bodyp138 element has a vlinkp700 attribute, its value is expected to be parsed using the rules for parsing a
legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hintp672 setting the 'color' property of any element in the Documentp33 matching the ':visited' pseudo-
class to the resulting color.

When a bodyp138 element has a alinkp700 attribute, its value is expected to be parsed using the rules for parsing a
legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hintp672 setting the 'color' property of any element in the Documentp33 matching the ':active' pseudo-
class and either the ':link' pseudo-class or the ':visited' pseudo-class to the resulting color.

When a tablep286 element has a bordercolor attribute, its value is expected to be parsed using the rules for parsing a
legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hintp672 setting the element's 'border-top-color', 'border-right-color', 'border-bottom-color', and 'border-
right-color' properties to the resulting color.

When a fontp697 element has a color attribute, its value is expected to be parsed using the rules for parsing a legacy
color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a presentational
hintp672 setting the element's 'color' property to the resulting color.

When a fontp697 element has a face attribute, the user agent is expected to treat the attribute as a presentational
hintp672 setting the element's 'font-family' property to the attribute's value.

When a fontp697 element has a size attribute, the user agent is expected to use the following steps to treat the
attribute as a presentational hintp672 setting the element's 'font-size' property:

1. Let input be the attribute's value.

678

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip whitespacep36.

4. If position is past the end of input, there is no presentational hintp672. Abort these steps.

5. If the character at position is a U+002B PLUS SIGN character (+), then let mode be relative-plus, and
advance position to the next character. Otherwise, if the character at position is a U+002D HYPHEN-MINUS
character (-), then let mode be relative-minus, and advance position to the next character. Otherwise, let
mode be absolute.

6. Collect a sequence of charactersp36 in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), and let
the resulting sequence be digits.

7. If digits is the empty string, there is no presentational hintp672. Abort these steps.

8. Interpret digits as a base-ten integer. Let value be the resulting number.

9. If mode is relative-plus, then increment value by 3. If mode is relative-minus, then let value be the result of
subtracting value from 3.

10. If value is greater than 7, let it be 7.

11. If value is less than 1, let it be 1.

12. Set 'font-size' to the keyword corresponding to the value of value according to the following table:

value 'font-size' keyword Notes

1 xx-small
2 small
3 medium
4 large
5 x-large
6 xx-large
7 xxx-large see below

The 'xxx-large' value is a non-CSS value used here to indicate a font size one "step" larger than 'xx-large'.

@namespace url(http://www.w3.org/1999/xhtml);

:link, :visited, ins, u { text-decoration: underline; }
abbr[title], acronym[title] { text-decoration: dotted underline; }
del, s, strike { text-decoration: line-through; }
blink { text-decoration: blink; }

q:before { content: open-quote; }
q:after { content: close-quote; }

nobr { white-space: nowrap; }
listing, plaintext, pre, xmp { white-space: pre; }

ol { list-style-type: decimal; }

dir, menu, ul {
list-style-type: disc;

}

dir dl, dir menu, dir ul,
menu dl, menu menu, menu ul,
ol dl, ol menu, ol ul,
ul dl, ul menu, ul ul {

list-style-type: circle;
}

12.2.6 Punctuation and decorations

679

dir dir dl, dir dir menu, dir dir ul,
dir menu dl, dir menu menu, dir menu ul,
dir ol dl, dir ol menu, dir ol ul,
dir ul dl, dir ul menu, dir ul ul,
menu dir dl, menu dir menu, menu dir ul,
menu menu dl, menu menu menu, menu menu ul,
menu ol dl, menu ol menu, menu ol ul,
menu ul dl, menu ul menu, menu ul ul,
ol dir dl, ol dir menu, ol dir ul,
ol menu dl, ol menu menu, ol menu ul,
ol ol dl, ol ol menu, ol ol ul,
ol ul dl, ol ul menu, ol ul ul,
ul dir dl, ul dir menu, ul dir ul,
ul menu dl, ul menu menu, ul menu ul,
ul ol dl, ul ol menu, ul ol ul,
ul ul dl, ul ul menu, ul ul ul {

list-style-type: square;
}

table { border-style: outset; }
td, th { border-style: inset; }

[dir=ltr] { direction: ltr; unicode-bidi: embed; } /* case-insensitive */
[dir=rtl] { direction: rtl; unicode-bidi: embed; } /* case-insensitive */
bdo[dir=ltr], bdo[dir=rtl] { unicode-bidi: bidi-override; } /* case-insensitive */

In addition, rules setting the 'quotes' property appropriately for the locales and languages understood by the user are
expected to be present.

The following rules are also expected to apply, as presentational hintsp672:

@namespace url(http://www.w3.org/1999/xhtml);

td[nowrap], th[nowrap] { white-space: nowrap; }
pre[wrap] { white-space: pre-wrap; }

br[clear=left] { clear: left; } /* case-insensitive */
br[clear=right] { clear: right; } /* case-insensitive */
br[clear=all], br[clear=both] { clear: both; } /* case-insensitive */

ol[type=1], li[type=1] { list-style-type: decimal; }
ol[type=a], li[type=a] { list-style-type: lower-alpha; } /* case-sensitive */
ol[type=A], li[type=A] { list-style-type: upper-alpha; } /* case-sensitive */
ol[type=i], li[type=i] { list-style-type: lower-roman; } /* case-sensitive */
ol[type=I], li[type=I] { list-style-type: upper-roman; } /* case-sensitive */
ul[type=disc], li[type=disc] { list-style-type: disc; }
ul[type=circle], li[type=circle] { list-style-type: circle; }
ul[type=square], li[type=square] { list-style-type: square; }

table[rules=none], table[rules=groups], table[rules=rows],
table[rules=cols], table[rules=all] {

border-style: none;
border-collapse: collapse;

}

table[frame=void] { border-style: hidden hidden hidden hidden; }
table[frame=above] { border-style: solid hidden hidden hidden; }
table[frame=below] { border-style: hidden hidden solid hidden; }
table[frame=hsides] { border-style: solid hidden solid hidden; }
table[frame=lhs] { border-style: hidden hidden hidden solid; }
table[frame=rhs] { border-style: hidden solid hidden hidden; }
table[frame=vsides] { border-style: hidden solid hidden solid; }
table[frame=box],
table[frame=border] { border-style: solid solid solid solid; }

680

table[rules=none] > tr > td, table[rules=none] > tr > th,
table[rules=none] > thead > tr > td, table[rules=none] > thead > tr > th,
table[rules=none] > tbody > tr > td, table[rules=none] > tbody > tr > th,
table[rules=none] > tfoot > tr > td, table[rules=none] > tfoot > tr > th,
table[rules=groups] > tr > td, table[rules=groups] > tr > th,
table[rules=groups] > thead > tr > td, table[rules=groups] > thead > tr > th,
table[rules=groups] > tbody > tr > td, table[rules=groups] > tbody > tr > th,
table[rules=groups] > tfoot > tr > td, table[rules=groups] > tfoot > tr > th,
table[rules=rows] > tr > td, table[rules=rows] > tr > th,
table[rules=rows] > thead > tr > td, table[rules=rows] > thead > tr > th,
table[rules=rows] > tbody > tr > td, table[rules=rows] > tbody > tr > th,
table[rules=rows] > tfoot > tr > td, table[rules=rows] > tfoot > tr > th {

border-style: none;
}

table[rules=groups] > colgroup, table[rules=groups] > thead,
table[rules=groups] > tbody, table[rules=groups] > tfoot {

border-style: solid;
}

table[rules=rows] > tr, table[rules=rows] > thead > tr,
table[rules=rows] > tbody > tr, table[rules=rows] > tfoot > tr {

border-style: solid;
}

table[rules=cols] > tr > td, table[rules=cols] > tr > th,
table[rules=cols] > thead > tr > td, table[rules=cols] > thead > tr > th,
table[rules=cols] > tbody > tr > td, table[rules=cols] > tbody > tr > th,
table[rules=cols] > tfoot > tr > td, table[rules=cols] > tfoot > tr > th {

border-style: none solid none solid;
}

table[rules=all] > tr > td, table[rules=all] > tr > th,
table[rules=all] > thead > tr > td, table[rules=all] > thead > tr > th,
table[rules=all] > tbody > tr > td, table[rules=all] > tbody > tr > th,
table[rules=all] > tfoot > tr > td, table[rules=all] > tfoot > tr > th {

border-style: solid;
}

table[border] > tr > td, table[border] > tr > th,
table[border] > thead > tr > td, table[border] > thead > tr > th,
table[border] > tbody > tr > td, table[border] > tbody > tr > th,
table[border] > tfoot > tr > td, table[border] > tfoot > tr > th {

border-width: 1px;
}

When rendering lip163 elements, user agents are expected to use the ordinal value of the lip163 element to render the
counter in the list item marker.

The tablep286 element's borderp701 attribute maps to the pixel length propertiesp672 'border-top-width', 'border-right-
width', 'border-bottom-width', 'border-left-width' on the element. If the attribute is present but parsing the attribute's
value using the rules for parsing non-negative integersp37 generates an error, a default value of 1px is expected to be
used for that property instead.

The wbrp192 element is expected to override the 'white-space' property and always provide a line-breaking opportunity.

The following rules are also expected to be in play, resetting certain properties to block inheritance by default.

@namespace url(http://www.w3.org/1999/xhtml);

table, input, select, option, optgroup, button, textarea, keygen {

12.2.7 Resetting rules for inherited properties

681

text-indent: initial;
}

In quirks modep79, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

table {
font-weight: initial;
font-style: initial;
font-variant: initial;
font-size: initial;
line-height: initial;
white-space: initial;
text-align: initial;

}

input { box-sizing: border-box; }

@namespace url(http://www.w3.org/1999/xhtml);

hr { color: gray; border-style: inset; border-width: 1px; }

The following rules are also expected to apply, as presentational hintsp672:

@namespace url(http://www.w3.org/1999/xhtml);

hr[align=left] { margin-left: 0; margin-right: auto; } /* case-insensitive */
hr[align=right] { margin-left: auto; margin-right: 0; } /* case-insensitive */
hr[align=center] { margin-left: auto; margin-right: auto; } /* case-insensitive */
hr[color], hr[noshade] { border-style: solid; }

If an hrp158 element has either a colorp700 attribute or a noshadep700 attribute, and furthermore also has a sizep700

attribute, and parsing that attribute's value using the rules for parsing non-negative integersp37 doesn't generate an
error, then the user agent is expected to use the parsed value divided by two as a pixel length for presentational
hintsp672 for the properties 'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' on the
element.

Otherwise, if an hrp158 element has neither a colorp700 attribute nor a noshadep700 attribute, but does have a sizep700

attribute, and parsing that attribute's value using the rules for parsing non-negative integersp37 doesn't generate an
error, then: if the parsed value is one, then the user agent is expected to use the attribute as a presentational hintp672

setting the element's 'border-bottom-width' to 0; otherwise, if the parsed value is greater than one, then the user
agent is expected to use the parsed value minus two as a pixel length for presentational hintsp672 for the 'height'
property on the element.

The widthp700 attribute on an hrp158 element maps to the dimension propertyp673 'width' on the element.

When an hrp158 element has a colorp700 attribute, its value is expected to be parsed using the rules for parsing a
legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hintp672 setting the element's 'color' property to the resulting color.

@namespace url(http://www.w3.org/1999/xhtml);

fieldset {
margin-left: 2px; margin-right: 2px;
border: groove 2px ThreeDFace;
padding: 0.35em 0.625em 0.75em;

}

12.2.8 The hrp158 element

12.2.9 The fieldsetp317 element

682

The fieldsetp317 element is expected to establish a new block formatting context.

The first legendp318 element child of a fieldsetp317 element, if any, is expected to be rendered over the top border
edge of the fieldsetp317 element. If the legendp318 element in question has an alignp700 attribute, and its value is an
ASCII case-insensitivep35 match for one of the strings in the first column of the following table, then the legendp318 is
expected to be rendered horizontally aligned over the border edge in the position given in the corresponding cell on
the same row in the second column. If the attribute is absent or has a value that doesn't match any of the cases in the
table, then the position is expected to be on the right if the 'direction' property on this element has a computed value
of 'rtl', and on the left otherwise.

Attribute value Alignment position

left On the left
right On the right
center In the middle

12.3 Replaced elements

The embedp217, iframep211, and videop225 elements are expected to be treated as replaced elements.

A canvasp251 element that representsp672 embedded contentp97 is expected to be treated as a replaced element. Other
canvasp251 elements are expected to be treated as ordinary elements in the rendering model.

An objectp220 element that representsp672 an image, plugin, or nested browsing contextp463 is expected to be treated
as a replaced element. Other objectp220 elements are expected to be treated as ordinary elements in the rendering
model.

An appletp701 element that representsp672 a pluginp29 is expected to be treated as a replaced element. Other
appletp701 elements are expected to be treated as ordinary elements in the rendering model.

The audiop228 element, when it is exposing a user interfacep248, is expected to be treated as a replaced element about
one line high, as wide as is necessary to expose the user agent's user interface features. When an audiop228 element is
not exposing a user interfacep248, the user agent is expected to hide it, irrespective of CSS rules.

Whether a videop225 element is exposing a user interfacep248 is not expected to affect the size of the rendering;
controls are expected to be overlaid with the page content without causing any layout changes, and are expected to
disappear when the user does not need them.

When a videop225 element represents a poster frame or frame of video, the poster frame or frame of video is expected
to be rendered at the largest size that maintains the aspect ratio of that poster frame or frame of video without being
taller or wider than the videop225 element itself, and is expected to be centered in the videop225 element.

Note: Resizing videop225 and canvasp251 elements does not interrupt video playback or clear the
canvas.

The following CSS rules are expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

iframe { border: 2px inset; }

When an imgp196 element or an inputp320 element when its typep321 attribute is in the Image Buttonp339 state
representsp672 an image, it is expected to be treated as a replaced element.

When an imgp196 element or an inputp320 element when its typep321 attribute is in the Image Buttonp339 state does not
representp672 an image, but the element already has intrinsic dimensions (e.g. from the dimension attributesp286 or CSS
rules), and either the user agent has reason to believe that the image will become availablep198 and be rendered in
due course or the Documentp33 is in quirks modep79, the element is expected to be treated as a replaced element
whose content is the text that the element represents, if any, optionally alongside an icon indicating that the image is

12.3.1 Embedded content

12.3.2 Images

683

being obtained. For inputp320 elements, the text is expected to appear button-like to indicate that the element is a
buttonp314.

When an imgp196 element representsp672 some text and the user agent does not expect this to change, the element is
expected to be treated as an inline element whose content is the text, optionally with an icon indicating that an image
is missing.

When an imgp196 element representsp672 nothing and the user agent does not expect this to change, the element is
expected to not be rendered at all.

When an imgp196 element might be a key part of the content, but neither the image nor any kind of alternative text is
available, and the user agent does not expect this to change, the element is expected to be treated as an inline
element whose content is an icon indicating that an image is missing.

When an inputp320 element whose typep321 attribute is in the Image Buttonp339 state does not representp672 an image
and the user agent does not expect this to change, the element is expected to be treated as a replaced element
consisting of a button whose content is the element's alternative text. The intrinsic dimensions of the button are
expected to be about one line in height and whatever width is necessary to render the text on one line.

The icons mentioned above are expected to be relatively small so as not to disrupt most text but be easily clickable. In
a visual environment, for instance, icons could be 16 pixels by 16 pixels square, or 1em by 1em if the images are
scalable. In an audio environment, the icon could be a short bleep. The icons are intended to indicate to the user that
they can be used to get to whatever options the UA provides for images, and, where appropriate, are expected to
provide access to the context menu that would have come up if the user interacted with the actual image.

The following CSS rules are expected to apply when the Documentp33 is in quirks modep79:

@namespace url(http://www.w3.org/1999/xhtml);

img[align=left] { margin-right: 3px; } /* case-insensitive */
img[align=right] { margin-left: 3px; } /* case-insensitive */

The following CSS rules are expected to apply as presentational hintsp672:

@namespace url(http://www.w3.org/1999/xhtml);

iframe[frameborder=0], iframe[frameborder=no] { border: none; } /* case-insensitive */

applet[align=left], embed[align=left], iframe[align=left],
img[align=left], input[type=image][align=left], object[align=left] { /* case-insensitive */

float: left;
}

applet[align=right], embed[align=right], iframe[align=right],
img[align=right], input[type=image][align=right], object[align=right] { /* case-insensitive
*/

float: right;
}

applet[align=top], embed[align=top], iframe[align=top],
img[align=top], input[type=image][align=top], object[align=top] { /* case-insensitive */

vertical-align: top;
}

applet[align=bottom], embed[align=bottom], iframe[align=bottom],
img[align=bottom], input[type=image][align=bottom], object[align=bottom],
applet[align=baseline], embed[align=baseline], iframe[align=baseline],
img[align=baseline], input[type=image][align=baseline], object[align=baseline] { /*
case-insensitive */

vertical-align: baseline;
}

12.3.3 Attributes for embedded content and images

684

applet[align=texttop], embed[align=texttop], iframe[align=texttop],
img[align=texttop], input[type=image][align=texttop], object[align=texttop] { /*
case-insensitive */

vertical-align: text-top;
}

applet[align=absmiddle], embed[align=absmiddle], iframe[align=absmiddle],
img[align=absmiddle], input[type=image][align=absmiddle], object[align=absmiddle],
applet[align=abscenter], embed[align=abscenter], iframe[align=abscenter],
img[align=abscenter], input[type=image][align=abscenter], object[align=abscenter] { /*
case-insensitive */

vertical-align: middle;
}

applet[align=bottom], embed[align=bottom], iframe[align=bottom],
img[align=bottom], input[type=image][align=bottom],
object[align=bottom] { /* case-insensitive */

vertical-align: bottom;
}

When an appletp701, embedp217, iframep211, imgp196, or objectp220 element, or an inputp320 element whose typep321

attribute is in the Image Buttonp339 state, has an align attribute whose value is an ASCII case-insensitivep35 match for
the string "center" or the string "middle", the user agent is expected to act as if the element's 'vertical-align' property
was set to a value that aligns the vertical middle of the element with the parent element's baseline.

The hspace attribute of appletp701, embedp217, iframep211, imgp196, or objectp220 elements, and inputp320 elements with
a typep321 attribute in the Image Buttonp339 state, maps to the dimension propertiesp673 'margin-left' and 'margin-right'
on the element.

The vspace attribute of appletp701, embedp217, iframep211, imgp196, or objectp220 elements, and inputp320 elements with
a typep321 attribute in the Image Buttonp339 state, maps to the dimension propertiesp673 'margin-top' and 'margin-
bottom' on the element.

When an imgp196 element, objectp220 element, or inputp320 element with a typep321 attribute in the Image Buttonp339

state is contained within a hyperlinkp404 and has a border attribute whose value, when parsed using the rules for
parsing non-negative integersp37, is found to be a number greater than zero, the user agent is expected to use the
parsed value for eight presentational hintsp672: four setting the parsed value as a pixel length for the element's
'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' properties, and four setting the
element's 'border-top-style', 'border-right-style', 'border-bottom-style', and 'border-left-style' properties to the value
'solid'.

The widthp286 and heightp286 attributes on appletp701, embedp217, iframep211, imgp196, objectp220 or videop225 elements,
and inputp320 elements with a typep321 attribute in the Image Buttonp339 state, map to the dimension propertiesp673

'width' and 'height' on the element respectively.

Shapes on an image mapp282 are expected to act, for the purpose of the CSS cascade, as elements independent of the
original areap280 element that happen to match the same style rules but inherit from the imgp196 or objectp220 element.

For the purposes of the rendering, only the 'cursor' property is expected to have any effect on the shape.

Thus, for example, if an areap280 element has a stylep91 attribute that sets the 'cursor' property to 'help', then
when the user designates that shape, the cursor would change to a Help cursor.

Similarly, if an areap280 element had a CSS rule that set its 'cursor' property to 'inherit' (or if no rule setting the
'cursor' property matched the element at all), the shape's cursor would be inherited from the imgp196 or
objectp220 element of the image mapp282, not from the parent of the areap280 element.

When a menup393 element's typep393 attribute is in the toolbarp393 state, the element is expected to be treated as a
replaced element with a height about two lines high and a width derived from the contents of the element.

12.3.4 Image maps

12.3.5 Toolbars

685

The element is expected to have, by default, the appearance of a toolbar on the user agent's platform. It is expected
to contain the menu that is builtp394 from the element.

12.4 Bindings

A number of elements have their rendering defined in terms of the 'binding' property. [BECSS]p738

The CSS snippets below set the 'binding' property to a user-agent-defined value, represented below by keywords like
button. The rules then described for these bindings are only expected to apply if the element's 'binding' property has
not been overridden (e.g. by the author) to have another value.

Exactly how the bindings are implemented is not specified by this specification. User agents are encouraged to make
their bindings set the 'appearance' CSS property appropriately to achieve platform-native appearances for widgets,
and are expected to implement any relevant animations, etc, that are appropriate for the platform. [CSSUI]p739

@namespace url(http://www.w3.org/1999/xhtml);

button { binding: button; }

When the button binding applies to a buttonp351 element, the element is expected to render as an 'inline-block' box
rendered as a button whose contents are the contents of the element.

@namespace url(http://www.w3.org/1999/xhtml);

details { binding: details; }

When the details binding applies to a detailsp387 element, the element is expected to render as a 'block' box with its
'padding-left' property set to '40px' for left-to-right elements (LTR-specificp672) and with its 'padding-right' property set
to '40px' for right-to-left elements. The element's shadow tree is expected to take the element's first child summaryp390

element, if any, and place it in a first 'block' box container, and then take the element's remaining descendants, if any,
and place them in a second 'block' box container.

The first container is expected to contain at least one line box, and that line box is expected to contain a disclosure
widget (typically a triangle), horizontally positioned within the left padding of the detailsp387 element. That widget is
expected to allow the user to request that the details be shown or hidden.

The second container is expected to have its 'overflow' property set to 'hidden'. When the detailsp387 element does
not have an openp388 attribute, this second container is expected to be removed from the rendering.

@namespace url(http://www.w3.org/1999/xhtml);

input { binding: input-textfield; }
input[type=password] { binding: input-password; } /* case-insensitive */
/* later rules override this for other values of type="" */

When the input-textfield binding applies to an inputp320 element whose typep321 attribute is in the Textp325, Searchp325,
Telephonep325, URLp326, or E-mailp327 state, the element is expected to render as an 'inline-block' box rendered as a text
field.

When the input-password binding applies, to an inputp320 element whose typep321 attribute is in the Passwordp327

state, the element is expected to render as an 'inline-block' box rendered as a text field whose contents are obscured.

12.4.1 Introduction

12.4.2 The buttonp351 element

12.4.3 The detailsp387 element

12.4.4 The inputp320 element as a text entry widget

686

If an inputp320 element whose typep321 attribute is in one of the above states has a sizep344 attribute, and parsing that
attribute's value using the rules for parsing non-negative integersp37 doesn't generate an error, then the user agent is
expected to use the attribute as a presentational hintp672 for the 'width' property on the element, with the value
obtained from applying the converting a character width to pixelsp687 algorithm to the value of the attribute.

If an inputp320 element whose typep321 attribute is in one of the above states does not have a sizep344 attribute, then
the user agent is expected to act as if it had a user-agent-level style sheet rule setting the 'width' property on the
element to the value obtained from applying the converting a character width to pixelsp687 algorithm to the number
20.

The converting a character width to pixels algorithm returns (size-1)×avg + max, where size is the character
width to convert, avg is the average character width of the primary font for the element for which the algorithm is
being run, in pixels, and max is the maximum character width of that same font, also in pixels. (The element's 'letter-
spacing' property does not affect the result.)

@namespace url(http://www.w3.org/1999/xhtml);

input[type=datetime] { binding: input-datetime; } /* case-insensitive */
input[type=date] { binding: input-date; } /* case-insensitive */
input[type=month] { binding: input-month; } /* case-insensitive */
input[type=week] { binding: input-week; } /* case-insensitive */
input[type=time] { binding: input-time; } /* case-insensitive */
input[type=datetime-local] { binding: input-datetime-local; } /* case-insensitive */
input[type=number] { binding: input-number; } /* case-insensitive */

When the input-datetime binding applies to an inputp320 element whose typep321 attribute is in the Date and Timep328

state, the element is expected to render as an 'inline-block' box depicting a Date and Time control.

When the input-date binding applies to an inputp320 element whose typep321 attribute is in the Datep329 state, the
element is expected to render as an 'inline-block' box depicting a Date control.

When the input-month binding applies to an inputp320 element whose typep321 attribute is in the Monthp330 state, the
element is expected to render as an 'inline-block' box depicting a Month control.

When the input-week binding applies to an inputp320 element whose typep321 attribute is in the Weekp330 state, the
element is expected to render as an 'inline-block' box depicting a Week control.

When the input-time binding applies to an inputp320 element whose typep321 attribute is in the Timep331 state, the
element is expected to render as an 'inline-block' box depicting a Time control.

When the input-datetime-local binding applies to an inputp320 element whose typep321 attribute is in the Local Date
and Timep332 state, the element is expected to render as an 'inline-block' box depicting a Local Date and Time control.

When the input-number binding applies to an inputp320 element whose typep321 attribute is in the Numberp333 state,
the element is expected to render as an 'inline-block' box depicting a Number control.

These controls are all expected to be about one line high, and about as wide as necessary to show the widest possible
value.

@namespace url(http://www.w3.org/1999/xhtml);

input[type=range] { binding: input-range; } /* case-insensitive */

When the input-range binding applies to an inputp320 element whose typep321 attribute is in the Rangep334 state, the
element is expected to render as an 'inline-block' box depicting a slider control.

When the control is wider than it is tall (or square), the control is expected to be a horizontal slider, with the lowest
value on the right if the 'direction' property on this element has a computed value of 'rtl', and on the left otherwise.
When the control is taller than it is wide, it is expected to be a vertical slider, with the lowest value on the bottom.

12.4.5 The inputp320 element as domain-specific widgets

12.4.6 The inputp320 element as a range control

687

Predefined suggested values (provided by the listp342 attribute) are expected to be shown as tick marks on the slider,
which the slider can snap to.

@namespace url(http://www.w3.org/1999/xhtml);

input[type=color] { binding: input-color; } /* case-insensitive */

When the input-color binding applies to an inputp320 element whose typep321 attribute is in the Colorp336 state, the
element is expected to render as an 'inline-block' box depicting a color well, which, when activated, provides the user
with a color picker (e.g. a color wheel or color palette) from which the color can be changed.

Predefined suggested values (provided by the listp342 attribute) are expected to be shown in the color picker
interface, not on the color well itself.

@namespace url(http://www.w3.org/1999/xhtml);

input[type=checkbox] { binding: input-checkbox; } /* case-insensitive */
input[type=radio] { binding: input-radio; } /* case-insensitive */

When the input-checkbox binding applies to an inputp320 element whose typep321 attribute is in the Checkboxp336

state, the element is expected to render as an 'inline-block' box containing a single check box control, with no label.

When the input-radio binding applies to an inputp320 element whose typep321 attribute is in the Radio Buttonp337 state,
the element is expected to render as an 'inline-block' box containing a single radio button control, with no label.

@namespace url(http://www.w3.org/1999/xhtml);

input[type=file] { binding: input-file; } /* case-insensitive */

When the input-file binding applies to an inputp320 element whose typep321 attribute is in the File Uploadp338 state, the
element is expected to render as an 'inline-block' box containing a span of text giving the filename(s) of the selected
filesp338, if any, followed by a button that, when activated, provides the user with a file picker from which the selection
can be changed.

@namespace url(http://www.w3.org/1999/xhtml);

input[type=submit], input[type=reset], input[type=button] { /* case-insensitive */
binding: input-button;

}

When the input-button binding applies to an inputp320 element whose typep321 attribute is in the Submit Buttonp339,
Reset Buttonp341, or Buttonp341 state, the element is expected to render as an 'inline-block' box rendered as a button,
about one line high, containing the contents of the element's valuep323 attribute, if any, or text derived from the
element's typep321 attribute in a user-agent-defined (and probably locale-specific) fashion, if not.

@namespace url(http://www.w3.org/1999/xhtml);

marquee {

12.4.7 The inputp320 element as a color well

12.4.8 The inputp320 element as a check box and radio button widgets

12.4.9 The inputp320 element as a file upload control

12.4.10 The inputp320 element as a button

12.4.11 The marqueep702 element

688

binding: marquee;
}

When the marquee binding applies to a marqueep702 element, while the element is turned onp702, the element is
expected to render in an animated fashion according to its attributes as follows:

If the element's behaviorp702 attribute is in the scrollp702 state
Slide the contents of the element in the direction described by the directionp703 attribute as defined below,
such that it begins off the start side of the marqueep702, and ends flush with the inner end side.

For example, if the directionp703 attribute is leftp703 (the default), then the contents would start such that
their left edge are off the side of the right edge of the marqueep702 's content area, and the contents would
then slide up to the point where the left edge of the contents are flush with the left inner edge of the
marqueep702 's content area.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp703. If
the element is still turned onp702 after this, then the user agent is expected to restart the animation.

If the element's behaviorp702 attribute is in the slidep702 state
Slide the contents of the element in the direction described by the directionp703 attribute as defined below,
such that it begins off the start side of the marqueep702, and ends off the end side of the marqueep702.

For example, if the directionp703 attribute is leftp703 (the default), then the contents would start such that
their left edge are off the side of the right edge of the marqueep702 's content area, and the contents would
then slide up to the point where the right edge of the contents are flush with the left inner edge of the
marqueep702 's content area.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp703. If
the element is still turned onp702 after this, then the user agent is expected to restart the animation.

If the element's behaviorp702 attribute is in the alternatep703 state
When the marquee current loop indexp703 is even (or zero), slide the contents of the element in the direction
described by the directionp703 attribute as defined below, such that it begins flush with the start side of the
marqueep702, and ends flush with the end side of the marqueep702.

When the marquee current loop indexp703 is odd, slide the contents of the element in the opposite direction than
that described by the directionp703 attribute as defined below, such that it begins flush with the end side of the
marqueep702, and ends flush with the start side of the marqueep702.

For example, if the directionp703 attribute is leftp703 (the default), then the contents would with their right
edge flush with the right inner edge of the marqueep702 's content area, and the contents would then slide
up to the point where the left edge of the contents are flush with the left inner edge of the marqueep702 's
content area.

Once the animation has ended, the user agent is expected to increment the marquee current loop indexp703. If
the element is still turned onp702 after this, then the user agent is expected to continue the animation.

The directionp703 attribute has the meanings described in the following table:

directionp703 attribute state Direction of animation Start edge End edge Opposite direction

leftp703 ← Right to left Right Left → Left to Right

rightp703 → Left to Right Left Right ← Right to left

upp703 ↑ Up (Bottom to Top) Bottom Top ↓ Down (Top to Bottom)

downp703 ↓ Down (Top to Bottom) Top Bottom ↑ Up (Bottom to Top)

In any case, the animation should proceed such that there is a delay given by the marquee scroll intervalp703 between
each frame, and such that the content moves at most the distance given by the marquee scroll distancep703 with each
frame.

When a marqueep702 element has a bgcolor attribute set, the value is expected to be parsed using the rules for
parsing a legacy color valuep51, and if that does not return an error, the user agent is expected to treat the attribute as
a presentational hintp672 setting the element's 'background-color' property to the resulting color.

The width and height attributes on a marqueep702 element map to the dimension propertiesp673 'width' and 'height' on
the element respectively.

689

The intrinsic height of a marqueep702 element with its directionp703 attribute in the upp703 or downp703 states is 200
CSS pixels.

The vspace attribute of a marqueep702 element maps to the dimension propertiesp673 'margin-top' and 'margin-bottom'
on the element. The hspace attribute of a marqueep702 element maps to the dimension propertiesp673 'margin-left' and
'margin-right' on the element.

The 'overflow' property on the marqueep702 element is expected to be ignored; overflow is expected to always be
hidden.

@namespace url(http://www.w3.org/1999/xhtml);

meter {
binding: meter;

}

When the meter binding applies to a meterp369 element, the element is expected to render as an 'inline-block' box with
a 'height' of '1em' and a 'width' of '5em', a 'vertical-align' of '-0.2em', and with its contents depicting a gauge.

When the element is wider than it is tall (or square), the depiction is expected to be of a horizontal gauge, with the
minimum value on the right if the 'direction' property on this element has a computed value of 'rtl', and on the left
otherwise. When the element is taller than it is wide, it is expected to depict a vertical gauge, with the minimum value
on the bottom.

User agents are expected to use a presentation consistent with platform conventions for gauges, if any.

Note: Requirements for what must be depicted in the gauge are included in the definition of the
meterp369 element.

@namespace url(http://www.w3.org/1999/xhtml);

progress {
binding: progress;

}

When the progress binding applies to a progressp367 element, the element is expected to render as an 'inline-block'
box with a 'height' of '1em' and a 'width' of '10em', a 'vertical-align' of '-0.2em', and with its contents depicting a
horizontal progress bar, with the start on the right and the end on the left if the 'direction' property on this element
has a computed value of 'rtl', and with the start on the left and the end on the right otherwise.

User agents are expected to use a presentation consistent with platform conventions for progress bars. In particular,
user agents are expected to use different presentations for determinate and indeterminate progress bars. User agents
are also expected to vary the presentation based on the dimensions of the element.

For example, on some platforms for showing indeterminate progress there is an asynchronous progress indicator
with square dimensions, which could be used when the element is square, and an indeterminate progress bar,
which could be used when the element is wide.

Note: Requirements for how to determine if the progress bar is determinate or indeterminate, and
what progress a determinate progress bar is to show, are included in the definition of the
progressp367 element.

@namespace url(http://www.w3.org/1999/xhtml);

select {

12.4.12 The meterp369 element

12.4.13 The progressp367 element

12.4.14 The selectp353 element

690

binding: select;
}

When the select binding applies to a selectp353 element whose multiplep354 attribute is present, the element is
expected to render as a multi-select list box.

When the select binding applies to a selectp353 element whose multiplep354 attribute is absent, and the element's
sizep354 attribute specifiesp37 a value greater than 1, the element is expected to render as a single-select list box.

When the element renders as a list box, it is expected to render as an 'inline-block' box whose 'height' is the height
necessary to contain as many rows for items as specifiedp37 by the element's sizep354 attribute, or four rows if the
attribute is absent, and whose 'width' is the width of the select's labelsp691 plus the width of a scrollbar.

When the select binding applies to a selectp353 element whose multiplep354 attribute is absent, and the element's
sizep354 attribute is either absent or specifiesp37 either no value (an error), or a value less than or equal to 1, the
element is expected to render as a one-line drop down box whose width is the width of the select's labelsp691.

In either case (list box or drop-down box), the element's items are expected to be the element's list of optionsp354, with
the element's optgroupp357 element children providing headers for groups of options where applicable.

The width of the select's labels is the wider of the width necessary to render the widest optgroupp357, and the
width necessary to render the widest optionp358 element in the element's list of optionsp354 (including its indent, if
any).

An optgroupp357 element is expected to be rendered by displaying the element's labelp358 attribute.

An optionp358 element is expected to be rendered by displaying the element's labelp359, indented under its
optgroupp357 element if it has one.

@namespace url(http://www.w3.org/1999/xhtml);

textarea { binding: textarea; }

When the textarea binding applies to a textareap360 element, the element is expected to render as an 'inline-block'
box rendered as a multiline text field.

If the element has a colsp362 attribute, and parsing that attribute's value using the rules for parsing non-negative
integersp37 doesn't generate an error, then the user agent is expected to use the attribute as a presentational hintp672

for the 'width' property on the element, with the value being the textarea effective widthp691 (as defined below).
Otherwise, the user agent is expected to act as if it had a user-agent-level style sheet rule setting the 'width' property
on the element to the textarea effective widthp691.

The textarea effective width of a textareap360 element is size×avg + sbw, where size is the element's character
widthp362, avg is the average character width of the primary font of the element, in CSS pixels, and sbw is the width of
a scroll bar, in CSS pixels. (The element's 'letter-spacing' property does not affect the result.)

If the element has a rowsp362 attribute, and parsing that attribute's value using the rules for parsing non-negative
integersp37 doesn't generate an error, then the user agent is expected to use the attribute as a presentational hintp672

for the 'height' property on the element, with the value being the textarea effective heightp691 (as defined below).
Otherwise, the user agent is expected to act as if it had a user-agent-level style sheet rule setting the 'height' property
on the element to the textarea effective heightp691.

The textarea effective height of a textareap360 element is the height in CSS pixels of the number of lines specified
the element's character heightp362, plus the height of a scrollbar in CSS pixels.

For historical reasons, if the element has a wrapp362 attribute whose value is an ASCII case-insensitivep35 match for the
string "off", then the user agent is expected to not wrap the rendered value; otherwise, the value of the control is
expected to be wrapped to the width of the control.

12.4.15 The textareap360 element

691

@namespace url(http://www.w3.org/1999/xhtml);

keygen { binding: keygen; }

When the keygen binding applies to a keygenp363 element, the element is expected to render as an 'inline-block' box
containing a user interface to configure the key pair to be generated.

@namespace url(http://www.w3.org/1999/xhtml);

time:empty { binding: time; }

When the time binding applies to a timep178 element, the element is expected to render as if it contained text
conveying the datep180 (if known), timep180 (if known), and time-zone offsetp180 (if known) represented by the element,
in the fashion most convenient for the user.

12.5 Frames and framesets

When an htmlp112 element's second child element is a framesetp704 element, the user agent is expected to render the
framesetp704 element as described below across the surface of the viewport, instead of applying the usual CSS
rendering rules.

When rendering a framesetp704 on a surface, the user agent is expected to use the following layout algorithm:

1. The cols and rows variables are lists of zero or more pairs consisting of a number and a unit, the unit being
one of percentage, relative, and absolute.

Use the rules for parsing a list of dimensionsp42 to parse the value of the element's cols attribute, if there is
one. Let cols be the result, or an empty list if there is no such attribute.

Use the rules for parsing a list of dimensionsp42 to parse the value of the element's rows attribute, if there is
one. Let rows be the result, or an empty list if there is no such attribute.

2. For any of the entries in cols or rows that have the number zero and the unit relative, change the entry's
number to one.

3. If cols has no entries, then add a single entry consisting of the value 1 and the unit relative to cols.

If rows has no entries, then add a single entry consisting of the value 1 and the unit relative to rows.

4. Invoke the algorithm defined below to convert a list of dimensions to a list of pixel valuesp693 using cols as
the input list, and the width of the surface that the framesetp704 is being rendered into, in CSS pixels, as the
input dimension. Let sized cols be the resulting list.

Invoke the algorithm defined below to convert a list of dimensions to a list of pixel valuesp693 using rows as
the input list, and the height of the surface that the framesetp704 is being rendered into, in CSS pixels, as the
input dimension. Let sized rows be the resulting list.

5. Split the surface into a grid of w×h rectangles, where w is the number of entries in sized cols and h is the
number of entries in sized rows.

Size the columns so that each column in the grid is as many CSS pixels wide as the corresponding entry in
the sized cols list.

Size the rows so that each row in the grid is as many CSS pixels high as the corresponding entry in the sized
rows list.

6. Let children be the list of framep705 and framesetp704 elements that are children of the framesetp704 element
for which the algorithm was invoked.

7. For each row of the grid of rectangles created in the previous step, from top to bottom, run these substeps:

1. For each rectangle in the row, from left to right, run these substeps:

12.4.16 The keygenp363 element

12.4.17 The timep178 element

692

1. If there are any elements left in children, take the first element in the list, and assign it
to the rectangle.

If this is a framesetp704 element, then recurse the entire framesetp704 layout algorithm
for that framesetp704 element, with the rectangle as the surface.

Otherwise, it is a framep705 element; create a nested browsing contextp463 sized to fit the
rectangle.

2. If there are any elements left in children, remove the first element from children.

8. If the framesetp704 element has a borderp693, draw an outer set of borders around the rectangles, using the
element's frame border colorp693.

For each rectangle, if there is an element assigned to that rectangle, and that element has a borderp693,
draw an inner set of borders around that rectangle, using the element's frame border colorp693.

For each (visible) border that does not abut a rectangle that is assigned a framep705 element with a noresize
attribute (including rectangles in further nested framesetp704 elements), the user agent is expected to allow
the user to move the border, resizing the rectangles within, keeping the proportions of any nested
framesetp704 grids.

A framesetp704 or framep705 element has a border if the following algorithm returns true:

1. If the element has a frameborder attribute whose value is not the empty string and whose first
character is either a U+0031 DIGIT ONE (1) character, a U+0079 LATIN SMALL LETTER Y character
(y), or a U+0059 LATIN CAPITAL LETTER Y character (Y), then return true.

2. Otherwise, if the element has a frameborder attribute, return false.

3. Otherwise, if the element has a parent element that is a framesetp704 element, then return true if
that element has a borderp693, and false if it does not.

4. Otherwise, return true.

The frame border color of a framesetp704 or framep705 element is the color obtained from the following
algorithm:

1. If the element has a bordercolor attribute, and applying the rules for parsing a legacy color
valuep51 to that attribute's value does not result in an error, then return the color so obtained.

2. Otherwise, if the element has a parent element that is a framesetp704 element, then the frame
border colorp693 of that element.

3. Otherwise, return gray.

The algorithm to convert a list of dimensions to a list of pixel values consists of the following steps:

1. Let input list be the list of numbers and units passed to the algorithm.

Let output list be a list of numbers the same length as input list, all zero.

Entries in output list correspond to the entries in input list that have the same position.

2. Let input dimension be the size passed to the algorithm.

3. Let count percentage be the number of entries in input list whose unit is percentage.

Let total percentage be the sum of all the numbers in input list whose unit is percentage.

Let count relative be the number of entries in input list whose unit is relative.

Let total relative be the sum of all the numbers in input list whose unit is relative.

Let count absolute be the number of entries in input list whose unit is absolute.

Let total absolute be the sum of all the numbers in input list whose unit is absolute.

Let remaining space be the value of input dimension.

693

4. If total absolute is greater than remaining space, then for each entry in input list whose unit is absolute, set
the corresponding value in output list to the number of the entry in input list multiplied by remaining space
and divided by total absolute. Then, set remaining space to zero.

Otherwise, for each entry in input list whose unit is absolute, set the corresponding value in output list to the
number of the entry in input list. Then, decrement remaining space by total absolute.

5. If total percentage multiplied by the input dimension and divided by 100 is greater than remaining space,
then for each entry in input list whose unit is percentage, set the corresponding value in output list to the
number of the entry in input list multiplied by remaining space and divided by total percentage. Then, set
remaining space to zero.

Otherwise, for each entry in input list whose unit is percentage, set the corresponding value in output list to
the number of the entry in input list multiplied by the input dimension and divided by 100. Then, decrement
remaining space by total percentage multiplied by the input dimension and divided by 100.

6. For each entry in input list whose unit is relative, set the corresponding value in output list to the number of
the entry in input list multiplied by remaining space and divided by total relative.

7. Return output list.

User agents working with integer values for frame widths (as opposed to user agents that can lay frames out with
subpixel accuracy) are expected to distribute the remainder first to the last entry whose unit is relative, then equally
(not proportionally) to each entry whose unit is percentage, then equally (not proportionally) to each entry whose unit
is absolute, and finally, failing all else, to the last entry.

12.6 Interactive media

User agents are expected to allow the user to control aspects of hyperlinkp404 activation and form submissionp380, such
as which browsing contextp463 is to be used for the subsequent navigationp484.

User agents are expected to allow users to discover the destination of hyperlinksp404 and of formsp314 before triggering
their navigationp484.

User agents are expected to inform the user of whether a hyperlinkp404 includes hyperlink auditingp405, and to let them
know at a minimum which domains will be contacted as part of such auditing.

User agents are expected to allow users to navigatep484 browsing contextsp463 to the resources indicatedp55 by the
cite attributes on qp175, blockquotep159, sectionp140, articlep144, insp193, and delp194 elements.

User agents are expected to surface hyperlinksp404 created by linkp115 elements in their user interface.

Note: While linkp115 elements that create hyperlinksp404 will match the ':link' or ':visited' pseudo-
classes, will react to clicks if visible, and so forth, this does not extend to any browser interface
constructs that expose those same links. Activating a link through the browser's interface, rather
than in the page itself, does not trigger clickp33 events and the like.

Given an element (e.g. the element designated by the mouse cursor), if the element, or one of its ancestors, has a
titlep89 attribute, and the nearest such attribute has a value that is not the empty string, it is expected that the user
agent will expose the contents of that attribute as a tooltip.

User agents are encouraged to make it possible to view tooltips without the use of a pointing device, since not all
users are able to use pointing devices.

U+000A LINE FEED (LF) characters are expected to cause line breaks in the tooltip.

The current text editing caret (the one at the caret positionp547 in a focused editing hostp547) is expected to act like an
inline replaced element with the vertical dimensions of the caret and with zero width for the purposes of the CSS
rendering model.

12.6.1 Links, forms, and navigation

12.6.2 The titlep89 attribute

12.6.3 Editing hosts

694

Note: This means that even an empty block can have the caret inside it, and that when the caret
is in such an element, it prevents margins from collapsing through the element.

12.7 Print media

User agents are expected to allow the user to request the opportunity to obtain a physical form (or a representation
of a physical form) of a Documentp33. For example, selecting the option to print a page or convert it to PDF format.

When the user actually obtains a physical formp695 (or a representation of a physical form) of a Documentp33, the user
agent is expected to create a new rendering of the Documentp33 for the print media.

695

13 Obsolete features

13.1 Obsolete but conforming features

Features listed in this section will trigger warnings in conformance checkers.

Authors should not specify an http-equivp122 attribute in the Content Languagep122 state on a metap119 element. The
langp89 attribute should be used instead.

Authors should not specify a borderp700 attribute on an imgp196 element. If the attribute is present, its value must be
the string "0". CSS should be used instead.

Authors should not specify a languagep699 attribute on a scriptp129 element. If the attribute is present, its value must
be an ASCII case-insensitivep35 match for the string "JavaScript" and either the typep130 attribute must be omitted or
its value must be an ASCII case-insensitivep35 match for the string "text/javascript". The attribute should be entirely
omitted instead (with the value "JavaScript", it has no effect), or replaced with use of the typep130 attribute.

Authors should not specify the namep698 attribute on ap169 elements. If the attribute is present, its value must not be the
empty string and must neither be equal to the value of any of the IDsp89 in the element's home subtreep29 other than
the element's own IDp89, if any, nor be equal to the value of any of the other namep698 attributes on ap169 elements in
the element's home subtreep29. If this attribute is present and the element has an IDp89, then the attribute's value
must be equal to the element's IDp89. In earlier versions of the language, this attribute was intended as a way to
specify possible targets for fragment identifiers in URLsp54. The idp89 attribute should be used instead.

Note: In the HTML syntaxp577, specifying a DOCTYPEp577 that is an obsolete permitted DOCTYPEp578

will also trigger a warning.

Note: The summaryp290 attribute, defined in the tablep286 section, will also trigger a warning.

To ease the transition from HTML4 Transitional documents to the language defined in this specification, and to
discourage certain features that are only allowed in very few circumstances, conformance checkers are required to
warn the user when the following features are used in a document. These are generally old obsolete features that have
no effect, and are allowed only to distinguish between likely mistakes (regular conformance errors) and mere vestigial
markup or unusual and discouraged practices (these warnings).

The following features must be categorized as described above:

• The presence of an obsolete permitted DOCTYPEp578 in an HTML documentp75.

• The presence of a metap119 element with an http-equivp122 attribute in the Content Languagep122 state.

• The presence of a borderp700 attribute on an imgp196 element if its value is the string "0".

• The presence of a languagep699 attribute on a scriptp129 element if its value is an ASCII case-insensitivep35

match for the string "JavaScript" and if there is no typep130 attribute or there is and its value is an ASCII
case-insensitivep35 match for the string "text/javascript".

• The presence of a namep698 attribute on an ap169 element, if its value is not the empty string.

• The presence of a summaryp290 attribute on a tablep286 element.

Conformance checkers must distinguish between pages that have no conformance errors and have none of these
obsolete features, and pages that have no conformance errors but do have some of these obsolete features.

For example, a validator could report some pages as "Valid HTML" and others as "Valid HTML with warnings".

13.2 Non-conforming features

Elements in the following list are entirely obsolete, and must not be used by authors:

appletp701

Use embedp217 or objectp220 instead.

13.1.1 Warnings for obsolete but conforming features

696

acronym
Use abbrp177 instead.

bgsound
Use audiop228 instead.

dir
Use ulp162 instead.

framep705

framesetp704

noframes
Either use iframep211 and CSS instead, or use server-side includes to generate complete pages with the various
invariant parts merged in.

isindex
Use an explicit formp314 and text fieldp325 combination instead.

listing
xmp

Use prep158 and codep181 instead.

nextid
Use GUIDs instead.

noembed
Use objectp220 instead of embedp217 when fallback is necessary.

plaintext
Use the "text/plain" MIME typep28 instead.

rb
Providing the ruby base directly inside the rubyp188 element is sufficient; the rbp697 element is unnecessary. Omit
it altogether.

basefont
big
blink
center
font
marqueep702

multicol
nobr
s
spacer
strike
tt
u

Use appropriate elements and/or CSS instead.

For the sp697 and strikep697 elements, if they are marking up a removal from the element, consider using the
delp194 element instead.

Where the ttp697 element would have been used for marking up keyboard input, consider the kbdp183 element; for
variables, consider the varp182 element; for computer code, consider the codep181 element; and for computer
output, consider the sampp182 element.

Similarly, if the up697 element is being used to indicate emphasis, consider using the emp171 element; if it is being
used for marking up keywords, consider the bp185 element; and if it is being used for highlighting text for
reference purposes, consider the markp186 element.

See also the text-level semantics usage summaryp192 for more suggestions with examples.

697

The following attributes are obsolete (though the elements are still part of the language), and must not be used by
authors:

charset on ap169 elements
charset on linkp115 elements

Use an HTTP Content-Type header on the linked resource instead.

coords on ap169 elements
shape on ap169 elements

Use areap280 instead of ap169 for image maps.

methods on ap169 elements
methods on linkp115 elements

Use the HTTP OPTIONS feature instead.

name on ap169 elements (except as noted in the previous section)
name on embedp217 elements
name on imgp196 elements
name on optionp358 elements

Use the idp89 attribute instead.

rev on ap169 elements
rev on linkp115 elements

Use the relp404 attribute instead, with an opposite term. (For example, instead of rev="made", use
rel="author".)

urn on ap169 elements
urn on linkp115 elements

Specify the preferred persistent identifier using the hrefp404 attribute instead.

nohref on areap280 elements
Omitting the hrefp404 attribute is sufficient; the nohrefp698 attribute is unnecessary. Omit it altogether.

profile on headp112 elements
When used for declaring which metap119 terms are used in the document, unnecessary; omit it altogether, and
register the namesp121.

When used for triggering specific user agent behaviors: use a linkp115 element instead.

version on htmlp112 elements
Unnecessary. Omit it altogether.

usemap on inputp320 elements
Use imgp196 instead of inputp320 for image maps.

longdesc on iframep211 elements
longdesc on imgp196 elements

Use a regular ap169 element to link to the description.

target on linkp115 elements
Unnecessary. Omit it altogether.

scheme on metap119 elements
Use only one scheme per field, or make the scheme declaration part of the value.

archive on objectp220 elements
classid on objectp220 elements
code on objectp220 elements
codebase on objectp220 elements
codetype on objectp220 elements

Use the datap220 and typep220 attributes to invoke pluginsp29. To set parameters with these names in particular,
the paramp224 element can be used.

698

declare on objectp220 elements
Repeat the objectp220 element completely each time the resource is to be reused.

standby on objectp220 elements
Optimize the linked resource so that it loads quickly or, at least, incrementally.

type on paramp224 elements
valuetype on paramp224 elements

Use the namep225 and valuep225 attributes without declaring value types.

language on scriptp129 elements (except as noted in the previous section)
Use the typep130 attribute instead.

event on scriptp129 elements
for on scriptp129 elements

Use DOM Events mechanisms to register event listeners. [DOMEVENTS]p739

datapagesize on tablep286 elements
Unnecessary. Omit it altogether.

abbr on tdp298 and thp298 elements
Use text that begins in an unambiguous and terse manner, and include any more elaborate text after that.

axis on tdp298 and thp298 elements
Use the scopep298 attribute on the relevant thp298.

datasrc on ap169, appletp701, buttonp351, divp168, framep705, iframep211, imgp196, inputp320, labelp319, legendp318,
marqueep702, objectp220, optionp358, selectp353, spanp191, tablep286, and textareap360 elements
datafld on ap169, appletp701, buttonp351, divp168, fieldsetp317, framep705, iframep211, imgp196, inputp320, labelp319,
legendp318, marqueep702, objectp220, paramp224, selectp353, spanp191, and textareap360 elements
dataformatas on buttonp351, divp168, inputp320, labelp319, legendp318, marqueep702, objectp220, optionp358,
selectp353, spanp191, tablep286

Use script and a mechanism such as XMLHttpRequest to populate the page dynamically. [XHR]p743

699

alink on bodyp138 elements
bgcolor on bodyp138 elements
link on bodyp138 elements
marginbottom on bodyp138 elements
marginheight on bodyp138 elements
marginleft on bodyp138 elements
marginright on bodyp138 elements
marginheight on bodyp138 elements
marginwidth on bodyp138 elements
text on bodyp138 elements
vlink on bodyp138 elements
clear on brp191 elements
align on captionp292 elements
align on colp294 elements
char on colp294 elements
charoff on colp294 elements
valign on colp294 elements
width on colp294 elements
align on divp168 elements
compact on dlp164 elements
align on embedp217 elements
hspace on embedp217 elements
vspace on embedp217 elements
align on hrp158 elements
color on hrp158 elements
noshade on hrp158 elements
size on hrp158 elements
width on hrp158 elements
align on h1p147—h6p147 elements
align on iframep211 elements
allowtransparency on iframep211 elements
frameborder on iframep211 elements
hspace on iframep211 elements
marginheight on iframep211 elements
marginwidth on iframep211 elements
scrolling on iframep211 elements
vspace on iframep211 elements
align on inputp320 elements
hspace on inputp320 elements
vspace on inputp320 elements
align on imgp196 elements
border on imgp196 elements (except as noted in the previous section)
hspace on imgp196 elements
vspace on imgp196 elements
align on legendp318 elements
type on lip163 elements
compact on menup393 elements
align on objectp220 elements
border on objectp220 elements
hspace on objectp220 elements
vspace on objectp220 elements
compact on olp161 elements
type on olp161 elements
align on pp157 elements

700

width on prep158 elements
align on tablep286 elements
bgcolor on tablep286 elements
border on tablep286 elements
cellpadding on tablep286 elements
cellspacing on tablep286 elements
frame on tablep286 elements
rules on tablep286 elements
width on tablep286 elements
align on tbodyp294, theadp295, and tfootp296 elements
char on tbodyp294, theadp295, and tfootp296 elements
charoff on tbodyp294, theadp295, and tfootp296 elements
valign on tbodyp294, theadp295, and tfootp296 elements
align on tdp298 and thp298 elements
bgcolor on tdp298 and thp298 elements
char on tdp298 and thp298 elements
charoff on tdp298 and thp298 elements
height on tdp298 and thp298 elements
nowrap on tdp298 and thp298 elements
valign on tdp298 and thp298 elements
width on tdp298 and thp298 elements
align on trp296 elements
bgcolor on trp296 elements
char on trp296 elements
charoff on trp296 elements
valign on trp296 elements
compact on ulp162 elements
type on ulp162 elements
background on bodyp138, tablep286, theadp295, tbodyp294, tfootp296, trp296, tdp298, and thp298 elements

Use CSS instead.

13.3 Requirements for implementations

The appletp701 element is a Java-specific variant of the embedp217 element. The appletp701 element is now obsoleted so
that all extension frameworks (Java, .NET, Flash, etc) are handled in a consistent manner.

When the element is still in the stack of open elementsp594 of an HTML parserp584 or XML parserp669, and when the
element is not in a Documentp29, and when the element's document is not fully activep464, and when the element's
Documentp33 's browsing contextp463 had its sandboxed plugins browsing context flagp214 when that Documentp33 was
created, and when the element's Documentp33 was parsed from a resource whose sniffed typep61 as determined during
navigationp484 is text/html-sandboxedp716, and when the element has an ancestor media elementp231, and when the
element has an ancestor objectp220 element that is not showing its fallback contentp97, and when no Java Language
runtime pluginp29 is available, and when one is available but it is disabled, the element representsp672 its contents.

Otherwise, the user agent should instantiate a Java Language runtime pluginp29, and should pass the names and
values of all the attributes on the element, in the order they were added to the element, with the attributes added by
the parser being ordered in source order, and then a parameter named "PARAM" whose value is null, and then all the
names and values of parametersp225 given by paramp224 elements that are children of the appletp701 element, in tree
orderp29, to the pluginp29 used. If the pluginp29 supports a scriptable interface, the HTMLAppletElementp702 object
representing the element should expose that interface. The appletp701 element representsp672 the pluginp29.

Note: The appletp701 element is unaffected by the CSS 'display' property. The Java Language
runtime is instantiated even if the element is hidden with a 'display:none' CSS style.

The appletp701 element must implement the HTMLAppletElementp702 interface.

13.3.1 The applet element

701

interface HTMLAppletElement : HTMLElement {
attribute DOMString align;
attribute DOMString alt;
attribute DOMString archive;
attribute DOMString code;
attribute DOMString codeBase;
attribute DOMString height;
attribute unsigned long hspace;
attribute DOMString name;
attribute DOMString _object; // the underscore is not part of the identifier
attribute unsigned long vspace;
attribute DOMString width;

};

The align, alt, archive, code, height, hspace, name, object, vspace, and width IDL attributes must reflectp61 the
respective content attributes of the same name.

The codeBase IDL attribute must reflectp61 the codebase content attribute.

The marqueep702 element is a presentational element that animates content. CSS transitions and animations are a
more appropriate mechanism.

The task sourcep517 for tasks mentioned in this section is the DOM manipulation task sourcep518.

The marqueep702 element must implement the HTMLMarqueeElementp702 interface.

interface HTMLMarqueeElement : HTMLElement {
attribute DOMString behavior;
attribute DOMString bgColor;
attribute DOMString direction;
attribute DOMString height;
attribute unsigned long hspace;
attribute long loop;
attribute unsigned long scrollAmount;
attribute unsigned long scrollDelay;
attribute DOMString trueSpeed;
attribute unsigned long vspace;
attribute DOMString width;

attribute Function onbounce;
attribute Function onfinish;
attribute Function onstart;

void start();
void stop();

};

A marqueep702 element can be turned on or turned off. When it is created, it is turned onp702.

When the start() method is called, the marqueep702 element must be turned onp702.

When the stop() method is called, the marqueep702 element must be turned offp702.

When a marqueep702 element is created, the user agent must queue a taskp517 to fire a simple eventp523 named start
at the element.

The behavior content attribute on marqueep702 elements is an enumerated attributep37 with the following keywords (all
non-conforming):

Keyword State

scroll scroll
slide slide

13.3.2 The marquee element

702

Keyword State
alternate alternate

The missing value default is the scrollp702 state.

The direction content attribute on marqueep702 elements is an enumerated attributep37 with the following keywords
(all non-conforming):

Keyword State

left left
right right
up up
down down

The missing value default is the leftp703 state.

The truespeed content attribute on marqueep702 elements is an enumerated attributep37 with the following keywords
(all non-conforming):

Keyword State

true true
false false

The missing value default is the falsep703 state.

A marqueep702 element has a marquee scroll interval, which is obtained as follows:

1. If the element has a scrolldelay attribute, and parsing its value using the rules for parsing non-negative
integersp37 does not return an error, then let delay be the parsed value. Otherwise, let delay be 85.

2. If the element does not have a truespeedp703 attribute, or if it does but that attribute is in the falsep703 state,
and the delay value is less than 60, then let delay be 60 instead.

3. The marquee scroll intervalp703 is delay, interpreted in milliseconds.

A marqueep702 element has a marquee scroll distance, which, if the element has a scrollamount attribute, and
parsing its value using the rules for parsing non-negative integersp37 does not return an error, is the parsed value
interpreted in CSS pixels, and otherwise is 6 CSS pixels.

A marqueep702 element has a marquee loop count, which, if the element has a loop attribute, and parsing its value
using the rules for parsing integersp38 does not return an error or a number less than 1, is the parsed value, and
otherwise is −1.

The loop IDL attribute, on getting, must return the element's marquee loop countp703; and on setting, if the new value
is different than the element's marquee loop countp703 and either greater than zero or equal to −1, must set the
element's loop content attribute (adding it if necessary) to the valid integerp38 that represents the new value. (Other
values are ignored.)

A marqueep702 element also has a marquee current loop index, which is zero when the element is created.

The rendering layer will occasionally increment the marquee current loop index, which must cause the following
steps to be run:

1. If the marquee loop countp703 is −1, then abort these steps.

2. Increment the marquee current loop indexp703 by one.

3. If the marquee current loop indexp703 is now equal to or greater than the element's marquee loop countp703,
turn offp702 the marqueep702 element and queue a taskp517 to fire a simple eventp523 named finish at the
marqueep702 element.

Otherwise, if the behaviorp702 attribute is in the alternatep703 state, then queue a taskp517 to fire a simple
eventp523 named bounce at the marqueep702 element.

703

Otherwise, queue a taskp517 to fire a simple eventp523 named start at the marqueep702 element.

The following are the event handlersp519 (and their corresponding event handler event typesp521) that must be
supported, as content and IDL attributes, by marqueep702 elements:

Event handlerp519 Event handler event typep521

onbounce bounce

onfinish finish

onstart start

The behavior, direction, height, hspace, vspace, and width IDL attributes must reflectp61 the respective content
attributes of the same name.

The bgColor IDL attribute must reflectp61 the bgcolor content attribute.

The scrollAmount IDL attribute must reflectp61 the scrollamount content attribute. The default value is 6.

The scrollDelay IDL attribute must reflectp61 the scrolldelay content attribute. The default value is 85.

The trueSpeed IDL attribute must reflectp61 the truespeedp703 content attribute.

The frameset element acts as the body elementp81 in documents that use frames.

The framesetp704 element must implement the HTMLFrameSetElementp704 interface.

interface HTMLFrameSetElement : HTMLElement {
attribute DOMString cols;
attribute DOMString rows;
attribute Function onafterprint;
attribute Function onbeforeprint;
attribute Function onbeforeunload;
attribute Function onblur;
attribute Function onerror;
attribute Function onfocus;
attribute Function onhashchange;
attribute Function onload;
attribute Function onmessage;
attribute Function onoffline;
attribute Function ononline;
attribute Function onpagehide;
attribute Function onpageshow;
attribute Function onpopstate;
attribute Function onredo;
attribute Function onresize;
attribute Function onstorage;
attribute Function onundo;
attribute Function onunload;

};

The cols and rows IDL attributes of the framesetp704 element must reflectp61 the respective content attributes of the
same name.

The framesetp704 element must support the following event handler content attributesp520 exposing the event
handlersp519 of the Windowp467 object:

• onafterprintp523

• onbeforeprintp523

• onbeforeunloadp523

• onblurp523

• onerrorp523

• onfocusp523

• onhashchangep523

13.3.3 Frames

704

• onloadp523

• onmessagep523

• onofflinep523

• ononlinep523

• onpagehidep523

• onpageshowp523

• onpopstatep523

• onredop523

• onresizep523

• onstoragep523

• onundop523

• onunloadp523

The DOM interface also exposes event handler IDL attributesp520 that mirror those on the Windowp467 element.

The onblurp523, onerrorp523, onfocusp523, and onloadp523 event handler IDL attributesp520 of the Windowp467 object,
exposed on the framesetp704 element, shadow the generic event handler IDL attributesp520 with the same names
normally supported by HTML elementsp28.

The frame element defines a nested browsing contextp463 similar to the iframep211 element, but rendered within a
framesetp704 element.

When the browsing context is created, if a src attribute is present, the user agent must resolvep55 the value of that
attribute, relative to the element, and if that is successful, must then navigatep484 the element's browsing context to
the resulting absolute URLp55, with replacement enabledp492, and with the framep705 element's document's browsing
contextp463 as the source browsing contextp484.

Whenever the src attribute is set, the user agent must resolvep55 the value of that attribute, relative to the element,
and if that is successful, the nested browsing contextp463 must be navigatedp484 to the resulting absolute URLp55, with
the framep705 element's document's browsing contextp463 as the source browsing contextp484.

When the browsing context is created, if a name attribute is present, the browsing context namep466 must be set to the
value of this attribute; otherwise, the browsing context namep466 must be set to the empty string.

Whenever the name attribute is set, the nested browsing contextp463 's namep466 must be changed to the new value. If
the attribute is removed, the browsing context namep466 must be set to the empty string.

When content loads in a framep705, after any load events are fired within the content itself, the user agent must queue
a taskp517 to fire a simple eventp523 named load at the framep705 element. When content fails to load (e.g. due to a
network error), then the user agent must queue a taskp517 to fire a simple eventp523 named error at the element
instead.

The task sourcep517 for the tasksp517 above is the DOM manipulation task sourcep518.

When there is an active parserp80 in the framep705, and when anything in the framep705 is delaying the load eventp653 of
the framep705 's browsing contextp463 's active documentp463, the framep705 must delay the load eventp653 of its
document.

The framep705 element must implement the HTMLFrameElementp705 interface.

interface HTMLFrameElement : HTMLElement {
attribute DOMString frameBorder;
attribute DOMString longDesc;
attribute DOMString marginHeight;
attribute DOMString marginWidth;
attribute DOMString name;
attribute boolean noResize;
attribute DOMString scrolling;
attribute DOMString src;

readonly attribute Document contentDocument;
};

The name, scrolling, and src IDL attributes of the framep705 element must reflectp61 the respective content attributes
of the same name.

The frameBorder IDL attribute of the framep705 element must reflectp61 the element's frameborder content attribute.

705

The longDesc IDL attribute of the framep705 element must reflectp61 the element's longdesc content attribute.

The marginHeight IDL attribute of the framep705 element must reflectp61 the element's marginheight content
attribute.

The marginWidth IDL attribute of the framep705 element must reflectp61 the element's marginwidth content attribute.

The noResize IDL attribute of the framep705 element must reflectp61 the element's noresize content attribute.

The contentDocument IDL attribute of the framep705 element must return the Documentp33 object of the active
documentp463 of the framep705 element's nested browsing contextp463.

User agents must treat acronymp697 elements in a manner equivalent to abbrp177 elements.

[Supplemental]
interface HTMLAnchorElement {

attribute DOMString coords;
attribute DOMString charset;
attribute DOMString name;
attribute DOMString rev;
attribute DOMString shape;

};

The coords, charset, name, rev, and shape IDL attributes of the ap169 element must reflectp61 the respective content
attributes of the same name.

[Supplemental]
interface HTMLAreaElement {

attribute boolean noHref;
};

The noHref IDL attribute of the areap280 element must reflectp61 the element's nohrefp698 content attribute.

The basefontp697 element must implement the HTMLBaseFontElementp706 interface.

interface HTMLBaseFontElement : HTMLElement {
attribute DOMString color;
attribute DOMString face;
attribute long size;

};

The color, face, and size IDL attributes of the basefontp697 element must reflectp61 the respective content attributes
of the same name.

[Supplemental]
interface HTMLBodyElement {

attribute DOMString text;
attribute DOMString bgColor;
attribute DOMString background;
attribute DOMString link;
attribute DOMString vLink;
attribute DOMString aLink;

};

The text IDL attribute of the bodyp138 element must reflectp61 the element's textp700 content attribute.

The bgColor IDL attribute of the bodyp138 element must reflectp61 the element's bgcolorp700 content attribute.

13.3.4 Other elements, attributes and APIs

706

The background IDL attribute of the bodyp138 element must reflectp61 the element's backgroundp701 content attribute.
(The backgroundp701 content is not defined to contain a URLp54, despite rules regarding its handling in the rendering
section above.)

The link IDL attribute of the bodyp138 element must reflectp61 the element's linkp700 content attribute.

The aLink IDL attribute of the bodyp138 element must reflectp61 the element's alinkp700 content attribute.

The vLink IDL attribute of the bodyp138 element must reflectp61 the element's vlinkp700 content attribute.

[Supplemental]
interface HTMLBRElement {

attribute DOMString clear;
};

The clear IDL attribute of the brp191 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLTableCaptionElement {

attribute DOMString align;
};

The align IDL attribute of the captionp292 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLTableColElement {

attribute DOMString align;
attribute DOMString ch;
attribute DOMString chOff;
attribute DOMString vAlign;
attribute DOMString width;

};

The align and width IDL attributes of the colp294 element must reflectp61 the respective content attributes of the
same name.

The ch IDL attribute of the colp294 element must reflectp61 the element's charp700 content attribute.

The chOff IDL attribute of the colp294 element must reflectp61 the element's charoffp700 content attribute.

The vAlign IDL attribute of the colp294 element must reflectp61 the element's valignp700 content attribute.

User agents must treat dirp697 elements in a manner equivalent to ulp162 elements.

The dirp697 element must implement the HTMLDirectoryElementp707 interface.

interface HTMLDirectoryElement : HTMLElement {
attribute boolean compact;

};

The compact IDL attribute of the dirp697 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLDivElement {

attribute DOMString align;
};

The align IDL attribute of the divp168 element must reflectp61 the content attribute of the same name.

707

[Supplemental]
interface HTMLDListElement {

attribute boolean compact;
};

The compact IDL attribute of the dlp164 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLEmbedElement {

attribute DOMString align;
attribute DOMString name;

};

The name and align IDL attributes of the embedp217 element must reflectp61 the respective content attributes of the
same name.

The fontp697 element must implement the HTMLFontElementp708 interface.

interface HTMLFontElement : HTMLElement {
attribute DOMString color;
attribute DOMString face;
attribute DOMString size;

};

The color, face, and size IDL attributes of the fontp697 element must reflectp61 the respective content attributes of
the same name.

[Supplemental]
interface HTMLHeadingElement {

attribute DOMString align;
};

The align IDL attribute of the h1p147–h6p147 elements must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLHeadElement {

attribute DOMString profile;
};

User agents should ignore the profilep698 content attribute on headp112 elements.

When the attribute would be used as a list of URLsp54 identifying metadata profiles, the user agent should instead
always assume that all known profiles apply to all pages, and should therefore apply the conventions of all known
metadata profiles to the document, ignoring the value of the attribute.

When the attribute's value would be handled as a list of URLsp54 to be dereferenced, the user agent must use the
following steps:

1. Split on spacesp52 the value of the profilep698 attribute.

2. Resolvep55 each resulting token relative to the headp112 element.

3. For each token that is successfully resolved, fetchp58 the resulting absolute URLp55 and apply the appropriate
processing.

The profile IDL attribute of the headp112 element must reflectp61 the content attribute of the same name, as if the
attribute's value was just a string. (In other words, the value is not resolvedp55 in any way on getting.)

[Supplemental]
interface HTMLHRElement {

attribute DOMString align;

708

attribute DOMString color;
attribute boolean noShade;
attribute DOMString size;
attribute DOMString width;

};

The align, color, size, and width IDL attributes of the hrp158 element must reflectp61 the respective content
attributes of the same name.

The noShade IDL attribute of the hrp158 element must reflectp61 the element's noshade content attribute.

[Supplemental]
interface HTMLHtmlElement {

attribute DOMString version;
};

The version IDL attribute of the htmlp112 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLIFrameElement {

attribute DOMString align;
attribute DOMString frameBorder;
attribute DOMString longDesc;
attribute DOMString marginHeight;
attribute DOMString marginWidth;
attribute DOMString scrolling;

};

The align and scrolling IDL attributes of the iframep211 element must reflectp61 the respective content attributes of
the same name.

The frameBorder IDL attribute of the iframep211 element must reflectp61 the element's frameborderp700 content
attribute.

The longDesc IDL attribute of the iframep211 element must reflectp61 the element's longdescp698 content attribute.

The marginHeight IDL attribute of the iframep211 element must reflectp61 the element's marginheightp700 content
attribute.

The marginWidth IDL attribute of the iframep211 element must reflectp61 the element's marginwidthp700 content
attribute.

[Supplemental]
interface HTMLImageElement {

attribute DOMString name;
attribute DOMString align;
attribute DOMString border;
attribute unsigned long hspace;
attribute DOMString longDesc;
attribute unsigned long vspace;

};

The name, align, border, hspace, and vspace IDL attributes of the imgp196 element must reflectp61 the respective
content attributes of the same name.

The longDesc IDL attribute of the imgp196 element must reflectp61 the element's longdescp698 content attribute.

[Supplemental]
interface HTMLInputElement {

attribute DOMString align;

709

attribute DOMString useMap;
};

The align IDL attribute of the inputp320 element must reflectp61 the content attribute of the same name.

The useMap IDL attribute of the inputp320 element must reflectp61 the element's usemapp698 content attribute.

[Supplemental]
interface HTMLLegendElement {

attribute DOMString align;
};

The align IDL attribute of the legendp318 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLLIElement {

attribute DOMString type;
};

The type IDL attribute of the lip163 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLLinkElement {

attribute DOMString charset;
attribute DOMString rev;
attribute DOMString target;

};

The charset, rev, and target IDL attributes of the linkp115 element must reflectp61 the respective content attributes
of the same name.

User agents must treat listingp697 elements in a manner equivalent to prep158 elements.

[Supplemental]
interface HTMLMenuElement {

attribute boolean compact;
};

The compact IDL attribute of the menup393 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLMetaElement {

attribute DOMString scheme;
};

User agents may treat the schemep698 content attribute on the metap119 element as an extension of the element's
namep120 content attribute when processing a metap119 element with a namep120 attribute whose value is one that the
user agent recognizes as supporting the schemep698 attribute.

User agents are encouraged to ignore the schemep698 attribute and instead process the value given to the metadata
name as if it had been specified for each expected value of the schemep698 attribute.

For example, if the user agent acts on metap119 elements with namep120 attributes having the value
"eGMS.subject.keyword", and knows that the schemep698 attribute is used with this metadata name, then it could
take the schemep698 attribute into account, acting as if it was an extension of the namep120 attribute. Thus the
following two metap119 elements could be treated as two elements giving values for two different metadata
names, one consisting of a combination of "eGMS.subject.keyword" and "LGCL", and the other consisting of a
combination of "eGMS.subject.keyword" and "ORLY":

710

<!-- this markup is invalid -->
<meta name="eGMS.subject.keyword" scheme="LGCL" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" scheme="ORLY" content="Mah car: kthxbye">

The recommended processing of this markup, however, would be equivalent to the following:

<meta name="eGMS.subject.keyword" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" content="Mah car: kthxbye">

The scheme IDL attribute of the metap119 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLObjectElement {

attribute DOMString align;
attribute DOMString archive;
attribute DOMString border;
attribute DOMString code;
attribute DOMString codeBase;
attribute DOMString codeType;
attribute boolean declare;
attribute unsigned long hspace;
attribute DOMString standby;
attribute unsigned long vspace;

};

The align, archive, border, code, declare, hspace, standby, and vspace IDL attributes of the objectp220 element
must reflectp61 the respective content attributes of the same name.

The codeBase IDL attribute of the objectp220 element must reflectp61 the element's codebasep698 content attribute.

The codeType IDL attribute of the objectp220 element must reflectp61 the element's codetypep698 content attribute.

[Supplemental]
interface HTMLOListElement {

attribute boolean compact;
attribute DOMString type;

};

The compact and type IDL attributes of the olp161 element must reflectp61 the respective content attributes of the
same name.

[Supplemental]
interface HTMLParagraphElement {

attribute DOMString align;
};

The align IDL attribute of the pp157 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLParamElement {

attribute DOMString type;
attribute DOMString valueType;

};

The type IDL attribute of the paramp224 element must reflectp61 the content attribute of the same name.

The valueType IDL attribute of the paramp224 element must reflectp61 the element's valuetypep699 content attribute.

User agents must treat plaintextp697 elements in a manner equivalent to prep158 elements.

711

[Supplemental]
interface HTMLPreElement {

attribute unsigned long width;
};

The width IDL attribute of the prep158 element must reflectp61 the content attribute of the same name.

[Supplemental]
interface HTMLScriptElement {

attribute DOMString event;
attribute DOMString htmlFor;

};

The event and htmlFor IDL attributes of the scriptp129 element must return the empty string on getting, and do
nothing on setting.

[Supplemental]
interface HTMLTableElement {

attribute DOMString align;
attribute DOMString bgColor;
attribute DOMString border;
attribute DOMString cellPadding;
attribute DOMString cellSpacing;
attribute DOMString frame;
attribute DOMString rules;
attribute DOMString width;

};

The align, border, frame, rules, and width, IDL attributes of the tablep286 element must reflectp61 the respective
content attributes of the same name.

The bgColor IDL attribute of the tablep286 element must reflectp61 the element's bgcolorp701 content attribute.

The cellPadding IDL attribute of the tablep286 element must reflectp61 the element's cellpaddingp701 content
attribute.

The cellSpacing IDL attribute of the tablep286 element must reflectp61 the element's cellspacingp701 content
attribute.

[Supplemental]
interface HTMLTableSectionElement {

attribute DOMString align;
attribute DOMString ch;
attribute DOMString chOff;
attribute DOMString vAlign;

};

The align IDL attribute of the tbodyp294, theadp295, and tfootp296 elements must reflectp61 the content attribute of the
same name.

The ch IDL attribute of the tbodyp294, theadp295, and tfootp296 elements must reflectp61 the elements' charp701 content
attributes.

The chOff IDL attribute of the tbodyp294, theadp295, and tfootp296 elements must reflectp61 the elements' charoffp701

content attributes.

The vAlign IDL attribute of the tbodyp294, theadp295, and tfootp296 element must reflectp61 the elements' valignp701

content attributes.

[Supplemental]
interface HTMLTableCellElement {

712

attribute DOMString abbr;
attribute DOMString align;
attribute DOMString axis;
attribute DOMString bgColor;
attribute DOMString ch;
attribute DOMString chOff;
attribute DOMString height;
attribute boolean noWrap;
attribute DOMString vAlign;
attribute DOMString width;

};

The abbr, align, axis, height, and width IDL attributes of the tdp298 and thp298 elements must reflectp61 the
respective content attributes of the same name.

The bgColor IDL attribute of the tdp298 and thp298 elements must reflectp61 the elements' bgcolorp701 content
attributes.

The ch IDL attribute of the tdp298 and thp298 elements must reflectp61 the elements' charp701 content attributes.

The chOff IDL attribute of the tdp298 and thp298 elements must reflectp61 the elements' charoffp701 content attributes.

The noWrap IDL attribute of the tdp298 and thp298 elements must reflectp61 the elements' nowrapp701 content attributes.

The vAlign IDL attribute of the tdp298 and thp298 element must reflectp61 the elements' valignp701 content attributes.

[Supplemental]
interface HTMLTableRowElement {

attribute DOMString align;
attribute DOMString bgColor;
attribute DOMString ch;
attribute DOMString chOff;
attribute DOMString vAlign;

};

The align IDL attribute of the trp296 element must reflectp61 the content attribute of the same name.

The bgColor IDL attribute of the trp296 element must reflectp61 the element's bgcolorp701 content attribute.

The ch IDL attribute of the trp296 element must reflectp61 the element's charp701 content attribute.

The chOff IDL attribute of the trp296 element must reflectp61 the element's charoffp701 content attribute.

The vAlign IDL attribute of the trp296 element must reflectp61 the element's valignp701 content attribute.

[Supplemental]
interface HTMLUListElement {

attribute boolean compact;
attribute DOMString type;

};

The compact and type IDL attributes of the ulp162 element must reflectp61 the respective content attributes of the
same name.

User agents must treat xmpp697 elements in a manner equivalent to prep158 elements.

The bgsoundp697, isindexp697, multicolp697, nextidp697, rbp697, and spacerp697 elements must use the
HTMLUnknownElementp87 interface.

[Supplemental]
interface HTMLDocument {

attribute DOMString fgColor;

713

attribute DOMString bgColor;
attribute DOMString linkColor;
attribute DOMString vlinkColor;
attribute DOMString alinkColor;

readonly attribute HTMLCollection anchors;
readonly attribute HTMLCollection applets;

void clear();

readonly attribute HTMLAllCollection all;
};

The attributes of the Documentp33 object listed in the first column of the following table must reflectp61 the content
attribute on the body elementp81 with the name given in the corresponding cell in the second column on the same row,
if the body elementp81 is a bodyp138 element (as opposed to a framesetp704 element). When there is no body
elementp81 or if it is a framesetp704 element, the attributes must instead return the empty string on getting and do
nothing on setting.

IDL attribute Content attribute

fgColor textp700

bgColor bgcolorp700

linkColor linkp700

vLinkColor vlinkp700

aLinkColor alinkp700

The anchors attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
ap169 elements with namep698 attributes.

The applets attribute must return an HTMLCollectionp63 rooted at the Documentp33 node, whose filter matches only
appletp701 elements.

The clear() method must do nothing.

The all attribute must return an HTMLAllCollectionp64 rooted at the Documentp33 node, whose filter matches all
elements.

The object returned for allp714 has several unusual behaviors:

• The user agent must act as if the ToBoolean() operator in JavaScript converts the object returned for allp714

to the false value.

• The user agent must act as if, for the purposes of the == and != operators in JavaScript, the object returned
for allp714 is equal to the undefined value.

• The user agent must act such that the typeof operator in JavaScript returns the string undefined when
applied to the object returned for allp714.

Note: These requirements are a willful violationp18 of the JavaScript specification current at the
time of writing (ECMAScript edition 3). The JavaScript specification requires that the ToBoolean()
operator convert all objects to the true value, and does not have provisions for objects acting as if
they were undefined for the purposes of certain operators. This violation is motivated by a desire
for compatibility with two classes of legacy content: one that uses the presence of
document.allp714 as a way to detect legacy user agents, and one that only supports those legacy
user agents and uses the document.allp714 object without testing for its presence first.
[ECMA262]p739

714

14 IANA considerations

14.1 text/html

This registration is for community review and will be submitted to the IESG for review, approval, and registration with
IANA.

Type name:
text

Subtype name:
html

Required parameters:
No required parameters

Optional parameters:
charset

The charset parameter may be provided to definitively specify the document's character encodingp79,
overriding any character encoding declarationsp125 in the document. The parameter's value must be the
name of the character encoding used to serialize the file, must be a valid character encoding name, and
must be an ASCII case-insensitivep35 match for the preferred MIME namep30 for that encoding.
[IANACHARSET]p739

Encoding considerations:
See the section on character encoding declarationsp125.

Security considerations:
Entire novels have been written about the security considerations that apply to HTML documents. Many are listed
in this document, to which the reader is referred for more details. Some general concerns bear mentioning here,
however:

HTML is scripted language, and has a large number of APIs (some of which are described in this document).
Script can expose the user to potential risks of information leakage, credential leakage, cross-site scripting
attacks, cross-site request forgeries, and a host of other problems. While the designs in this specification are
intended to be safe if implemented correctly, a full implementation is a massive undertaking and, as with any
software, user agents are likely to have security bugs.

Even without scripting, there are specific features in HTML which, for historical reasons, are required for broad
compatibility with legacy content but that expose the user to unfortunate security problems. In particular, the
imgp196 element can be used in conjunction with some other features as a way to effect a port scan from the
user's location on the Internet. This can expose local network topologies that the attacker would otherwise not be
able to determine.

HTML relies on a compartmentalization scheme sometimes known as the same-origin policy. An originp474 in most
cases consists of all the pages served from the same host, on the same port, using the same protocol.

It is critical, therefore, to ensure that any untrusted content that forms part of a site be hosted on a different
originp474 than any sensitive content on that site. Untrusted content can easily spoof any other page on the same
origin, read data from that origin, cause scripts in that origin to execute, submit forms to and from that origin
even if they are protected from cross-site request forgery attacks by unique tokens, and make use of any third-
party resources exposed to or rights granted to that origin.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification. Labeling a resource with the text/htmlp715 type asserts that the
resource is an HTML documentp75 using the HTML syntaxp577.

Applications that use this media type:
Web browsers, tools for processing Web content, HTML authoring tools, search engines, validators.

Additional information:
Magic number(s):

No sequence of bytes can uniquely identify an HTML document. More information on detecting HTML
documents is available in the Content-Type Processing Model specification. [MIMESNIFF]p740

715

File extension(s):
"html" and "htm" are commonly, but certainly not exclusively, used as the extension for HTML documents.

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers used with text/htmlp715 resources refer to the indicated part of the documentp490.

14.2 text/html-sandboxed

This registration is for community review and will be submitted to the IESG for review, approval, and registration with
IANA.

Type name:
text

Subtype name:
html-sandboxed

Required parameters:
No required parameters

Optional parameters:
Same as for text/htmlp715

Encoding considerations:
Same as for text/htmlp715

Security considerations:
The purpose of the text/html-sandboxedp716 MIME type is to provide a way for content providers to indicate that
they want the file to be interpreted in a manner that does not give the file's contents access to the rest of the
site. This is achieved by assigning the Documentp33 objects generated from resources labeled as text/html-
sandboxedp716 unique origins.

To avoid having legacy user agents treating resources labeled as text/html-sandboxedp716 as regular text/
htmlp715 files, authors should avoid using the .html or .htm extensions for resources labeled as text/html-
sandboxedp716.

Beyond this, the type is identical to text/htmlp715, and the same considerations apply.

Interoperability considerations:
Same as for text/htmlp715

Published specification:
This document is the relevant specification. Labeling a resource with the text/html-sandboxedp716 type asserts
that the resource is an HTML documentp75 using the HTML syntaxp577.

Applications that use this media type:
Same as for text/htmlp715

Additional information:
Magic number(s):

Documents labeled as text/html-sandboxedp716 are heuristically indistinguishable from those labeled as
text/htmlp715.

716

File extension(s):
"sandboxed"

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers used with text/html-sandboxedp716 resources refer to the indicated part of the documentp490.

14.3 application/xhtml+xml

This registration is for community review and will be submitted to the IESG for review, approval, and registration with
IANA.

Type name:
application

Subtype name:
xhtml+xml

Required parameters:
Same as for application/xml [RFC3023]p741

Optional parameters:
Same as for application/xml [RFC3023]p741

Encoding considerations:
Same as for application/xml [RFC3023]p741

Security considerations:
Same as for application/xml [RFC3023]p741

Interoperability considerations:
Same as for application/xml [RFC3023]p741

Published specification:
Labeling a resource with the application/xhtml+xmlp717 type asserts that the resource is an XML document that
likely has a root element from the HTML namespacep74. As such, the relevant specifications are the XML
specification, the Namespaces in XML specification, and this specification. [XML]p743 [XMLNS]p743

Applications that use this media type:
Same as for application/xml [RFC3023]p741

Additional information:
Magic number(s):

Same as for application/xml [RFC3023]p741

File extension(s):
"xhtml" and "xht" are sometimes used as extensions for XML resources that have a root element from the
HTML namespacep74.

Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

717

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers used with application/xhtml+xmlp717 resources have the same semantics as with any XML MIME
typep29. [RFC3023]p741

14.4 text/cache-manifest

This registration is for community review and will be submitted to the IESG for review, approval, and registration with
IANA.

Type name:
text

Subtype name:
cache-manifest

Required parameters:
No parameters

Optional parameters:
No parameters

Encoding considerations:
Always UTF-8.

Security considerations:
Cache manifests themselves pose no immediate risk unless sensitive information is included within the manifest.
Implementations, however, are required to follow specific rules when populating a cache based on a cache
manifest, to ensure that certain origin-based restrictions are honored. Failure to correctly implement these rules
can result in information leakage, cross-site scripting attacks, and the like.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):

Cache manifests begin with the string "CACHE MANIFEST", followed by either a U+0020 SPACE character, a
U+0009 CHARACTER TABULATION (tab) character, a U+000A LINE FEED (LF) character, or a U+000D
CARRIAGE RETURN (CR) character.

File extension(s):
"manifest"

Macintosh file type code(s):
No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

718

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers have no meaning with text/cache-manifestp718 resources.

14.5 text/ping

This registration is for community review and will be submitted to the IESG for review, approval, and registration with
IANA.

Type name:
text

Subtype name:
ping

Required parameters:
No parameters

Optional parameters:
No parameters

Encoding considerations:
Not applicable.

Security considerations:
If used exclusively in the fashion described in the context of hyperlink auditingp405, this type introduces no new
security concerns.

Interoperability considerations:
Rules applicable to this type are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):

text/pingp719 resources always consist of the four bytes 0x50 0x49 0x4E 0x47 (ASCII 'PING').
File extension(s):

No specific file extension is recommended for this type.
Macintosh file type code(s):

No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
Only intended for use with HTTP POST requests generated as part of a Web browser's processing of the pingp404

attribute.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers have no meaning with text/pingp719 resources.

719

14.6 application/microdata+json

This registration is for community review and will be submitted to the IESG for review, approval, and registration with
IANA.

Type name:
application

Subtype name:
microdata+json

Required parameters:
Same as for application/json [JSON]p740

Optional parameters:
Same as for application/json [JSON]p740

Encoding considerations:
Always UTF-8.

Security considerations:
Same as for application/json [JSON]p740

Interoperability considerations:
Same as for application/json [JSON]p740

Published specification:
Labeling a resource with the application/microdata+jsonp720 type asserts that the resource is a JSON text that
consists of an object with a single entry called "items" consisting of an array of entries, each of which consists of
an object with two entries, one called "type" whose value is an array of strings, and one called "properties"
whose value is an object whose entries each have a value consisting of an array of either objects or strings, the
objects being of the same form as the objects in the aforementioned "items" entry. As such, the relevant
specifications are the JSON specification and this specification. [JSON]p740

Applications that use this media type:
Same as for application/json [JSON]p740

Additional information:
Magic number(s):

Same as for application/json [JSON]p740

File extension(s):
Same as for application/json [JSON]p740

Macintosh file type code(s):
Same as for application/json [JSON]p740

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers used with application/microdata+jsonp720 resources have the same semantics as when used
with application/json. [JSON]p740

14.7 Ping-From

This section describes a header field for registration in the Permanent Message Header Field Registry. [RFC3864]p741

720

Header field name
Ping-From

Applicable protocol
http

Status
standard

Author/Change controller
W3C and WHATWG

Specification document(s)
This document is the relevant specification.

Related information
None.

14.8 Ping-To

This section describes a header field for registration in the Permanent Message Header Field Registry. [RFC3864]p741

Header field name
Ping-To

Applicable protocol
http

Status
standard

Author/Change controller
W3C and WHATWG

Specification document(s)
This document is the relevant specification.

Related information
None.

721

Index

The following sections only cover conforming elements and features.

Elements

This section is non-normative.

List of elements
Element Description Categories Parents Children Attributes Interface

ap169 Hyperlink flowp96;
phrasingp96*;
interactivep97

phrasingp96 transparentp98* globalsp87; hrefp404;
targetp404; pingp404;
relp404; mediap404;
hreflangp404; typep405

HTMLAnchorElementp170

abbrp177 Abbreviation flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

addressp151 Contact
information
for a page or
section

flowp96;
formatBlock
candidatep566

flowp96 flowp96* globalsp87 HTMLElementp85

areap280 Hyperlink or
dead area on
an image
map

flowp96;
phrasingp96

phrasingp96* empty globalsp87; altp281;
coordsp281; shapep281;
hrefp404; targetp404;
pingp404; relp404;
mediap404;
hreflangp404; typep405

HTMLAreaElementp280

articlep144 Self-
contained
syndicatable
or reusable
composition

flowp96;
sectioningp96;
formatBlock
candidatep566

flowp96 flowp96 globalsp87 HTMLElementp85

asidep145 Sidebar for
tangentially
related
content

flowp96;
sectioningp96;
formatBlock
candidatep566

flowp96 flowp96 globalsp87 HTMLElementp85

audiop228 Audio player flowp96;
phrasingp96;
embeddedp97;
interactivep97

phrasingp96 sourcep229*;
transparentp98*

globalsp87; srcp232;
preloadp240;
autoplayp243; loopp242;
controlsp248

HTMLAudioElementp228

bp185 Keywords flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

basep114 Base URL and
default target
browsing
contextp463

for
hyperlinksp404

and formsp376

metadatap95 headp112 empty globalsp87; hrefp115;
targetp115

HTMLBaseElementp114

bdop190 Text
directionality
formatting

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

blockquotep159 A section
quoted from
another
source

flowp96;
sectioning
rootp152;
formatBlock
candidatep566

flowp96 flowp96 globalsp87; citep160 HTMLQuoteElementp160

bodyp138 Document
body

sectioning
rootp152

htmlp112 flowp96 globalsp87;
onafterprintp523;
onbeforeprintp523;
onbeforeunloadp523;
onblurp523;
onerrorp523;
onfocusp523;
onhashchangep523;
onloadp523;
onmessagep523;
onofflinep523;
ononlinep523;
onpagehidep523;
onpageshowp523;
onpopstatep523;

HTMLBodyElementp139

722

Element Description Categories Parents Children Attributes Interface

onredop523;
onresizep523;
onstoragep523;
onundop523;
onunloadp523

brp191 Line break,
e.g. in poem
or postal
address

flowp96;
phrasingp96

phrasingp96 empty globalsp87 HTMLBRElementp191

buttonp351 Button control flowp96;
phrasingp96;
interactivep97;
listedp313;
labelablep314;
submittablep314;
form-
associatedp313

phrasingp96 Phrasing
contentp96*

globalsp87;
autofocusp374;
disabledp374; formp373;
formactionp375;
formenctypep376;
formmethodp375;
formnovalidatep376;
formtargetp376;
namep374; typep352;
valuep353

HTMLButtonElementp352

canvasp251 Scriptable
bitmap
canvas

flowp96;
phrasingp96;
embeddedp97

phrasingp96 transparentp98 globalsp87; widthp252;
heightp252

HTMLCanvasElementp251

captionp292 Table caption none tablep286 flowp96* globalsp87 HTMLTableCaptionElementp293

citep174 Title of a work flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

codep181 Computer
code

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

colp294 Table column none colgroupp293 empty globalsp87; spanp294 HTMLTableColElementp294

colgroupp293 Group of
columns in a
table

none tablep286 colp294 globalsp87; spanp294 HTMLTableColElementp294

commandp391 Menu
command

metadatap95;
flowp96;
phrasingp96

headp112;
phrasingp96

empty globalsp87; typep391;
labelp391; iconp392;
disabledp392;
checkedp392;
radiogroupp392

HTMLCommandElementp391

datalistp356 Container for
options for
combo box
controlp342

flowp96;
phrasingp96

phrasingp96 phrasingp96;
optionp358

globalsp87 HTMLDataListElementp357

ddp166 Content for
corresponding
dtp166

element(s)

none dlp164 flowp96 globalsp87 HTMLElementp85

delp194 A removal
from the
document

flowp96;
phrasingp96*

phrasingp96 transparentp98 globalsp87; citep195;
datetimep195

HTMLModElementp195

detailsp387 Disclosure
control for
hiding details

flowp96;
sectioning
rootp152;
interactivep97

flowp96 summaryp390*;
flowp96

globalsp87; openp388 HTMLDetailsElementp388

dfnp176 Defining
instance

flowp96;
phrasingp96

phrasingp96 phrasingp96* globalsp87 HTMLElementp85

divp168 Generic flow
container

flowp96;
formatBlock
candidatep566

flowp96 flowp96 globalsp87 HTMLDivElementp169

dlp164 Association
list consisting
of zero or
more name-
value groups

flowp96 flowp96 dtp166*; ddp166* globalsp87 HTMLDListElementp164

dtp166 Legend for
corresponding
ddp166

element(s)

none dlp164 varies* globalsp87 HTMLElementp85

emp171 Stress
emphasis

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

723

Element Description Categories Parents Children Attributes Interface

embedp217 Pluginp29 flowp96;
phrasingp96;
embeddedp97;
interactivep97

phrasingp96 empty globalsp87; srcp218;
typep218; widthp286;
heightp286; any*

HTMLEmbedElementp217

fieldsetp317 Group of form
controls

flowp96;
sectioning
rootp152;
listedp313; form-
associatedp313

flowp96 legendp318*;
flowp96

globalsp87;
disabledp317; formp373;
namep374

HTMLFieldSetElementp317

figcaptionp168 Caption for
figurep167

none figurep167 phrasingp96 globalsp87 HTMLElementp85

figurep167 Figure with
optional
caption

flowp96;
sectioning
rootp152

flowp96 figcaptionp168*;
flowp96

globalsp87 HTMLElementp85

footerp150 Footer for a
page or
section

flowp96;
formatBlock
candidatep566

flowp96 flowp96* globalsp87 HTMLElementp85

formp314 User-
submittable
form

flowp96 flowp96 flowp96* globalsp87; accept-
charsetp315;
actionp375;
autocompletep315;
enctypep376;
methodp375; namep315;
novalidatep376;
targetp376

HTMLFormElementp314

h1p147, h2p147,
h3p147, h4p147,
h5p147, h6p147

Section
heading

flowp96;
headingp96;
formatBlock
candidatep566

hgroupp148;
flowp96

phrasingp96 globalsp87 HTMLHeadingElementp147

headp112 Container for
document
metadata

none htmlp112 metadata
contentp95*

globalsp87 HTMLHeadElementp113

headerp148 Introductory
or
navigational
aids for a
page or
section

flowp96;
formatBlock
candidatep566

flowp96 flowp96* globalsp87 HTMLElementp85

hgroupp148 heading
group

flowp96;
headingp96;
formatBlock
candidatep566

flowp96 One or more
h1p147, h2p147,
h3p147, h4p147,
h5p147, and/or
h6p147

globalsp87 HTMLElementp85

hrp158 Thematic
break

flowp96 flowp96 empty globalsp87 HTMLHRElementp158

htmlp112 Root element none none* headp112*;
bodyp138*

globalsp87;
manifestp112

HTMLHtmlElementp112

ip184 Alternate
voice

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

iframep211 Nested
browsing
contextp463

flowp96;
phrasingp96;
embeddedp97;
interactivep97

phrasingp96 text* globalsp87; srcp211;
srcdocp211; namep213;
sandboxp213;
seamlessp216;
widthp286; heightp286

HTMLIFrameElementp211

imgp196 Image flowp96;
phrasingp96;
embeddedp97;
interactivep97*

phrasingp96 empty globalsp87; altp197;
srcp197; usemapp282;
ismapp199; widthp286;
heightp286

HTMLImageElementp197

inputp320 Form control flowp96;
phrasingp96;
interactivep97*;
listedp313;
labelablep314;
submittablep314;
resettablep314;
form-
associatedp313

phrasingp96 empty globalsp87; acceptp338;
altp340;
autocompletep342;
autofocusp374;
checkedp323;
disabledp374; formp373;
formactionp375;
formenctypep376;
formmethodp375;
formnovalidatep376;
formtargetp376;
heightp286; listp342;

HTMLInputElementp321

724

Element Description Categories Parents Children Attributes Interface

maxp346; maxlengthp346;
minp346; multiplep345;
namep374; patternp346;
placeholderp348;
readonlyp344;
requiredp344; sizep344;
srcp339; stepp347;
typep321; valuep323;
widthp286

insp193 An addition to
the document

flowp96;
phrasingp96*

phrasingp96 transparentp98 globalsp87; citep195;
datetimep195

HTMLModElementp195

kbdp183 User input flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

keygenp363 Cryptographic
key-pair
generator
form control

flowp96;
phrasingp96;
interactivep97;
listedp313;
labelablep314;
submittablep314;
resettablep314;
form-
associatedp313

phrasingp96 empty globalsp87;
autofocusp374;
challengep364;
disabledp374; formp373;
keytypep364; namep374

HTMLKeygenElementp363

labelp319 Caption for a
form control

flowp96;
phrasingp96;
interactivep97;
form-
associatedp313

phrasingp96 phrasingp96* globalsp87; formp373;
forp319

HTMLLabelElementp319

legendp318 Caption for
fieldsetp317

none fieldsetp317 phrasingp96 globalsp87 HTMLLegendElementp318

lip163 List item none olp161; ulp162;
menup393

flowp96 globalsp87; valuep163* HTMLLIElementp163

linkp115 Link
metadata

metadatap95;
flowp96*;
phrasingp96*

headp112;
noscriptp136*;
phrasingp96*

empty globalsp87; hrefp116;
relp116; mediap117;
hreflangp117; typep117;
sizesp410

HTMLLinkElementp115

mapp279 Image
mapp282

flowp96;
phrasingp96*

phrasingp96 transparentp98;
areap280*

globalsp87; namep280 HTMLMapElementp279

markp186 Highlight flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

menup393 Menu of
commands

flowp96;
interactivep97*

flowp96 lip163*; flowp96 globalsp87; typep393;
labelp393

HTMLMenuElementp393

metap119 Text
metadata

metadatap95;
flowp96*;
phrasingp96*

headp112;
noscriptp136*;
phrasingp96*

empty globalsp87; namep120;
http-equivp122;
contentp120;
charsetp119

HTMLMetaElementp119

meterp369 Gauge flowp96;
phrasingp96;
labelablep314;
form-
associatedp313

phrasingp96 phrasingp96* globalsp87; valuep370;
minp370; maxp370;
lowp370; highp370;
optimump370; formp373

HTMLMeterElementp369

navp142 Section with
navigational
links

flowp96;
sectioningp96;
formatBlock
candidatep566

flowp96 flowp96 globalsp87 HTMLElementp85

noscriptp136 Fallback
content for
script

metadatap95;
flowp96;
phrasingp96

headp112*;
phrasingp96*

varies* globalsp87 HTMLElementp85

objectp220 Image,
nested
browsing
contextp463, or
pluginp29

flowp96;
phrasingp96;
embeddedp97;
interactivep97*;
listedp313;
submittablep314;
form-
associatedp313

phrasingp96 paramp224*;
transparentp98

globalsp87; datap220;
typep220; namep220;
usemapp282; formp373;
widthp286; heightp286

HTMLObjectElementp220

olp161 Ordered list flowp96 flowp96 lip163 globalsp87;
reversedp161; startp161

HTMLOListElementp161

725

Element Description Categories Parents Children Attributes Interface

optgroupp357 Group of
options in a
list box

none selectp353 optionp358 globalsp87;
disabledp358; labelp358

HTMLOptGroupElementp357

optionp358 Option in a
list box or
combo box
control

none selectp353;
datalistp356;
optgroupp357

textp97 globalsp87;
disabledp359;
labelp359;
selectedp359; valuep359

HTMLOptionElementp359

outputp366 Calculated
output value

flowp96;
phrasingp96;
listedp313;
labelablep314;
resettablep314;
form-
associatedp313

phrasingp96 phrasingp96 globalsp87; forp366;
formp373; namep374

HTMLOutputElementp366

pp157 Paragraph flowp96;
formatBlock
candidatep566

flowp96 phrasingp96 globalsp87 HTMLParagraphElementp157

paramp224 Parameter for
objectp220

none objectp220 empty globalsp87; namep225;
valuep225

HTMLParamElementp225

prep158 Block of
preformatted
text

flowp96;
formatBlock
candidatep566

flowp96 phrasingp96 globalsp87 HTMLPreElementp158

progressp367 Progress bar flowp96;
phrasingp96;
labelablep314;
form-
associatedp313

phrasingp96 phrasingp96* globalsp87; valuep368;
maxp368; formp373

HTMLProgressElementp368

qp175 Quotation flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87; citep175 HTMLQuoteElementp160

rpp189 Parenthesis
for ruby
annotation
text

none rubyp188 phrasingp96 globalsp87 HTMLElementp85

rtp189 Ruby
annotation
text

none rubyp188 phrasingp96 globalsp87 HTMLElementp85

rubyp188 Ruby
annotation(s)

flowp96;
phrasingp96

phrasingp96 phrasingp96;
rtp189 element;
rpp189 element*

globalsp87 HTMLElementp85

sampp182 Computer
output

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

scriptp129 Embedded
script

metadatap95;
flowp96;
phrasingp96

headp112;
phrasingp96

script, data, or
script
documentation*

globalsp87; srcp130;
asyncp130; deferp130;
typep130; charsetp130

HTMLScriptElementp130

sectionp140 Generic
document or
application
section

flowp96;
sectioningp96;
formatBlock
candidatep566

flowp96 flowp96 globalsp87 HTMLElementp85

selectp353 List box
control

flowp96;
phrasingp96;
interactivep97;
listedp313;
labelablep314;
submittablep314;
resettablep314;
form-
associatedp313

phrasingp96 optionp358,
optgroupp357

globalsp87;
autofocusp374;
disabledp374; formp373;
multiplep354; namep374;
sizep354

HTMLSelectElementp353

smallp173 Side
comment

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

sourcep229 Media source
for videop225

or audiop228

none videop225;
audiop228

empty globalsp87; srcp229;
typep230; mediap230

HTMLSourceElementp229

spanp191 Generic
phrasing
container

flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLSpanElementp191

strongp172 Importance flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

726

Element Description Categories Parents Children Attributes Interface

stylep126 Embedded
styling
information

metadatap95;
flowp96

headp112;
noscriptp136*;
flowp96*

varies* globalsp87; mediap127;
typep127; scopedp127

HTMLStyleElementp126

subp184 Subscript flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

summaryp390 Caption for
detailsp387

none detailsp387 phrasingp96 globalsp87 HTMLElementp85

supp184 Superscript flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

tablep286 Table flowp96 flowp96 captionp292*;
colgroupp293*;
theadp295*;
tbodyp294*;
tfootp296*;
trp296*

globalsp87; summaryp290 HTMLTableElementp287

tbodyp294 Group of rows
in a table

none tablep286 trp296 globalsp87 HTMLTableSectionElementp295

tdp298 Table cell sectioning
rootp152

trp296 flowp96 globalsp87; colspanp300;
rowspanp300;
headersp300

HTMLTableDataCellElementp298

textareap360 Multiline text
field

flowp96;
phrasingp96;
interactivep97;
listedp313;
labelablep314;
submittablep314;
resettablep314;
form-
associatedp313

phrasingp96 textp97 globalsp87;
autofocusp374;
colsp362; disabledp374;
formp373;
maxlengthp362;
namep374;
placeholderp362;
readonlyp361;
requiredp362; rowsp362;
wrapp362

HTMLTextAreaElementp361

tfootp296 Group of
footer rows in
a table

none tablep286 trp296 globalsp87 HTMLTableSectionElementp295

thp298 Table header
cell

none trp296 phrasingp96 globalsp87; colspanp300;
rowspanp300;
headersp300; scopep298

HTMLTableHeaderCellElementp298

theadp295 Group of
heading rows
in a table

none tablep286 trp296 globalsp87 HTMLTableSectionElementp295

timep178 Date and/or
time

flowp96;
phrasingp96

phrasingp96 phrasingp96* globalsp87;
datetimep179;
pubdatep179

HTMLTimeElementp179

titlep113 Document
title

metadatap95 headp112 textp97 globalsp87 HTMLTitleElementp113

trp296 Table row none tablep286;
theadp295;
tbodyp294;
tfootp296

thp298*; tdp298 globalsp87 HTMLTableRowElementp297

ulp162 List flowp96 flowp96 lip163 globalsp87 HTMLUListElementp162

varp182 Variable flowp96;
phrasingp96

phrasingp96 phrasingp96 globalsp87 HTMLElementp85

videop225 Video player flowp96;
phrasingp96;
embeddedp97;
interactivep97

phrasingp96 sourcep229*;
transparentp98*

globalsp87; srcp232;
posterp226;
preloadp240;
autoplayp243; loopp242;
controlsp248;
widthp286; heightp286

HTMLVideoElementp226

wbrp192 Line breaking
opportunity

flowp96;
phrasingp96

phrasingp96 empty globalsp87 HTMLElementp85

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.

Element content categories

This section is non-normative.

727

List of element content categories
Category Elements Elements with exceptions

Metadata
contentp95

basep114; commandp391; linkp115; metap119; noscriptp136; scriptp129; stylep126;
titlep113

—

Flow
contentp96

ap169; abbrp177; addressp151; articlep144; asidep145; audiop228; bp185; bdop190;
blockquotep159; brp191; buttonp351; canvasp251; citep174; codep181; commandp391;
datalistp356; delp194; detailsp387; dfnp176; divp168; dlp164; emp171; embedp217;
fieldsetp317; figurep167; footerp150; formp314; h1p147; h2p147; h3p147; h4p147; h5p147;
h6p147; headerp148; hgroupp148; hrp158; ip184; iframep211; imgp196; inputp320; insp193;
kbdp183; keygenp363; labelp319; mapp279; markp186; mathp285; menup393; meterp369; navp142;
noscriptp136; objectp220; olp161; outputp366; pp157; prep158; progressp367; qp175;
rubyp188; sampp182; scriptp129; sectionp140; selectp353; smallp173; spanp191; strongp172;
subp184; supp184; svgp285; tablep286; textareap360; timep178; ulp162; varp182; videop225;
wbrp192; Textp97

areap280 (if it is a descendant of a
mapp279 element); linkp115 (if the
itempropp428 attribute is present);
metap119 (if the itempropp428 attribute
is present); stylep126 (if the scopedp127

attribute is present)

Sectioning
contentp96

articlep144; asidep145; navp142; sectionp140 —

Heading
contentp96

h1p147; h2p147; h3p147; h4p147; h5p147; h6p147; hgroupp148 —

Phrasing
contentp96

abbrp177; audiop228; bp185; bdop190; brp191; buttonp351; canvasp251; citep174; codep181;
commandp391; datalistp356; dfnp176; emp171; embedp217; ip184; iframep211; imgp196;
inputp320; kbdp183; keygenp363; labelp319; markp186; mathp285; meterp369; noscriptp136;
objectp220; outputp366; progressp367; qp175; rubyp188; sampp182; scriptp129; selectp353;
smallp173; spanp191; strongp172; subp184; supp184; svgp285; textareap360; timep178;
varp182; videop225; wbrp192; Textp97

ap169 (if it contains only phrasing
contentp96); areap280 (if it is a
descendant of a mapp279 element);
delp194 (if it contains only phrasing
contentp96); insp193 (if it contains only
phrasing contentp96); linkp115 (if the
itempropp428 attribute is present);
mapp279 (if it contains only phrasing
contentp96); metap119 (if the
itempropp428 attribute is present)

Embedded
contentp97

audiop228 canvasp251 embedp217 iframep211 imgp196 mathp285 objectp220 svgp285 videop225 —

Interactive
contentp97

ap169; buttonp351; detailsp387; embedp217; iframep211; keygenp363; labelp319; selectp353;
textareap360;

audiop228 (if the controlsp248 attribute
is present); imgp196 (if the usemapp282

attribute is present); inputp320 (if the
typep321 attribute is not in the
Hiddenp324 state); menup393 (if the
typep393 attribute is in the toolbarp393

state); objectp220 (if the usemapp282

attribute is present); videop225 (if the
controlsp248 attribute is present)

Sectioning
rootsp152

blockquotep159; bodyp138; detailsp387; fieldsetp317; figurep167; tdp298 —

Form-
associated
elementsp313

buttonp351; fieldsetp317; inputp320; keygenp363; labelp319; meterp369; objectp220;
outputp366; progressp367; selectp353; textareap360

—

Listed
elementsp313

buttonp351; fieldsetp317; inputp320; keygenp363; objectp220; outputp366; selectp353;
textareap360

—

Labelable
elementsp314

buttonp351; inputp320; keygenp363; meterp369; outputp366; progressp367; selectp353;
textareap360

—

Submittable
elementsp314

buttonp351; inputp320; keygenp363; objectp220; selectp353; textareap360 —

Resettable
elementsp314

inputp320; keygenp363; outputp366; selectp353; textareap360 —

formatBlock
candidatesp566

sectionp140; navp142; articlep144; asidep145; h1p147; h2p147; h3p147; h4p147; h5p147; h6p147;
hgroupp148; headerp148; footerp150; addressp151; pp157; prep158; blockquotep159; divp168

—

Attributes

This section is non-normative.

List of attributes (excluding event handler content attributes)
Attribute Element(s) Description Value

accept inputp338 Hint for expected file type in file
upload controlsp338

Set of comma-separated tokensp53*
consisting of valid MIME types with no
parametersp28 or audio/*, video/*, or
image/*

accept-charset formp315 Character encodings to use for form
submissionp380

Ordered set of unique space-separated
tokensp52 consisting of preferred MIME

728

Attribute Element(s) Description Value

namesp30 of ASCII-compatible character
encodingsp30*

accesskey HTML elementsp541 Keyboard shortcut to activate or
focus element

Ordered set of unique space-separated
tokensp52 consisting of one Unicode code
point in length

action formp375 URLp54 to use for form
submissionp380

Valid URLp54

alt areap281; imgp197; inputp340 Replacement text for use when
images are not available

Text*

async scriptp130 Execute script asynchronously Boolean attributep37

autocomplete formp315; inputp342 Prevent the user agent from
providing autocompletions for the
form control(s)

"on"; "off"

autofocus buttonp374; inputp374; keygenp374;
selectp374; textareap374

Automatically focus the form control
when the page is loaded

Boolean attributep37

autoplay audiop243; videop243 Hint that the media resourcep232 can
be started automatically when the
page is loaded

Boolean attributep37

challenge keygenp364 String to package with the
generated and signed public key

Text

charset metap119 Character encoding declarationp125 Preferred MIME namep30 of an encoding*
charset scriptp130 Character encoding of the external

script resource
Preferred MIME namep30 of an encoding*

checked commandp392; inputp323 Whether the command or control is
checked

Boolean attributep37

cite blockquotep160; delp195; insp195; qp175 Link to the source of the quotation
or more information about the edit

Valid URLp54

class HTML elementsp91 Classes to which the element
belongs

Unordered set of unique space-separated
tokensp52

cols textareap362 Maximum number of characters per
line

Valid non-negative integerp37 greater than
zero

colspan tdp300; thp300 Number of columns that the cell is to
span

Valid non-negative integerp37 greater than
zero

content metap120 Value of the element Text*
contenteditable HTML elementsp546 Whether the element is editablep546 "true"; "false"
contextmenu HTML elementsp395 The element's context menu ID*
controls audiop248; videop248 Show user agent controls Boolean attributep37

coords areap281 Coordinates for the shape to be
created in an image mapp282

Valid list of integersp41*

data objectp220 Address of the resource Valid non-empty URLp54

datetime delp195; insp195 Time and date of the change Valid global date and time stringp47

datetime timep179 Value of the element Valid date or time stringp49*
defer scriptp130 Defer script execution Boolean attributep37

dir HTML elementsp90 The text directionalityp91 of the
element

"ltr"; "rtl"

disabled buttonp374; commandp392; fieldsetp317;
inputp374; keygenp374; optgroupp358;
optionp359; selectp374; textareap374

Whether the form control is disabled Boolean attributep37

draggable HTML elementsp560 Whether the element is draggable "true"; "false"
enctype formp376 Form data set encoding type to use

for form submissionp380
"application/x-www-form-
urlencodedp376"; "multipart/form-
datap376"; "text/plainp376"

for labelp319 Associate the label with form control ID*
for outputp366 Specifies controls from which the

output was calculated
Unordered set of unique space-separated
tokensp52 consisting of IDs*

form buttonp373; fieldsetp373; inputp373;
keygenp373; labelp373; meterp373;
objectp373; outputp373; progressp373;
selectp373; textareap373

Associates the control with a
formp314 element

ID*

formaction buttonp375; inputp375 URLp54 to use for form
submissionp380

Valid URLp54

formenctype buttonp376; inputp376 Form data set encoding type to use
for form submissionp380

"application/x-www-form-
urlencodedp376"; "multipart/form-
datap376"; "text/plainp376"

729

Attribute Element(s) Description Value
formmethod buttonp375; inputp375 HTTP method to use for form

submissionp380
"GET"; "POST"; "PUT"; "DELETE"

formnovalidate buttonp376; inputp376 Bypass form control validation for
form submissionp380

Boolean attributep37

formtarget buttonp376; inputp376 Browsing contextp463 for form
submissionp380

Valid browsing context name or
keywordp466

headers tdp300; thp300 The header cells for this cell Unordered set of unique space-separated
tokensp52 consisting of IDs*

height canvasp252; embedp286; iframep286;
imgp286; inputp286; objectp286; videop286

Vertical dimension Valid non-negative integerp37

hidden HTML elementsp536 Whether the element is relevant Boolean attributep37

high meterp370 Low limit of high range Valid floating point numberp38*
href ap404; areap404 Address of the hyperlinkp404 Valid URLp54

href linkp116 Address of the hyperlinkp404 Valid non-empty URLp54

href basep115 Document base URLp55 Valid URLp54

hreflang ap404; areap404; linkp117 Language of the linked resource Valid BCP 47 language code
http-equiv metap122 Pragma directive Text*
icon commandp392 Icon for the command Valid non-empty URLp54

id HTML elementsp89 The element's IDp89 Text*
ismap imgp199 Whether the image is a server-side

image map
Boolean attributep37

itemid HTML elementsp427 Global identifierp427 for a microdata
item

Valid URLp54

itemprop HTML elementsp428 Property namesp428 of a microdata
item

Unordered set of unique space-separated
tokensp52 consisting of valid absolute
URLsp55, defined property namesp428, or
text*

itemref itemrefp428 Referenced elements Unordered set of unique space-separated
tokensp52 consisting of IDs*

itemscope HTML elementsp427 Introduces a microdata item Boolean attributep37

itemtype HTML elementsp427 Item typep427 of a microdata item Valid absolute URLp55*
keytype keygenp364 The type of cryptographic key to

generate
Text*

label commandp391; menup393; optgroupp358;
optionp359

User-visible label Text

lang HTML elementsp89 Languagep90 of the element Valid BCP 47 language code or the empty
string

list inputp342 List of autocomplete options ID*
loop audiop242; videop242 Whether to loop the media

resourcep232
Boolean attributep37

low meterp370 High limit of low range Valid floating point numberp38*
manifest htmlp112 Application cache manifestp497 Valid non-empty URLp54

max inputp346 Maximum value varies*
max meterp370; progressp368 Upper bound of range Valid floating point numberp38*
maxlength inputp346; textareap362 Maximum length of value Valid non-negative integerp37

media ap404; areap404; linkp117; sourcep230;
stylep127

Applicable media Valid media queryp54

method formp375 HTTP method to use for form
submissionp380

"GET"; "POST"; "PUT"; "DELETE"

min inputp346 Minimum value varies*
min meterp370 Lower bound of range Valid floating point numberp38*
multiple inputp345; selectp354 Whether to allow multiple values Boolean attributep37

name buttonp374; fieldsetp374; inputp374;
keygenp374; outputp374; selectp374;
textareap374

Name of form control to use for form
submissionp380 and in the
form.elementsp316 API

Text*

name formp315 Name of form to use in the
document.formsp81 API

Text*

name iframep213; objectp220 Name of nested browsing contextp463 Valid browsing context name or
keywordp466

name mapp280 Name of image mapp282 to reference
from the usemapp282 attribute

Text*

name metap120 Metadata name Text*

730

Attribute Element(s) Description Value
name paramp225 Name of parameter Text
novalidate formp376 Bypass form control validation for

form submissionp380
Boolean attributep37

open detailsp388 Whether the details are visible Boolean attributep37

optimum meterp370 Optimum value in gauge Valid floating point numberp38*
pattern inputp346 Pattern to be matched by the form

control's value
Regular expression matching the
JavaScript Pattern production

ping ap404; areap404 URLsp54 to ping Set of space-separated tokensp52

consisting of valid non-empty URLsp54

placeholder inputp348; textareap362 User-visible label to be placed within
the form control

Text*

poster videop226 Poster frame to show prior to video
playback

Valid non-empty URLp54

preload audiop240; videop240 Hints how much buffering the media
resourcep232 will likely need

"nonep240"; "metadatap240"; "autop240"

pubdate timep179 Whether the element's value
represents a publication time for the
nearest articlep144 or bodyp138

Boolean attributep37

radiogroup commandp392 Name of group of commands to treat
as a radio button group

Text

readonly inputp344; textareap361 Whether to allow the value to be
edited by the user

Boolean attributep37

rel ap404; areap404; linkp116 Relationship between the document
containing the hyperlink and the
destination resource

Set of space-separated tokensp52*

required inputp344; textareap362 Whether the control is required for
form submissionp380

Boolean attributep37

reversed olp161 Number the list backwards Boolean attributep37

rows textareap362 Number of lines to show Valid non-negative integerp37 greater than
zero

rowspan tdp300; thp300 Number of rows that the cell is to
span

Valid non-negative integerp37

sandbox iframep213 Security rules for nested content Unordered set of unique space-separated
tokensp52 consisting of "allow-same-
originp214", "allow-formsp214", and
"allow-scriptsp214"

spellcheck HTML elementsp549 Whether the element is to have its
spelling and grammar checked

"true"; "false"

scope thp298 Specifies which cells the header cell
applies to

"rowp298"; "colp299"; "rowgroupp299";
"colgroupp299"

scoped stylep127 Whether the styles apply to the
entire document or just the parent
subtree

Boolean attributep37

seamless iframep216 Whether to apply the document's
styles to the nested content

Boolean attributep37

selected optionp359 Whether the option is selected by
default

Boolean attributep37

shape areap281 The kind of shape to be created in
an image mapp282

"circlep281"; "defaultp281"; "polyp281";
"rectp281"

size inputp344; selectp354 Size of the control Valid non-negative integerp37 greater than
zero

sizes linkp410 Sizes of the icons (for
relp116="iconp409")

Unordered set of unique space-separated
tokensp52 consisting of sizes*

span colp294; colgroupp294 Number of columns spanned by the
element

Valid non-negative integerp37 greater than
zero

src audiop232; embedp218; iframep211; imgp197;
inputp339; scriptp130; sourcep229;
videop232

Address of the resource Valid non-empty URLp54

srcdoc iframep211 A document to render in the
iframep211

The source of an iframe srcdoc
documentp211*

start olp161 Ordinal value of the first item Valid integerp38

step inputp347 Granularity to be matched by the
form control's value

Valid floating point numberp38 greater
than zero, or "any"

style HTML elementsp91 Presentational and formatting
instructions

CSS declarations*

731

Attribute Element(s) Description Value
summary tablep290 Explanatory text for complex tables

for users of screen readers
Text*

tabindex HTML elementsp537 Whether the element is focusable,
and the relative order of the element
for the purposes of sequential focus
navigation

Valid integerp38

target ap404; areap404 Browsing contextp463 for
hyperlinkp404 navigationp484

Valid browsing context name or
keywordp466

target basep115 Default browsing contextp463 for
hyperlinkp404 navigationp484 and form
submissionp380

Valid browsing context name or
keywordp466

target formp376 Browsing contextp463 for form
submissionp380

Valid browsing context name or
keywordp466

title HTML elementsp89 Advisory information for the element Text
title abbrp177; dfnp176 Full term or expansion of

abbreviation
Text

title commandp391 Hint describing the command Text
title linkp118 Title of the link Text
title linkp118; stylep127 Alternative style sheet set name Text
type ap405; areap405; linkp117 Hint for the type of the referenced

resource
Valid MIME typep28

type buttonp352 Type of button "submitp352"; "resetp352"; "buttonp352"
type buttonp352; inputp321 Type of form control input type keywordp321

type commandp391 Type of command "commandp391"; "checkboxp391"; "radiop391"
type embedp218; objectp220; scriptp130;

sourcep230; stylep127
Type of embedded resource Valid MIME typep28

type menup393 Type of menu "contextp393"; "toolbarp393"
usemap imgp282; objectp282 Name of image mapp282 to use Valid hash-name referencep54*
value buttonp353; optionp359 Value to be used for form

submissionp380
Text

value inputp323 Value of the form control varies*
value lip163 Ordinal value of the list item Valid integerp38

value meterp370; progressp368 Current value of the element Valid floating point numberp38

value paramp225 Value of parameter Text
width canvasp252; embedp286; iframep286;

imgp286; inputp286; objectp286; videop286
Horizontal dimension Valid non-negative integerp37

wrap textareap362 How the value of the form control is
to be wrapped for form
submissionp380

"softp362"; "hardp362"

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.

List of event handler content attributes
Attribute Element(s) Description Value

onabort HTML
elementsp522

abort event handler Event handler content
attributep520

onafterprint bodyp523 afterprint event handler for Windowp467 object Event handler content
attributep520

onbeforeprint bodyp523 beforeprint event handler for Windowp467 object Event handler content
attributep520

onbeforeunload bodyp523 beforeunload event handler for Windowp467 object Event handler content
attributep520

onblur bodyp523 blur event handler for Windowp467 object Event handler content
attributep520

onblur HTML
elementsp522

blur event handler Event handler content
attributep520

oncanplay HTML
elementsp522

canplayp250 event handler Event handler content
attributep520

oncanplaythrough HTML
elementsp522

canplaythroughp250 event handler Event handler content
attributep520

onchange HTML
elementsp522

change event handler Event handler content
attributep520

732

Attribute Element(s) Description Value
onclick HTML

elementsp522
clickp33 event handler Event handler content

attributep520

oncontextmenu HTML
elementsp522

contextmenu event handler Event handler content
attributep520

ondblclick HTML
elementsp522

dblclick event handler Event handler content
attributep520

ondrag HTML
elementsp522

dragp555 event handler Event handler content
attributep520

ondragend HTML
elementsp522

dragendp555 event handler Event handler content
attributep520

ondragenter HTML
elementsp522

dragenterp555 event handler Event handler content
attributep520

ondragleave HTML
elementsp522

dragleavep555 event handler Event handler content
attributep520

ondragover HTML
elementsp522

dragoverp555 event handler Event handler content
attributep520

ondragstart HTML
elementsp522

dragstartp555 event handler Event handler content
attributep520

ondrop HTML
elementsp522

dropp555 event handler Event handler content
attributep520

ondurationchange HTML
elementsp522

durationchangep251 event handler Event handler content
attributep520

onemptied HTML
elementsp522

emptiedp250 event handler Event handler content
attributep520

onended HTML
elementsp522

endedp250 event handler Event handler content
attributep520

onerror bodyp523 error event handler for Windowp467 object, and handler for script error
notificationsp524

Event handler content
attributep520

onerror HTML
elementsp523

error event handler Event handler content
attributep520

onfocus bodyp523 focus event handler for Windowp467 object Event handler content
attributep520

onfocus HTML
elementsp523

focus event handler Event handler content
attributep520

onformchange HTML
elementsp522

formchange event handler Event handler content
attributep520

onforminput HTML
elementsp522

forminput event handler Event handler content
attributep520

onhashchange bodyp523 hashchangep493 event handler for Windowp467 object Event handler content
attributep520

oninput HTML
elementsp522

input event handler Event handler content
attributep520

oninvalid HTML
elementsp522

invalid event handler Event handler content
attributep520

onkeydown HTML
elementsp522

keydown event handler Event handler content
attributep520

onkeypress HTML
elementsp522

keypress event handler Event handler content
attributep520

onkeyup HTML
elementsp522

keyup event handler Event handler content
attributep520

onload bodyp523 load event handler for Windowp467 object Event handler content
attributep520

onload HTML
elementsp523

load event handler Event handler content
attributep520

onloadeddata HTML
elementsp522

loadeddatap250 event handler Event handler content
attributep520

onloadedmetadata HTML
elementsp522

loadedmetadatap250 event handler Event handler content
attributep520

onloadstart HTML
elementsp522

loadstartp250 event handler Event handler content
attributep520

onmessage bodyp523 messagep570 event handler for Windowp467 object Event handler content
attributep520

onmousedown HTML
elementsp522

mousedown event handler Event handler content
attributep520

733

Attribute Element(s) Description Value
onmousemove HTML

elementsp522
mousemove event handler Event handler content

attributep520

onmouseout HTML
elementsp522

mouseout event handler Event handler content
attributep520

onmouseover HTML
elementsp522

mouseover event handler Event handler content
attributep520

onmouseup HTML
elementsp522

mouseup event handler Event handler content
attributep520

onmousewheel HTML
elementsp522

mousewheel event handler Event handler content
attributep520

onoffline bodyp523 offlinep513 event handler for Windowp467 object Event handler content
attributep520

ononline bodyp523 onlinep513 event handler for Windowp467 object Event handler content
attributep520

onpause HTML
elementsp522

pausep250 event handler Event handler content
attributep520

onplay HTML
elementsp522

playp250 event handler Event handler content
attributep520

onplaying HTML
elementsp522

playingp250 event handler Event handler content
attributep520

onpagehide bodyp523 pagehidep493 event handler for Windowp467 object Event handler content
attributep520

onpageshow bodyp523 pageshowp493 event handler for Windowp467 object Event handler content
attributep520

onpopstate bodyp523 popstatep492 event handler for Windowp467 object Event handler content
attributep520

onprogress HTML
elementsp522

progressp250 event handler Event handler content
attributep520

onratechange HTML
elementsp522

ratechangep251 event handler Event handler content
attributep520

onreadystatechange HTML
elementsp522

readystatechange event handler Event handler content
attributep520

onredo bodyp523 redop564 event handler for Windowp467 object Event handler content
attributep520

onresize bodyp523 resize event handler for Windowp467 object Event handler content
attributep520

onscroll HTML
elementsp522

scroll event handler Event handler content
attributep520

onseeked HTML
elementsp522

seekedp250 event handler Event handler content
attributep520

onseeking HTML
elementsp522

seekingp250 event handler Event handler content
attributep520

onselect HTML
elementsp522

select event handler Event handler content
attributep520

onshow HTML
elementsp522

show event handler Event handler content
attributep520

onstalled HTML
elementsp522

stalledp250 event handler Event handler content
attributep520

onstorage bodyp523 storage event handler for Windowp467 object Event handler content
attributep520

onsubmit HTML
elementsp522

submit event handler Event handler content
attributep520

onsuspend HTML
elementsp522

suspendp250 event handler Event handler content
attributep520

ontimeupdate HTML
elementsp522

timeupdatep250 event handler Event handler content
attributep520

onundo bodyp523 undop564 event handler for Windowp467 object Event handler content
attributep520

onunload bodyp523 unload event handler for Windowp467 object Event handler content
attributep520

onvolumechange HTML
elementsp522

volumechangep251 event handler Event handler content
attributep520

onwaiting HTML
elementsp522

waitingp250 event handler Event handler content
attributep520

734

Interfaces

This section is non-normative.

List of interfaces for elements
Element(s) Interface(s)

ap169 HTMLAnchorElementp170 : HTMLElementp85

abbrp177 HTMLElementp85

addressp151 HTMLElementp85

areap280 HTMLAreaElementp280 : HTMLElementp85

articlep144 HTMLElementp85

asidep145 HTMLElementp85

audiop228 HTMLAudioElementp228 : HTMLMediaElementp231 : HTMLElementp85

bp185 HTMLElementp85

basep114 HTMLBaseElementp114 : HTMLElementp85

bdop190 HTMLElementp85

blockquotep159 HTMLQuoteElementp160 : HTMLElementp85

bodyp138 HTMLBodyElementp139 : HTMLElementp85

brp191 HTMLBRElementp191 : HTMLElementp85

buttonp351 HTMLButtonElementp352 : HTMLElementp85

canvasp251 HTMLCanvasElementp251 : HTMLElementp85

captionp292 HTMLTableCaptionElementp293 : HTMLElementp85

citep174 HTMLElementp85

codep181 HTMLElementp85

colp294 HTMLTableSectionElementp295 : HTMLElementp85

colgroupp293 HTMLTableColElementp294 : HTMLElementp85

commandp391 HTMLCommandElementp391 : HTMLElementp85

datalistp356 HTMLDataListElementp357 : HTMLElementp85

ddp166 HTMLElementp85

delp194 HTMLModElementp195 : HTMLElementp85

detailsp387 HTMLDetailsElementp388 : HTMLElementp85

divp168 HTMLDivElementp169 : HTMLElementp85

dlp164 HTMLDListElementp164 : HTMLElementp85

dtp166 HTMLElementp85

emp171 HTMLElementp85

embedp217 HTMLEmbedElementp217 : HTMLElementp85

fieldsetp317 HTMLFieldSetElementp317 : HTMLElementp85

figcaptionp168 HTMLElementp85

figurep167 HTMLElementp85

footerp150 HTMLElementp85

formp314 HTMLFormElementp314 : HTMLElementp85

headp112 HTMLHeadElementp113 : HTMLElementp85

h1p147 HTMLHeadingElementp147 : HTMLElementp85

h2p147 HTMLHeadingElementp147 : HTMLElementp85

h3p147 HTMLHeadingElementp147 : HTMLElementp85

h4p147 HTMLHeadingElementp147 : HTMLElementp85

h5p147 HTMLHeadingElementp147 : HTMLElementp85

h6p147 HTMLHeadingElementp147 : HTMLElementp85

headerp148 HTMLElementp85

hgroupp148 HTMLElementp85

hrp158 HTMLHRElementp158 : HTMLElementp85

htmlp112 HTMLHtmlElementp112 : HTMLElementp85

ip184 HTMLElementp85

iframep211 HTMLIFrameElementp211 : HTMLElementp85

imgp196 HTMLImageElementp197 : HTMLElementp85

inputp320 HTMLInputElementp321 : HTMLElementp85

insp193 HTMLModElementp195 : HTMLElementp85

kbdp183 HTMLElementp85

735

Element(s) Interface(s)

keygenp363 HTMLKeygenElementp363 : HTMLElementp85

labelp319 HTMLLabelElementp319 : HTMLElementp85

legendp318 HTMLLegendElementp318 : HTMLElementp85

lip163 HTMLLIElementp163 : HTMLElementp85

linkp115 HTMLLinkElementp115 : HTMLElementp85

mapp279 HTMLMapElementp279 : HTMLElementp85

markp186 HTMLElementp85

meterp369 HTMLMeterElementp369 : HTMLElementp85

navp142 HTMLElementp85

noscriptp136 HTMLElementp85

objectp220 HTMLObjectElementp220 : HTMLElementp85

olp161 HTMLOListElementp161 : HTMLElementp85

optgroupp357 HTMLOptGroupElementp357 : HTMLElementp85

optionp358 HTMLOptionElementp359 : HTMLElementp85

outputp366 HTMLOutputElementp366 : HTMLElementp85

pp157 HTMLParagraphElementp157 : HTMLElementp85

paramp224 HTMLParamElementp225 : HTMLElementp85

prep158 HTMLPreElementp158 : HTMLElementp85

progressp367 HTMLProgressElementp368 : HTMLElementp85

qp175 HTMLElementp85

rpp189 HTMLElementp85

rtp189 HTMLElementp85

rubyp188 HTMLElementp85

sampp182 HTMLElementp85

sectionp140 HTMLElementp85

selectp353 HTMLSelectElementp353 : HTMLElementp85

smallp173 HTMLElementp85

sourcep229 HTMLSourceElementp229 : HTMLElementp85

spanp191 HTMLSpanElementp191 : HTMLElementp85

strongp172 HTMLElementp85

stylep126 HTMLStyleElementp126 : HTMLElementp85

subp184 HTMLElementp85

summaryp390 HTMLElementp85

supp184 HTMLElementp85

tablep286 HTMLTableElementp287 : HTMLElementp85

tdp298 HTMLTableDataCellElementp298 : HTMLTableCellElementp300 : HTMLElementp85

textareap360 HTMLTextAreaElementp361 : HTMLElementp85

thp298 HTMLTableHeaderCellElementp298 : HTMLTableCellElementp300 : HTMLElementp85

theadp295 HTMLTableRowElementp297 : HTMLElementp85

timep178 HTMLTimeElementp179 : HTMLElementp85

titlep113 HTMLTitleElementp113 : HTMLElementp85

ulp162 HTMLUListElementp162 : HTMLElementp85

varp182 HTMLElementp85

videop225 HTMLVideoElementp226 : HTMLMediaElementp231 : HTMLElementp85

wbrp192 HTMLElementp85

Events

This section is non-normative.

List of events
Event Interface Description

DOMActivatep33 Eventp33 Fired at an element before its activation behaviorp98 is run
DOMContentLoaded Eventp33 Fired at the Documentp33 once it and its scripts have loaded, without waiting for other

subresources
abort Eventp33 Fired at the Windowp467 when the download was aborted by the user

736

Event Interface Description
afterprint Eventp33 Fired at the Windowp467 after printing
beforeprint Eventp33 Fired at the Windowp467 before printing
beforeunload BeforeUnloadEventp495 Fired at the Windowp467 when the page is about to be unloaded, in case the page would like to

show a warning prompt
blur Eventp33 Fired at nodes losing focus
change Eventp33 Fired at controls when the user commits a value change
contextmenu Eventp33 Fired at elements when the user requests their context menu
error Eventp33 Fired at elements when network and script errors occur
focus Eventp33 Fired at nodes gaining focus
formchange Eventp33 Fired at form controls when the user commits a value change to a control on the form
forminput Eventp33 Fired at form controls when the user changes the value of a control on the form

hashchangep493 HashChangeEventp493 Fired at the Windowp467 when the fragment identifier part of the document's current addressp75

changes
input Eventp33 Fired at controls when the user changes the value
invalid Eventp33 Fired at controls during form validation if they do not satisfy their constraints
load Eventp33 Fired at the Windowp467 when the document has finished loading; fired at an element

containing a resource (e.g. imgp196, embedp217) when its resource has finished loading
messagep570 MessageEventp570 Fired at an object when the object receives a message

offlinep513 Eventp33 Fired at the Windowp467 when the network connections fails
onlinep513 Eventp33 Fired at the Windowp467 when the network connections returns
pagehidep493 PageTransitionEventp493 Fired at the Windowp467 when the page's entry in the session historyp478 stops being the current

entryp478

pageshowp493 PageTransitionEventp493 Fired at the Windowp467 when the page's entry in the session historyp478 becomes the current
entryp478

popstatep492 PopStateEventp492 Fired at the Windowp467 when the user navigates the session historyp478

readystatechange Eventp33 Fired at the Documentp33 when it finishes parsing and again when all its subresources have
finished loading

redop564 UndoManagerEventp564 Fired at the Windowp467 object when the user goes forward in the undo transaction historyp563

reset Eventp33 Fired at a formp314 element when it is resetp387

show Eventp33 Fired at a menup393 element when it is shown as a context menu
submit Eventp33 Fired at a formp314 element when it is submittedp381

undop564 UndoManagerEventp564 Fired at the Windowp467 object when the user goes backward in the undo transaction historyp563

unload Eventp33 Fired at the Windowp467 object when the page is going away

Note: See also media element eventsp249, application cache eventsp496, and drag-and-drop
eventsp555.

737

References

All references are normative unless marked "Non-normative".

[ABNF]
Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell. IETF.

[ABOUT]
The 'about' URI scheme, J. Holsten, L. Hunt. IETF.

[ARIA]
Accessible Rich Internet Applications (WAI-ARIA), J. Craig, M. Cooper, L. Pappas, R. Schwerdtfeger, L. Seeman.
W3C.

[ARIAIMPL]
WAI-ARIA 1.0 User Agent Implementation Guide, A. Snow-Weaver, M. Cooper. W3C.

[ATAG]
(Non-normative) Authoring Tool Accessibility Guidelines (ATAG) 2.0, J. Richards, J. Spellman, J. Treviranus. W3C.

[ATOM]
(Non-normative) The Atom Syndication Format, M. Nottingham, R. Sayre. IETF.

[BCP47]
Tags for Identifying Languages; Matching of Language Tags, A. Phillips, M. Davis. IETF.

[BECSS]
Behavioral Extensions to CSS, I. Hickson. W3C.

[BEZIER]
Courbes à poles, P. de Casteljau. INPI, 1959.

[BIDI]
UAX #9: Unicode Bidirectional Algorithm, M. Davis. Unicode Consortium.

[BOCU1]
(Non-normative) UTN #6: BOCU-1: MIME-Compatible Unicode Compression, M. Scherer, M. Davis. Unicode
Consortium.

[CESU8]
(Non-normative) UTR #26: Compatibility Encoding Scheme For UTF-16: 8-BIT (CESU-8), T. Phipps. Unicode
Consortium.

[CHARMOD]
(Non-normative) Character Model for the World Wide Web 1.0: Fundamentals, M. Dürst, F. Yergeau, R. Ishida, M.
Wolf, T. Texin. W3C.

[COMPUTABLE]
(Non-normative) On computable numbers, with an application to the Entscheidungsproblem, A. Turing. In
Proceedings of the London Mathematical Society, series 2, volume 42, pages 230-265. London Mathematical
Society, 1937.

[COOKIES]
HTTP State Management Mechanism, A. Barth. IETF.

[CORS]
Cross-Origin Resource Sharing, A. van Kesteren. W3C.

[CSS]
Cascading Style Sheets Level 2 Revision 1, B. Bos, T. Çelik, I. Hickson, H. Lie. W3C.

[CSSATTR]
CSS Styling Attribute Syntax, E. Etemad. W3C.

[CSSCOLOR]
CSS Color Module Level 3, T. Çelik, C. Lilley, L. Baron. W3C.

[CSSFONTS]
CSS Fonts Module Level 3, J. Daggett. W3C.

738

http://www.ietf.org/rfc/std/std68.txt
http://tools.ietf.org/html/draft-holsten-about-uri-scheme
http://www.w3.org/WAI/PF/aria/
http://www.w3.org/WAI/PF/aria-implementation/
http://www.w3.org/TR/ATAG20/
http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/bcp/bcp47.txt
http://www.w3.org/TR/becss/
http://www.unicode.org/reports/tr9/
http://www.unicode.org/notes/tn6/
http://www.unicode.org/reports/tr26/
http://www.w3.org/TR/charmod/
http://www.turingarchive.org/browse.php/B/12
http://tools.ietf.org/html/draft-ietf-httpstate-cookie
http://dev.w3.org/2006/waf/access-control/
http://www.w3.org/TR/CSS/
http://dev.w3.org/csswg/css-style-attr/
http://dev.w3.org/csswg/css3-color/
http://www.w3.org/TR/css3-fonts/

[CSSOM]
Cascading Style Sheets Object Model (CSSOM), A. van Kesteren. W3C.

[CSSUI]
CSS3 Basic User Interface Module, T. Çelik. W3C.

[DOMCORE]
Document Object Model (DOM) Level 3 Core Specification, A. Le Hors, P. Le Hegaret, L. Wood, G. Nicol, J. Robie,
M. Champion, S. Byrnes. W3C.

[DOMEVENTS]
Document Object Model (DOM) Level 3 Events Specification, D. Schepers. W3C.

[DOMRANGE]
Document Object Model (DOM) Level 2 Traversal and Range Specification, J. Kesselman, J. Robie, M. Champion, P.
Sharpe, V. Apparao, L. Wood. W3C.

[E163]
Recommendation E.163 — Numbering Plan for The International Telephone Service, CCITT Blue Book, Fascicle
II.2, pp. 128-134, November 1988.

[ECMA262]
ECMAScript Language Specification. ECMA.

[ECMA357]
(Non-normative) ECMAScript for XML (E4X) Specification. ECMA.

[EUCKR]
Hangul Unix Environment. Korea Industrial Standards Association. Ref. No. KS C 5861-1992.

[EVENTSOURCE]
Server-Sent Events, I. Hickson. W3C.

[FILEAPI]
File API, A. Ranganathan. W3C.

[GBK]
Chinese Internal Code Specification. Chinese IT Standardization Technical Committee.

[GRAPHICS]
(Non-normative) Computer Graphics: Principles and Practice in C, Second Edition, J. Foley, A. van Dam, S. Feiner,
J. Hughes. Addison-Wesley. ISBN 0-201-84840-6.

[GREGORIAN]
(Non-normative) Inter Gravissimas, A. Lilius, C. Clavius. Gregory XIII Papal Bulls, February 1582.

[HATOM]
(Non-normative) hAtom, D Janes. Microformats.

[HTMLDIFF]
(Non-normative) HTML5 differences from HTML4, A. van Kesteren. W3C.

[HTTP]
Hypertext Transfer Protocol — HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee. IETF.

[IANACHARSET]
Character Sets. IANA.

[IANAPERMHEADERS]
Permanent Message Header Field Names. IANA.

[ISO8601]
ISO8601: Data elements and interchange formats — Information interchange — Representation of dates and
times. ISO.

[ISO885911]
ISO-8859-11: Information technology — 8-bit single-byte coded graphic character sets — Part 11: Latin/Thai
alphabet. ISO.

739

http://dev.w3.org/csswg/cssom/
http://www.w3.org/TR/css3-ui/
http://www.w3.org/TR/DOM-Level-3-Core/
http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://dev.w3.org/html5/eventsource/
http://dev.w3.org/2006/webapi/FileUpload/publish/FileAPI.html
http://microformats.org/wiki/hatom
http://dev.w3.org/html5/html4-differences/
http://www.ietf.org/rfc/rfc2616.txt
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/message-headers/perm-headers.html
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199
http://anubis.dkuug.dk/jtc1/sc2/open/02n3333.pdf
http://anubis.dkuug.dk/jtc1/sc2/open/02n3333.pdf

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON), D. Crockford. IETF.

[JSURL]
The 'javascript' resource identifier scheme, B. Höhrmann. IETF.

[MAILTO]
The mailto URL scheme, P. Hoffman, L. Masinter, J. Zawinski. IETF.

[MATHML]
Mathematical Markup Language (MathML), D. Carlisle, P. Ion, R. Miner, N. Poppelier. W3C.

[MIMESNIFF]
Content-Type Processing Model, A. Barth, I. Hickson. IETF.

[MQ]
Media Queries, H. Lie, T. Çelik, D. Glazman, A. van Kesteren. W3C.

[NPAPI]
(Non-normative) Gecko Plugin API Reference. Mozilla.

[OPENSEARCH]
Autodiscovery in HTML/XHTML. In OpenSearch 1.1 Draft 4, Section 4.6.2. OpenSearch.org.

[ORIGIN]
The HTTP Origin Header, A. Barth, C. Jackson, I. Hickson. IETF.

[PINGBACK]
Pingback 1.0, S. Langridge, I. Hickson.

[PNG]
Portable Network Graphics (PNG) Specification, D. Duce. W3C.

[PORTERDUFF]
Compositing Digital Images, T. Porter, T. Duff. In Computer graphics, volume 18, number 3, pp. 253-259. ACM
Press, July 1984.

[PPUTF8]
(Non-normative) The Properties and Promises of UTF-8, M. Dürst. University of Zürich. In Proceedings of the 11th
International Unicode Conference.

[PROGRESS]
Progress Events, C. McCathieNevile. W3C.

[PSL]
Public Suffix List. Mozilla Foundation.

[RFC1034]
Domain Names - Concepts and Facilities, P. Mockapetris. IETF, November 1987.

[RFC1345]
Character Mnemonics and Character Sets, K. Simonsen. IETF.

[RFC1468]
Japanese Character Encoding for Internet Messages, J. Murai, M. Crispin, E. van der Poel. IETF.

[RFC1554]
ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP, M. Ohta, K. Handa. IETF.

[RFC1557]
Korean Character Encoding for Internet Messages, U. Choi, K. Chon, H. Park. IETF.

[RFC1842]
ASCII Printable Characters-Based Chinese Character Encoding for Internet Messages, Y. Wei, Y. Zhang, J. Li, J.
Ding, Y. Jiang. IETF.

[RFC1922]
Chinese Character Encoding for Internet Messages, HF. Zhu, DY. Hu, ZG. Wang, TC. Kao, WCH. Chang, M. Crispin.
IETF.

740

http://www.ietf.org/rfc/rfc4627.txt
http://tools.ietf.org/html/draft-hoehrmann-javascript-scheme
http://www.ietf.org/rfc/rfc2368.txt
http://www.w3.org/TR/MathML/
http://tools.ietf.org/html/draft-abarth-mime-sniff
http://dev.w3.org/csswg/css3-mediaqueries/
https://developer.mozilla.org/en/Gecko_Plugin_API_Reference
http://www.opensearch.org/Specifications/OpenSearch/1.1#Autodiscovery_in_HTML.2FXHTML
http://tools.ietf.org/html/draft-abarth-origin
http://www.hixie.ch/specs/pingback/pingback
http://www.w3.org/TR/PNG/
http://keithp.com/~keithp/porterduff/p253-porter.pdf
http://www.ifi.uzh.ch/mml/mduerst/papers/PDF/IUC11-UTF-8.pdf
http://dev.w3.org/2006/webapi/progress/Progress.html
http://publicsuffix.org/
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1345.txt
http://www.ietf.org/rfc/rfc1468.txt
http://www.ietf.org/rfc/rfc1554.txt
http://www.ietf.org/rfc/rfc1557.txt
http://www.ietf.org/rfc/rfc1842.txt
http://www.ietf.org/rfc/rfc1922.txt

[RFC2045]
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, N. Freed, N.
Borenstein. IETF.

[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed, N. Borenstein. IETF.

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF.

[RFC2237]
Japanese Character Encoding for Internet Messages, K. Tamaru. IETF.

[RFC2313]
PKCS #1: RSA Encryption, B. Kaliski. IETF.

[RFC2318]
The text/css Media Type, H. Lie, B. Bos, C. Lilley. IETF.

[RFC2388]
Returning Values from Forms: multipart/form-data, L. Masinter. IETF.

[RFC2425]
A MIME Content-Type for Directory Information, T. Howes, M. Smith, F. Dawson. IETF.

[RFC2426]
vCard MIME Directory Profile, F. Dawson, T. Howes. IETF.

[RFC2445]
Internet Calendaring and Scheduling Core Object Specification (iCalendar), F. Dawson, D. Stenerson. IETF.

[RFC2483]
URI Resolution Services Necessary for URN Resolution, M. Mealling, R. Daniel. IETF.

[RFC2781]
UTF-16, an encoding of ISO 10646, P. Hoffman, F. Yergeau. IETF.

[RFC2646]
The Text/Plain Format Parameter, R. Gellens. IETF.

[RFC3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn. IETF.

[RFC3279]
Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile, W. Polk, R. Housley, L. Bassham. IETF.

[RFC3490]
Internationalizing Domain Names in Applications (IDNA), P. Faltstrom, P. Hoffman, A. Costello. IETF.

[RFC3548]
The Base16, Base32, and Base64 Data Encodings, S. Josefsson. IETF.

[RFC3864]
Registration Procedures for Message Header Fields, G. Klyne, M. Nottingham, J. Mogul. IETF.

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter. IETF.

[RFC3987]
Internationalized Resource Identifiers (IRIs), M. Dürst, M. Suignard. IETF.

[RFC4281]
The Codecs Parameter for "Bucket" Media Types, R. Gellens, D. Singer, P. Frojdh. IETF.

[RFC4329]
(Non-normative) Scripting Media Types, B. Höhrmann. IETF.

[RFC4770]
vCard Extensions for Instant Messaging (IM), C. Jennings, J. Reschke. IETF.

741

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2237.txt
http://www.ietf.org/rfc/rfc2313.txt
http://www.ietf.org/rfc/rfc2318.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2425.txt
http://www.ietf.org/rfc/rfc2426.txt
http://www.ietf.org/rfc/rfc2445.txt
http://www.ietf.org/rfc/rfc2483.txt
http://www.ietf.org/rfc/rfc2781.txt
http://www.ietf.org/rfc/rfc2646.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.ietf.org/rfc/rfc3490.txt
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc3864.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc4281.txt
http://www.ietf.org/rfc/rfc4329.txt
http://www.ietf.org/rfc/rfc4770.txt

[RFC5280]
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, D. Cooper, S.
Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. IETF.

[RFC5322]
Internet Message Format, P. Resnick. IETF.

[RFC5724]
URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS), E. Wilde, A. Vaha-
Sipila. IETF.

[SCSU]
(Non-normative) UTR #6: A Standard Compression Scheme For Unicode, M. Wolf, K. Whistler, C. Wicksteed, M.
Davis, A. Freytag, M. Scherer. Unicode Consortium.

[SELECTORS]
Selectors, T. Çelik, E. Etemad, D. Glazman, I. Hickson, P. Linss, J. Williams. W3C.

[SHIFTJIS]
JIS X0208: 7-bit and 8-bit double byte coded KANJI sets for information interchange. Japanese Standards
Association.

[SRGB]
IEC 61966-2-1: Multimedia systems and equipment — Colour measurement and management — Part 2-1: Colour
management — Default RGB colour space — sRGB. IEC.

[SVG]
Scalable Vector Graphics (SVG) Tiny 1.2 Specification, O. Andersson, R. Berjon, E. Dahlström, A. Emmons, J.
Ferraiolo, A. Grasso, V. Hardy, S. Hayman, D. Jackson, C. Lilley, C. McCormack, A. Neumann, C. Northway, A.
Quint, N. Ramani, D. Schepers, A. Shellshear. W3C.

[TIS620]
UDC 681.3.04:003.62. Thai Industrial Standards Institute, Ministry of Industry, Royal Thai Government. ISBN
974-606-153-4.

[UAAG]
(Non-normative) Web Content Accessibility Guidelines (UAAG) 2.0, J. Allan, K. Ford, J. Richards, J. Spellman. W3C.

[UNICODE]
The Unicode Standard. Unicode Consortium.

[UNIVCHARDET]
(Non-normative) A composite approach to language/encoding detection, S. Li, K. Momoi. Netscape. In
Proceedings of the 19th International Unicode Conference.

[UTF7]
UTF-7: A Mail-Safe Transformation Format of Unicode, D. Goldsmith, M. Davis. IETF.

[UTF8DET]
(Non-normative) Multilingual form encoding, M. Dürst. W3C.

[UTR36]
(Non-normative) UTR #36: Unicode Security Considerations, M. Davis, M. Suignard. Unicode Consortium.

[WCAG]
(Non-normative) Web Content Accessibility Guidelines (WCAG) 2.0, B. Caldwell, M. Cooper, L. Reid, G.
Vanderheiden. W3C.

[WEBIDL]
Web IDL, C. McCormack. W3C.

[WEBLINK]
Web Linking, M. Nottingham. IETF.

[WEBSOCKET]
The WebSocket API, I. Hickson. W3C.

[WEBSQL]
Web SQL Database, I. Hickson. W3C.

742

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5322.txt
http://www.ietf.org/rfc/rfc5724.txt
http://www.unicode.org/reports/tr6/
http://www.w3.org/TR/css3-selectors
http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408!OpenDocument&Click=
http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408!OpenDocument&Click=
http://www.w3.org/TR/SVGTiny12/
http://www.nectec.or.th/it-standards/std620/std620.htm
http://www.w3.org/TR/UAAG20/
http://www.unicode.org/versions/
http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html
http://www.ietf.org/rfc/rfc2152.txt
http://www.w3.org/International/questions/qa-forms-utf-8
http://www.unicode.org/reports/tr36/
http://www.w3.org/TR/WCAG20/
http://dev.w3.org/2006/webapi/WebIDL/
http://tools.ietf.org/html/draft-nottingham-http-link-header
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/webdatabase/

[WEBSTORAGE]
Web Storage, I. Hickson. W3C.

[WEBWORKERS]
Web Workers, I. Hickson. W3C.

[WHATWGWIKI]
The WHATWG Wiki. WHATWG.

[WIN1252]
Windows 1252. Microsoft.

[WIN1254]
Windows 1254. Microsoft.

[WIN31J]
Windows Codepage 932. Microsoft.

[WIN874]
Windows 874. Microsoft.

[WIN949]
Windows Codepage 949. Microsoft.

[X121]
Recommendation X.121 — International Numbering Plan for Public Data Networks, CCITT Blue Book, Fascicle
VIII.3, pp. 317-332.

[X690]
Recommendation X.690 — Information Technology — ASN.1 Encoding Rules — Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER). International
Telecommunication Union.

[XHR]
XMLHttpRequest, A. van Kesteren. W3C.

[XML]
Extensible Markup Language, T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau. W3C.

[XMLBASE]
XML Base, J. Marsh, R. Tobin. W3C.

[XMLNS]
Namespaces in XML, T. Bray, D. Hollander, A. Layman, R. Tobin. W3C.

[XPATH10]
XML Path Language (XPath) Version 1.0, J. Clark, S. DeRose. W3C.

[XSLT10]
XSL Transformations (XSLT) Version 1.0, J. Clark. W3C.

743

http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/workers/
http://wiki.whatwg.org/
http://www.microsoft.com/globaldev/reference/sbcs/1252.htm
http://www.microsoft.com/globaldev/reference/sbcs/1254.htm
http://www.microsoft.com/globaldev/reference/dbcs/932.mspx
http://www.microsoft.com/globaldev/reference/sbcs/874.mspx
http://www.microsoft.com/globaldev/reference/dbcs/949.mspx
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://dev.w3.org/2006/webapi/XMLHttpRequest-2/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/xml-names/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116

Acknowledgements

Thanks to Aankhen, Aaron Boodman, Aaron Leventhal, Adam Barth, Adam de Boor, Adam Hepton, Adam Roben,
Addison Phillips, Adele Peterson, Adrian Bateman, Adrian Sutton, Agustín Fernández, Ajai Tirumali, Akatsuki Kitamura,
Alan Plum, Alastair Campbell, Alex Bishop, Alex Nicolaou, Alex Rousskov, Alexander J. Vincent, Alexey Feldgendler,
Алексей Проскуряков (Alexey Proskuryakov), Alexis Deveria, Allan Clements, Amos Jeffries, Anders Carlsson, Andreas,
Andrei Popescu, André E. Veltstra, Andrew Clover, Andrew Gove, Andrew Grieve, Andrew Oakley, Andrew Sidwell,
Andrew Smith, Andrew W. Hagen, Andrey V. Lukyanov, Andy Heydon, Andy Palay, Anne van Kesteren, Anthony Boyd,
Anthony Bryan, Anthony Hickson, Anthony Ricaud, Antti Koivisto, Aron Spohr, Arphen Lin, Aryeh Gregor, Asbjørn
Ulsberg, Ashley Sheridan, Atsushi Takayama, Aurelien Levy, Ave Wrigley, Ben Boyle, Ben Godfrey, Ben Lerner, Ben
Leslie, Ben Meadowcroft, Ben Millard, Benjamin Carl Wiley Sittler, Benjamin Hawkes-Lewis, Bert Bos, Bijan Parsia, Bil
Corry, Bill Mason, Bill McCoy, Billy Wong, Bjartur Thorlacius, Björn Höhrmann, Blake Frantz, Boris Zbarsky, Brad Fults,
Brad Neuberg, Brady Eidson, Brendan Eich, Brenton Simpson, Brett Wilson, Brett Zamir, Brian Campbell, Brian Korver,
Brian Kuhn, Brian Ryner, Brian Smith, Brian Wilson, Bryan Sullivan, Bruce D'Arcus, Bruce Lawson, Bruce Miller, C.
Williams, Cameron McCormack, Cao Yipeng, Carlos Gabriel Cardona, Carlos Perelló Marín, Chao Cai, 윤석찬 (Channy
Yun), Charl van Niekerk, Charles Iliya Krempeaux, Charles McCathieNevile, Chris Cressman, Chris Evans, Chris Morris,
Chris Pearce, Christian Biesinger, Christian Johansen, Christian Schmidt, Christopher Aillon, Chriswa, Cole Robison,
Colin Fine, Collin Jackson, Corprew Reed, Craig Cockburn, Csaba Gabor, Csaba Marton, Daniel Barclay, Daniel Bratell,
Daniel Brooks, Daniel Brumbaugh Keeney, Daniel Cheng, Daniel Davis, Daniel Glazman, Daniel Peng, Daniel
Schattenkirchner, Daniel Spång, Daniel Steinberg, Danny Sullivan, Darin Adler, Darin Fisher, Darxus, Dave Camp, Dave
Hodder, Dave Lampton, Dave Singer, Dave Townsend, David Baron, David Bloom, David Bruant, David Carlisle, David
E. Cleary, David Egan Evans, David Flanagan, David Gerard, David Håsäther, David Hyatt, David I. Lehn, David Matja,
David Remahl, David Smith, David Woolley, DeWitt Clinton, Dean Edridge, Dean Edwards, Debi Orton, Derek
Featherstone, Devdatta, Dimitri Glazkov, Dimitry Golubovsky, Divya Manian, dolphinling, Dominique Hazaël-Massieux,
Don Brutzman, Doron Rosenberg, Doug Kramer, Drew Wilson, Edmund Lai, Eduard Pascual, Eduardo Vela, Edward
O'Connor, Edward Welbourne, Edward Z. Yang, Eira Monstad, Eitan Adler, Eliot Graff, Elizabeth Castro, Elliott Sprehn,
Elliotte Harold, Eric Carlson, Eric Law, Eric Rescorla, Erik Arvidsson, Evan Martin, Evan Prodromou, Evert, fantasai, Felix
Sasaki, Francesco Schwarz, Francis Brosnan Blazquez, Franck 'Shift' Quélain, Frank Barchard, 鵜飼文敏 (Fumitoshi Ukai),
Futomi Hatano, Gavin Carothers, Gareth Rees, Garrett Smith, Geoffrey Garen, Geoffrey Sneddon, George Lund,
Gianmarco Armellin, Giovanni Campagna, Graham Klyne, Greg Botten, Greg Houston, Greg Wilkins, Gregg Tavares,
Grey, Gytis Jakutonis, Håkon Wium Lie, Hallvord Reiar Michaelsen Steen, Hans S. Tømmerhalt, Henri Sivonen, Henrik
Lied, Henry Mason, Hugh Winkler, Ian Bicking, Ian Davis, Ignacio Javier, Ivan Enderlin, Ivo Emanuel Gonçalves, J. King,
Jacques Distler, James Craig, James Graham, James Justin Harrell, James M Snell, James Perrett, James Robinson, Jan-
Klaas Kollhof, Jason Kersey, Jason Lustig, Jason White, Jasper Bryant-Greene, Jatinder Mann, Jed Hartman, Jeff Balogh,
Jeff Cutsinger, Jeff Schiller, Jeff Walden, Jeffrey Zeldman, 胡慧鋒 (Jennifer Braithwaite), Jens Bannmann, Jens Fendler,
Jens Lindström, Jens Meiert, Jeremy Keith, Jeremy Orlow, Jeroen van der Meer, Jian Li, Jim Jewett, Jim Ley, Jim Meehan,
Jjgod Jiang, João Eiras, Joe Clark, Joe Gregorio, Joel Spolsky, Johan Herland, John Boyer, John Bussjaeger, John
Carpenter, John Fallows, John Foliot, John Harding, John Keiser, John Snyders, John-Mark Bell, Johnny Stenback, Jon
Ferraiolo, Jon Gibbins, Jon Perlow, Jonas Sicking, Jonathan Cook, Jonathan Rees, Jonathan Worent, Jonny Axelsson,
Jorgen Horstink, Jorunn Danielsen Newth, Joseph Kesselman, Joseph Pecoraro, Josh Aas, Josh Levenberg, Joshua
Randall, Jukka K. Korpela, Jules Clément-Ripoche, Julian Reschke, Justin Lebar, Justin Sinclair, Kai Hendry, Kartikaya
Gupta, Kathy Walton, Kelly Norton, Kevin Benson, Kornél Pál, Kornel Lesinski, Kristof Zelechovski, 黒澤剛志 (Kurosawa
Takeshi), Kyle Hofmann, Léonard Bouchet, Lachlan Hunt, Larry Masinter, Larry Page, Lars Gunther, Lars Solberg, Laura
Granka, Laura L. Carlson, Laura Wisewell, Laurens Holst, Lee Kowalkowski, Leif Halvard Silli, Lenny Domnitser, Leons
Petrazickis, Lobotom Dysmon, Logan, Loune, Luke Kenneth Casson Leighton, Maciej Stachowiak, Magnus Kristiansen,
Maik Merten, Malcolm Rowe, Mark Birbeck, Mark Miller, Mark Nottingham, Mark Pilgrim, Mark Rowe, Mark Schenk, Mark
Wilton-Jones, Martijn Wargers, Martin Atkins, Martin Dürst, Martin Honnen, Martin Kutschker, Martin Thomson,
Masataka Yakura, Mathieu Henri, Matt Schmidt, Matt Wright, Matthew Gregan, Matthew Mastracci, Matthew Raymond,
Matthew Thomas, Mattias Waldau, Max Romantschuk, Menno van Slooten, Micah Dubinko, Michael 'Ratt' Iannarelli,
Michael A. Nachbaur, Michael A. Puls II, Michael Carter, Michael Daskalov, Michael Enright, Michael Gratton, Michael
Nordman, Michael Powers, Michael(tm) Smith, Michal Zalewski, Michel Fortin, Michelangelo De Simone, Michiel van der
Blonk, Mihai Şucan, Mike Brown, Mike Dierken, Mike Dixon, Mike Schinkel, Mike Shaver, Mikko Rantalainen, Mohamed
Zergaoui, Ms2ger, NARUSE Yui, Neil Deakin, Neil Rashbrook, Neil Soiffer, Nicholas Shanks, Nicholas Stimpson, Nicholas
Zakas, Nicolas Gallagher, Noah Mendelsohn, Noah Slater, Ojan Vafai, Olaf Hoffmann, Olav Junker Kjær, Oldřich
Vetešník, Oliver Hunt, Oliver Rigby, Olivier Gendrin, Olli Pettay, Patrick H. Lauke, Paul Norman, Per-Erik Brodin, Perry
Smith, Peter Karlsson, Peter Kasting, Peter Stark, Peter-Paul Koch, Phil Pickering, Philip Jägenstedt, Philip Taylor, Philip
TAYLOR, Prateek Rungta, Rachid Finge, Rajas Moonka, Ralf Stoltze, Ralph Giles, Raphael Champeimont, Remco, Remy
Sharp, Rene Saarsoo, Rene Stach, Ric Hardacre, Rich Doughty, Richard Ishida, Rigo Wenning, Rikkert Koppes, Rimantas
Liubertas, Rob Ennals, Rob Jellinghaus, Robert Blaut, Robert Collins, Robert O'Callahan, Robert Sayre, Robin Berjon,
Roland Steiner, Roman Ivanov, Roy Fielding, Ryan King, S. Mike Dierken, Sam Dutton, Sam Kuper, Sam Ruby, Sam
Weinig, Sander van Lambalgen, Sarven Capadisli, Scott González, Scott Hess, Sean Fraser, Sean Hogan, Sean Knapp,
Sebastian Markbåge, Sebastian Schnitzenbaumer, Seth Call, Shanti Rao, Shaun Inman, Shiki Okasaka, Sierk
Bornemann, Sigbjørn Vik, Silvia Pfeiffer, Simon Montagu, Simon Pieters, Simon Spiegel, skeww, Stefan Haustein, Stefan
Santesson, Steffen Meschkat, Stephen Ma, Steve Faulkner, Steve Runyon, Steven Bennett, Steven Garrity, Steven Tate,

744

Stewart Brodie, Stuart Ballard, Stuart Parmenter, Subramanian Peruvemba, Sunava Dutta, Susan Borgrink, Susan
Lesch, Sylvain Pasche, T. J. Crowder, Tantek Çelik, 田村健人 (TAMURA Kent), Ted Mielczarek, Terrence Wood, Thomas
Broyer, Thomas O'Connor, Tim Altman, Tim Johansson, Toby Inkster, Todd Moody, Tom Pike, Tommy Thorsen, Travis
Leithead, Tyler Close, Vladimir Katardjiev, Vladimir Vukićević, voracity, Wakaba, Wayne Pollock, Wellington Fernando de
Macedo, Will Levine, William Swanson, Wladimir Palant, Wojciech Mach, Wolfram Kriesing, Yang Chen, Yehuda Katz, Yi-
An Huang, Yngve Nysaeter Pettersen, Yuzo Fujishima, Zhenbin Xu, Zoltan Herczeg, and Øistein E. Andersen, for their
useful comments, both large and small, that have led to changes to this specification over the years.

Thanks also to everyone who has ever posted about HTML to their blogs, public mailing lists, or forums, including all
the contributors to the various W3C HTML WG lists and the various WHATWG lists.

Special thanks to Richard Williamson for creating the first implementation of canvasp251 in Safari, from which the
canvas feature was designed.

Special thanks also to the Microsoft employees who first implemented the event-based drag-and-drop mechanism,
contenteditablep546, and other features first widely deployed by the Windows Internet Explorer browser.

Thanks to the participants of the microdata usability study for allowing us to use their mistakes as a guide for
designing the microdata feature.

Special thanks and $10,000 to David Hyatt who came up with a broken implementation of the adoption agency
algorithmp635 that the editor had to reverse engineer and fix before using it in the parsing section.

Thanks to the many sources that provided inspiration for the examples used in the specification.

Thanks also to the Microsoft blogging community for some ideas, to the attendees of the W3C Workshop on Web
Applications and Compound Documents for inspiration, to the #mrt crew, the #mrt.no crew, and the #whatwg crew,
and to Pillar and Hedral for their ideas and support.

745

http://www.w3.org/html/wg/lists/
http://www.whatwg.org/mailing-list

	HTML5 (including next generation additions still in development)
	Draft Standard — 7 April 2010
	Abstract
	Status of this document
	Table of contents
	1 Introduction
	1.1 Is this HTML5?
	1.2 Background
	1.3 Audience
	1.4 Scope
	1.5 History
	1.6 Design notes
	1.6.1 Serializability of script execution
	1.6.2 Compliance with other specifications

	1.7 HTML vs XHTML
	1.8 Structure of this specification
	1.8.1 How to read this specification
	1.8.2 Typographic conventions

	1.9 A quick introduction to HTML
	1.10 Conformance requirements for authors
	1.10.1 Presentational markup
	1.10.2 Syntax errors
	1.10.3 Restrictions on content models and on attribute values

	1.11 Recommended reading

	2 Common infrastructure
	2.1 Terminology
	2.1.1 Resources
	2.1.2 XML
	2.1.3 DOM trees
	2.1.4 Scripting
	2.1.5 Plugins
	2.1.6 Character encodings

	2.2 Conformance requirements
	2.2.1 Dependencies
	2.2.2 Extensibility

	2.3 Case-sensitivity and string comparison
	2.4 Common microsyntaxes
	2.4.1 Common parser idioms
	2.4.2 Boolean attributes
	2.4.3 Keywords and enumerated attributes
	2.4.4 Numbers
	2.4.4.1 Non-negative integers
	2.4.4.2 Signed integers
	2.4.4.3 Real numbers
	2.4.4.4 Percentages and lengths
	2.4.4.5 Lists of integers
	2.4.4.6 Lists of dimensions

	2.4.5 Dates and times
	2.4.5.1 Months
	2.4.5.2 Dates
	2.4.5.3 Times
	2.4.5.4 Local dates and times
	2.4.5.5 Global dates and times
	2.4.5.6 Weeks
	2.4.5.7 Vaguer moments in time

	2.4.6 Colors
	2.4.7 Space-separated tokens
	2.4.8 Comma-separated tokens
	2.4.9 References
	2.4.10 Media queries

	2.5 URLs
	2.5.1 Terminology
	2.5.2 Dynamic changes to base URLs
	2.5.3 Interfaces for URL manipulation

	2.6 Fetching resources
	2.6.1 Protocol concepts
	2.6.2 Encrypted HTTP and related security concerns
	2.6.3 Determining the type of a resource

	2.7 Common DOM interfaces
	2.7.1 Reflecting content attributes in IDL attributes
	2.7.2 Collections
	2.7.2.1 HTMLCollection
	2.7.2.2 HTMLAllCollection
	2.7.2.3 HTMLFormControlsCollection
	2.7.2.4 HTMLOptionsCollection
	2.7.2.5 HTMLPropertiesCollection

	2.7.3 DOMTokenList
	2.7.4 DOMSettableTokenList
	2.7.5 Safe passing of structured data
	2.7.6 DOMStringMap
	2.7.7 DOM feature strings
	2.7.8 Exceptions
	2.7.9 Garbage collection

	2.8 Namespaces

	3 Semantics, structure, and APIs of HTML documents
	3.1 Documents
	3.1.1 Documents in the DOM
	3.1.2 Security
	3.1.3 Resource metadata management
	3.1.4 DOM tree accessors
	3.1.5 Creating documents

	3.2 Elements
	3.2.1 Semantics
	3.2.2 Elements in the DOM
	3.2.3 Global attributes
	3.2.3.1 The id attribute
	3.2.3.2 The title attribute
	3.2.3.3 The lang and xml:lang attributes
	3.2.3.4 The xml:base attribute (XML only)
	3.2.3.5 The dir attribute
	3.2.3.6 The class attribute
	3.2.3.7 The style attribute
	3.2.3.8 Embedding custom non-visible data

	3.2.4 Element definitions
	3.2.5 Content models
	3.2.5.1 Kinds of content
	3.2.5.1.1 Metadata content
	3.2.5.1.2 Flow content
	3.2.5.1.3 Sectioning content
	3.2.5.1.4 Heading content
	3.2.5.1.5 Phrasing content
	3.2.5.1.6 Embedded content
	3.2.5.1.7 Interactive content

	3.2.5.2 Transparent content models
	3.2.5.3 Paragraphs

	3.2.6 Annotations for assistive technology products (ARIA)

	3.3 APIs in HTML documents
	3.4 Interactions with XPath and XSLT
	3.5 Dynamic markup insertion
	3.5.1 Opening the input stream
	3.5.2 Closing the input stream
	3.5.3 document.write()
	3.5.4 document.writeln()
	3.5.5 innerHTML
	3.5.6 outerHTML
	3.5.7 insertAdjacentHTML()

	4 The elements of HTML
	4.1 The root element
	4.1.1 The html element

	4.2 Document metadata
	4.2.1 The head element
	4.2.2 The title element
	4.2.3 The base element
	4.2.4 The link element
	4.2.5 The meta element
	4.2.5.1 Standard metadata names
	4.2.5.2 Other metadata names
	4.2.5.3 Pragma directives
	4.2.5.4 Other pragma directives
	4.2.5.5 Specifying the document's character encoding

	4.2.6 The style element
	4.2.7 Styling

	4.3 Scripting
	4.3.1 The script element
	4.3.1.1 Scripting languages
	4.3.1.2 Restrictions for contents of script elements
	4.3.1.3 Inline documentation for external scripts

	4.3.2 The noscript element

	4.4 Sections
	4.4.1 The body element
	4.4.2 The section element
	4.4.3 The nav element
	4.4.4 The article element
	4.4.5 The aside element
	4.4.6 The h1, h2, h3, h4, h5, and h6 elements
	4.4.7 The hgroup element
	4.4.8 The header element
	4.4.9 The footer element
	4.4.10 The address element
	4.4.11 Headings and sections
	4.4.11.1 Creating an outline

	4.5 Grouping content
	4.5.1 The p element
	4.5.2 The hr element
	4.5.3 The pre element
	4.5.4 The blockquote element
	4.5.5 The ol element
	4.5.6 The ul element
	4.5.7 The li element
	4.5.8 The dl element
	4.5.9 The dt element
	4.5.10 The dd element
	4.5.11 The figure element
	4.5.12 The figcaption element
	4.5.13 The div element

	4.6 Text-level semantics
	4.6.1 The a element
	4.6.2 The em element
	4.6.3 The strong element
	4.6.4 The small element
	4.6.5 The cite element
	4.6.6 The q element
	4.6.7 The dfn element
	4.6.8 The abbr element
	4.6.9 The time element
	4.6.10 The code element
	4.6.11 The var element
	4.6.12 The samp element
	4.6.13 The kbd element
	4.6.14 The sub and sup elements
	4.6.15 The i element
	4.6.16 The b element
	4.6.17 The mark element
	4.6.18 The ruby element
	4.6.19 The rt element
	4.6.20 The rp element
	4.6.21 The bdo element
	4.6.22 The span element
	4.6.23 The br element
	4.6.24 The wbr element
	4.6.25 Usage summary

	4.7 Edits
	4.7.1 The ins element
	4.7.2 The del element
	4.7.3 Attributes common to ins and del elements
	4.7.4 Edits and paragraphs
	4.7.5 Edits and lists

	4.8 Embedded content
	4.8.1 The img element
	4.8.1.1 Requirements for providing text to act as an alternative for images
	4.8.1.1.1 A link or button containing nothing but the image
	4.8.1.1.2 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs, maps, illustrations
	4.8.1.1.3 A short phrase or label with an alternative graphical representation: icons, logos
	4.8.1.1.4 Text that has been rendered to a graphic for typographical effect
	4.8.1.1.5 A graphical representation of some of the surrounding text
	4.8.1.1.6 A purely decorative image that doesn't add any information
	4.8.1.1.7 A group of images that form a single larger picture with no links
	4.8.1.1.8 A group of images that form a single larger picture with links
	4.8.1.1.9 A key part of the content
	4.8.1.1.10 An image not intended for the user
	4.8.1.1.11 An image in an e-mail or private document intended for a specific person who is known to be able to view images
	4.8.1.1.12 General guidelines
	4.8.1.1.13 Guidance for markup generators
	4.8.1.1.14 Guidance for conformance checkers

	4.8.2 The iframe element
	4.8.3 The embed element
	4.8.4 The object element
	4.8.5 The param element
	4.8.6 The video element
	4.8.7 The audio element
	4.8.8 The source element
	4.8.9 Media elements
	4.8.9.1 Error codes
	4.8.9.2 Location of the media resource
	4.8.9.3 MIME types
	4.8.9.4 Network states
	4.8.9.5 Loading the media resource
	4.8.9.6 Offsets into the media resource
	4.8.9.7 The ready states
	4.8.9.8 Playing the media resource
	4.8.9.9 Seeking
	4.8.9.10 User interface
	4.8.9.11 Time ranges
	4.8.9.12 Event summary
	4.8.9.13 Security and privacy considerations

	4.8.10 The canvas element
	4.8.10.1 The 2D context
	4.8.10.1.1 The canvas state
	4.8.10.1.2 Transformations
	4.8.10.1.3 Compositing
	4.8.10.1.4 Colors and styles
	4.8.10.1.5 Line styles
	4.8.10.1.6 Shadows
	4.8.10.1.7 Simple shapes (rectangles)
	4.8.10.1.8 Complex shapes (paths)
	4.8.10.1.9 Focus management
	4.8.10.1.10 Text
	4.8.10.1.11 Images
	4.8.10.1.12 Pixel manipulation
	4.8.10.1.13 Drawing model
	4.8.10.1.14 Examples

	4.8.10.2 Color spaces and color correction
	4.8.10.3 Security with canvas elements

	4.8.11 The map element
	4.8.12 The area element
	4.8.13 Image maps
	4.8.13.1 Authoring
	4.8.13.2 Processing model

	4.8.14 MathML
	4.8.15 SVG
	4.8.16 Dimension attributes

	4.9 Tabular data
	4.9.1 The table element
	4.9.2 The caption element
	4.9.3 The colgroup element
	4.9.4 The col element
	4.9.5 The tbody element
	4.9.6 The thead element
	4.9.7 The tfoot element
	4.9.8 The tr element
	4.9.9 The td element
	4.9.10 The th element
	4.9.11 Attributes common to td and th elements
	4.9.12 Processing model
	4.9.12.1 Forming a table
	4.9.12.2 Forming relationships between data cells and header cells

	4.9.13 Examples

	4.10 Forms
	4.10.1 Introduction
	4.10.1.1 Writing a form's user interface
	4.10.1.2 Implementing the server-side processing for a form
	4.10.1.3 Configuring a form to communicate with a server
	4.10.1.4 Client-side form validation

	4.10.2 Categories
	4.10.3 The form element
	4.10.4 The fieldset element
	4.10.5 The legend element
	4.10.6 The label element
	4.10.7 The input element
	4.10.7.1 States of the type attribute
	4.10.7.1.1 Hidden state
	4.10.7.1.2 Text state and Search state
	4.10.7.1.3 Telephone state
	4.10.7.1.4 URL state
	4.10.7.1.5 E-mail state
	4.10.7.1.6 Password state
	4.10.7.1.7 Date and Time state
	4.10.7.1.8 Date state
	4.10.7.1.9 Month state
	4.10.7.1.10 Week state
	4.10.7.1.11 Time state
	4.10.7.1.12 Local Date and Time state
	4.10.7.1.13 Number state
	4.10.7.1.14 Range state
	4.10.7.1.15 Color state
	4.10.7.1.16 Checkbox state
	4.10.7.1.17 Radio Button state
	4.10.7.1.18 File Upload state
	4.10.7.1.19 Submit Button state
	4.10.7.1.20 Image Button state
	4.10.7.1.21 Reset Button state
	4.10.7.1.22 Button state

	4.10.7.2 Common input element attributes
	4.10.7.2.1 The autocomplete attribute
	4.10.7.2.2 The list attribute
	4.10.7.2.3 The readonly attribute
	4.10.7.2.4 The size attribute
	4.10.7.2.5 The required attribute
	4.10.7.2.6 The multiple attribute
	4.10.7.2.7 The maxlength attribute
	4.10.7.2.8 The pattern attribute
	4.10.7.2.9 The min and max attributes
	4.10.7.2.10 The step attribute
	4.10.7.2.11 The placeholder attribute

	4.10.7.3 Common input element APIs
	4.10.7.4 Common event behaviors

	4.10.8 The button element
	4.10.9 The select element
	4.10.10 The datalist element
	4.10.11 The optgroup element
	4.10.12 The option element
	4.10.13 The textarea element
	4.10.14 The keygen element
	4.10.15 The output element
	4.10.16 The progress element
	4.10.17 The meter element
	4.10.18 Association of controls and forms
	4.10.19 Attributes common to form controls
	4.10.19.1 Naming form controls
	4.10.19.2 Enabling and disabling form controls
	4.10.19.3 A form control's value
	4.10.19.4 Autofocusing a form control
	4.10.19.5 Limiting user input length
	4.10.19.6 Form submission

	4.10.20 Constraints
	4.10.20.1 Definitions
	4.10.20.2 Constraint validation
	4.10.20.3 The constraint validation API
	4.10.20.4 Security

	4.10.21 Form submission
	4.10.21.1 Introduction
	4.10.21.2 Implicit submission
	4.10.21.3 Form submission algorithm
	4.10.21.4 URL-encoded form data
	4.10.21.5 Multipart form data
	4.10.21.6 Plain text form data

	4.10.22 Resetting a form
	4.10.23 Event dispatch

	4.11 Interactive elements
	4.11.1 The details element
	4.11.2 The summary element
	4.11.3 The command element
	4.11.4 The menu element
	4.11.4.1 Introduction
	4.11.4.2 Building menus and toolbars
	4.11.4.3 Context menus
	4.11.4.4 Toolbars

	4.11.5 Commands
	4.11.5.1 Using the a element to define a command
	4.11.5.2 Using the button element to define a command
	4.11.5.3 Using the input element to define a command
	4.11.5.4 Using the option element to define a command
	4.11.5.5 Using the command element to define a command
	4.11.5.6 Using the accesskey attribute on a label element to define a command
	4.11.5.7 Using the accesskey attribute on a legend element to define a command
	4.11.5.8 Using the accesskey attribute to define a command on other elements

	4.11.6 The device element
	4.11.6.1 Stream API
	4.11.6.2 Peer-to-peer connections

	4.12 Links
	4.12.1 Hyperlink elements
	4.12.2 Following hyperlinks
	4.12.2.1 Hyperlink auditing

	4.12.3 Link types
	4.12.3.1 Link type "alternate"
	4.12.3.2 Link type "archives"
	4.12.3.3 Link type "author"
	4.12.3.4 Link type "bookmark"
	4.12.3.5 Link type "external"
	4.12.3.6 Link type "help"
	4.12.3.7 Link type "icon"
	4.12.3.8 Link type "license"
	4.12.3.9 Link type "nofollow"
	4.12.3.10 Link type "noreferrer"
	4.12.3.11 Link type "pingback"
	4.12.3.12 Link type "prefetch"
	4.12.3.13 Link type "search"
	4.12.3.14 Link type "stylesheet"
	4.12.3.15 Link type "sidebar"
	4.12.3.16 Link type "tag"
	4.12.3.17 Hierarchical link types
	4.12.3.17.1 Link type "index"
	4.12.3.17.2 Link type "up"

	4.12.3.18 Sequential link types
	4.12.3.18.1 Link type "first"
	4.12.3.18.2 Link type "last"
	4.12.3.18.3 Link type "next"
	4.12.3.18.4 Link type "prev"

	4.12.3.19 Other link types

	4.13 Common idioms without dedicated elements
	4.13.1 Tag clouds
	4.13.2 Conversations
	4.13.3 Footnotes

	4.14 Matching HTML elements using selectors
	4.14.1 Case-sensitivity
	4.14.2 Pseudo-classes

	5 Microdata
	5.1 Introduction
	5.1.1 Overview
	5.1.2 The basic syntax
	5.1.3 Typed items
	5.1.4 Global identifiers for items
	5.1.5 Selecting names when defining vocabularies
	5.1.6 Using the microdata DOM API

	5.2 Encoding microdata
	5.2.1 The microdata model
	5.2.2 Items
	5.2.3 Names: the itemprop attribute
	5.2.4 Values
	5.2.5 Associating names with items

	5.3 Microdata DOM API
	5.4 Microdata vocabularies
	5.4.1 vCard
	5.4.1.1 Conversion to vCard
	5.4.1.2 Examples

	5.4.2 vEvent
	5.4.2.1 Conversion to iCalendar
	5.4.2.2 Examples

	5.4.3 Licensing works
	5.4.3.1 Conversion to RDF
	5.4.3.2 Examples

	5.5 Converting HTML to other formats
	5.5.1 JSON
	5.5.2 RDF
	5.5.2.1 Examples

	5.5.3 Atom

	6 Loading Web pages
	6.1 Browsing contexts
	6.1.1 Nested browsing contexts
	6.1.1.1 Navigating nested browsing contexts in the DOM

	6.1.2 Auxiliary browsing contexts
	6.1.2.1 Navigating auxiliary browsing contexts in the DOM

	6.1.3 Secondary browsing contexts
	6.1.4 Security
	6.1.5 Groupings of browsing contexts
	6.1.6 Browsing context names

	6.2 The Window object
	6.2.1 Security
	6.2.2 APIs for creating and navigating browsing contexts by name
	6.2.3 Accessing other browsing contexts
	6.2.4 Named access on the Window object
	6.2.5 Garbage collection and browsing contexts
	6.2.6 Browser interface elements
	6.2.7 The WindowProxy object

	6.3 Origin
	6.3.1 Relaxing the same-origin restriction

	6.4 Session history and navigation
	6.4.1 The session history of browsing contexts
	6.4.2 The History interface
	6.4.3 The Location interface
	6.4.3.1 Security

	6.4.4 Implementation notes for session history

	6.5 Browsing the Web
	6.5.1 Navigating across documents
	6.5.2 Page load processing model for HTML files
	6.5.3 Page load processing model for XML files
	6.5.4 Page load processing model for text files
	6.5.5 Page load processing model for images
	6.5.6 Page load processing model for content that uses plugins
	6.5.7 Page load processing model for inline content that doesn't have a DOM
	6.5.8 Navigating to a fragment identifier
	6.5.9 History traversal
	6.5.9.1 Event definitions

	6.5.10 Unloading documents
	6.5.10.1 Event definition

	6.5.11 Aborting a document load

	6.6 Offline Web applications
	6.6.1 Introduction
	6.6.1.1 Event summary

	6.6.2 Application caches
	6.6.3 The cache manifest syntax
	6.6.3.1 A sample manifest
	6.6.3.2 Writing cache manifests
	6.6.3.3 Parsing cache manifests

	6.6.4 Downloading or updating an application cache
	6.6.5 The application cache selection algorithm
	6.6.6 Changes to the networking model
	6.6.7 Expiring application caches
	6.6.8 Application cache API
	6.6.9 Browser state

	7 Web application APIs
	7.1 Scripting
	7.1.1 Introduction
	7.1.2 Enabling and disabling scripting
	7.1.3 Processing model
	7.1.3.1 Definitions
	7.1.3.2 Calling scripts
	7.1.3.3 Creating scripts
	7.1.3.4 Killing scripts

	7.1.4 Event loops
	7.1.4.1 Definitions
	7.1.4.2 Processing model
	7.1.4.3 Generic task sources

	7.1.5 The javascript: protocol
	7.1.6 Events
	7.1.6.1 Event handlers
	7.1.6.2 Event handlers on elements, Document objects, and Window objects
	7.1.6.3 Event firing
	7.1.6.4 Events and the Window object
	7.1.6.5 Runtime script errors

	7.2 Timers
	7.3 User prompts
	7.3.1 Simple dialogs
	7.3.2 Printing
	7.3.3 Dialogs implemented using separate documents

	7.4 System state and capabilities
	7.4.1 Client identification
	7.4.2 Custom scheme and content handlers
	7.4.2.1 Security and privacy
	7.4.2.2 Sample user interface

	7.4.3 Manually releasing the storage mutex

	8 User interaction
	8.1 The hidden attribute
	8.2 Activation
	8.3 Scrolling elements into view
	8.4 Focus
	8.4.1 Sequential focus navigation
	8.4.2 Focus management
	8.4.3 Document-level focus APIs
	8.4.4 Element-level focus APIs

	8.5 The accesskey attribute
	8.6 The text selection APIs
	8.6.1 APIs for the browsing context selection
	8.6.2 APIs for the text field selections

	8.7 The contenteditable attribute
	8.7.1 User editing actions
	8.7.2 Making entire documents editable

	8.8 Spelling and grammar checking
	8.9 Drag and drop
	8.9.1 Introduction
	8.9.2 The DragEvent and DataTransfer interfaces
	8.9.3 Events fired during a drag-and-drop action
	8.9.4 Drag-and-drop processing model
	8.9.4.1 When the drag-and-drop operation starts or ends in another document
	8.9.4.2 When the drag-and-drop operation starts or ends in another application

	8.9.5 The draggable attribute
	8.9.6 Security risks in the drag-and-drop model

	8.10 Undo history
	8.10.1 Definitions
	8.10.2 The UndoManager interface
	8.10.3 Undo: moving back in the undo transaction history
	8.10.4 Redo: moving forward in the undo transaction history
	8.10.5 The UndoManagerEvent interface and the undo and redo events
	8.10.6 Implementation notes

	8.11 Editing APIs

	9 Communication
	9.1 Event definitions
	9.2 Cross-document messaging
	9.2.1 Introduction
	9.2.2 Security
	9.2.2.1 Authors
	9.2.2.2 User agents

	9.2.3 Posting messages
	9.2.4 Posting messages with message ports

	9.3 Channel messaging
	9.3.1 Introduction
	9.3.2 Message channels
	9.3.3 Message ports
	9.3.3.1 Ports and garbage collection

	10 The HTML syntax
	10.1 Writing HTML documents
	10.1.1 The DOCTYPE
	10.1.2 Elements
	10.1.2.1 Start tags
	10.1.2.2 End tags
	10.1.2.3 Attributes
	10.1.2.4 Optional tags
	10.1.2.5 Restrictions on content models
	10.1.2.6 Restrictions on the contents of raw text and RCDATA elements

	10.1.3 Text
	10.1.3.1 Newlines

	10.1.4 Character references
	10.1.5 CDATA sections
	10.1.6 Comments

	10.2 Parsing HTML documents
	10.2.1 Overview of the parsing model
	10.2.2 The input stream
	10.2.2.1 Determining the character encoding
	10.2.2.2 Character encodings
	10.2.2.3 Preprocessing the input stream
	10.2.2.4 Changing the encoding while parsing

	10.2.3 Parse state
	10.2.3.1 The insertion mode
	10.2.3.2 The stack of open elements
	10.2.3.3 The list of active formatting elements
	10.2.3.4 The element pointers
	10.2.3.5 Other parsing state flags

	10.2.4 Tokenization
	10.2.4.1 Data state
	10.2.4.2 Character reference in data state
	10.2.4.3 RCDATA state
	10.2.4.4 Character reference in RCDATA state
	10.2.4.5 RAWTEXT state
	10.2.4.6 Script data state
	10.2.4.7 PLAINTEXT state
	10.2.4.8 Tag open state
	10.2.4.9 End tag open state
	10.2.4.10 Tag name state
	10.2.4.11 RCDATA less-than sign state
	10.2.4.12 RCDATA end tag open state
	10.2.4.13 RCDATA end tag name state
	10.2.4.14 RAWTEXT less-than sign state
	10.2.4.15 RAWTEXT end tag open state
	10.2.4.16 RAWTEXT end tag name state
	10.2.4.17 Script data less-than sign state
	10.2.4.18 Script data end tag open state
	10.2.4.19 Script data end tag name state
	10.2.4.20 Script data escape start state
	10.2.4.21 Script data escape start dash state
	10.2.4.22 Script data escaped state
	10.2.4.23 Script data escaped dash state
	10.2.4.24 Script data escaped dash dash state
	10.2.4.25 Script data escaped less-than sign state
	10.2.4.26 Script data escaped end tag open state
	10.2.4.27 Script data escaped end tag name state
	10.2.4.28 Script data double escape start state
	10.2.4.29 Script data double escaped state
	10.2.4.30 Script data double escaped dash state
	10.2.4.31 Script data double escaped dash dash state
	10.2.4.32 Script data double escaped less-than sign state
	10.2.4.33 Script data double escape end state
	10.2.4.34 Before attribute name state
	10.2.4.35 Attribute name state
	10.2.4.36 After attribute name state
	10.2.4.37 Before attribute value state
	10.2.4.38 Attribute value (double-quoted) state
	10.2.4.39 Attribute value (single-quoted) state
	10.2.4.40 Attribute value (unquoted) state
	10.2.4.41 Character reference in attribute value state
	10.2.4.42 After attribute value (quoted) state
	10.2.4.43 Self-closing start tag state
	10.2.4.44 Bogus comment state
	10.2.4.45 Markup declaration open state
	10.2.4.46 Comment start state
	10.2.4.47 Comment start dash state
	10.2.4.48 Comment state
	10.2.4.49 Comment end dash state
	10.2.4.50 Comment end state
	10.2.4.51 Comment end bang state
	10.2.4.52 Comment end space state
	10.2.4.53 DOCTYPE state
	10.2.4.54 Before DOCTYPE name state
	10.2.4.55 DOCTYPE name state
	10.2.4.56 After DOCTYPE name state
	10.2.4.57 After DOCTYPE public keyword state
	10.2.4.58 Before DOCTYPE public identifier state
	10.2.4.59 DOCTYPE public identifier (double-quoted) state
	10.2.4.60 DOCTYPE public identifier (single-quoted) state
	10.2.4.61 After DOCTYPE public identifier state
	10.2.4.62 Between DOCTYPE public and system identifiers state
	10.2.4.63 After DOCTYPE system keyword state
	10.2.4.64 Before DOCTYPE system identifier state
	10.2.4.65 DOCTYPE system identifier (double-quoted) state
	10.2.4.66 DOCTYPE system identifier (single-quoted) state
	10.2.4.67 After DOCTYPE system identifier state
	10.2.4.68 Bogus DOCTYPE state
	10.2.4.69 CDATA section state
	10.2.4.70 Tokenizing character references

	10.2.5 Tree construction
	10.2.5.1 Creating and inserting elements
	10.2.5.2 Closing elements that have implied end tags
	10.2.5.3 Foster parenting
	10.2.5.4 The "initial" insertion mode
	10.2.5.5 The "before html" insertion mode
	10.2.5.6 The "before head" insertion mode
	10.2.5.7 The "in head" insertion mode
	10.2.5.8 The "in head noscript" insertion mode
	10.2.5.9 The "after head" insertion mode
	10.2.5.10 The "in body" insertion mode
	10.2.5.11 The "text" insertion mode
	10.2.5.12 The "in table" insertion mode
	10.2.5.13 The "in table text" insertion mode
	10.2.5.14 The "in caption" insertion mode
	10.2.5.15 The "in column group" insertion mode
	10.2.5.16 The "in table body" insertion mode
	10.2.5.17 The "in row" insertion mode
	10.2.5.18 The "in cell" insertion mode
	10.2.5.19 The "in select" insertion mode
	10.2.5.20 The "in select in table" insertion mode
	10.2.5.21 The "in foreign content" insertion mode
	10.2.5.22 The "after body" insertion mode
	10.2.5.23 The "in frameset" insertion mode
	10.2.5.24 The "after frameset" insertion mode
	10.2.5.25 The "after after body" insertion mode
	10.2.5.26 The "after after frameset" insertion mode

	10.2.6 The end
	10.2.7 Coercing an HTML DOM into an infoset
	10.2.8 An introduction to error handling and strange cases in the parser
	10.2.8.1 Misnested tags: <i></i>
	10.2.8.2 Misnested tags: <p></p>
	10.2.8.3 Unexpected markup in tables
	10.2.8.4 Scripts that modify the page as it is being parsed

	10.3 Serializing HTML fragments
	10.4 Parsing HTML fragments
	10.5 Named character references

	11 The XHTML syntax
	11.1 Writing XHTML documents
	11.2 Parsing XHTML documents
	11.3 Serializing XHTML fragments
	11.4 Parsing XHTML fragments

	12 Rendering
	12.1 Introduction
	12.2 The CSS user agent style sheet and presentational hints
	12.2.1 Introduction
	12.2.2 Display types
	12.2.3 Margins and padding
	12.2.4 Alignment
	12.2.5 Fonts and colors
	12.2.6 Punctuation and decorations
	12.2.7 Resetting rules for inherited properties
	12.2.8 The hr element
	12.2.9 The fieldset element

	12.3 Replaced elements
	12.3.1 Embedded content
	12.3.2 Images
	12.3.3 Attributes for embedded content and images
	12.3.4 Image maps
	12.3.5 Toolbars

	12.4 Bindings
	12.4.1 Introduction
	12.4.2 The button element
	12.4.3 The details element
	12.4.4 The input element as a text entry widget
	12.4.5 The input element as domain-specific widgets
	12.4.6 The input element as a range control
	12.4.7 The input element as a color well
	12.4.8 The input element as a check box and radio button widgets
	12.4.9 The input element as a file upload control
	12.4.10 The input element as a button
	12.4.11 The marquee element
	12.4.12 The meter element
	12.4.13 The progress element
	12.4.14 The select element
	12.4.15 The textarea element
	12.4.16 The keygen element
	12.4.17 The time element

	12.5 Frames and framesets
	12.6 Interactive media
	12.6.1 Links, forms, and navigation
	12.6.2 The title attribute
	12.6.3 Editing hosts

	12.7 Print media

	13 Obsolete features
	13.1 Obsolete but conforming features
	13.1.1 Warnings for obsolete but conforming features

	13.2 Non-conforming features
	13.3 Requirements for implementations
	13.3.1 The applet element
	13.3.2 The marquee element
	13.3.3 Frames
	13.3.4 Other elements, attributes and APIs

	14 IANA considerations
	14.1 text/html
	14.2 text/html-sandboxed
	14.3 application/xhtml+xml
	14.4 text/cache-manifest
	14.5 text/ping
	14.6 application/microdata+json
	14.7 Ping-From
	14.8 Ping-To

	Index
	Elements
	Element content categories
	Attributes
	Interfaces
	Events

	References
	Acknowledgements

